1
|
Fisher LAB, Schöck F. The unexpected versatility of ALP/Enigma family proteins. Front Cell Dev Biol 2022; 10:963608. [PMID: 36531944 PMCID: PMC9751615 DOI: 10.3389/fcell.2022.963608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
One of the most intriguing features of multicellular animals is their ability to move. On a cellular level, this is accomplished by the rearrangement and reorganization of the cytoskeleton, a dynamic network of filamentous proteins which provides stability and structure in a stationary context, but also facilitates directed movement by contracting. The ALP/Enigma family proteins are a diverse group of docking proteins found in numerous cellular milieus and facilitate these processes among others. In vertebrates, they are characterized by having a PDZ domain in combination with one or three LIM domains. The family is comprised of CLP-36 (PDLIM1), Mystique (PDLIM2), ALP (PDLIM3), RIL (PDLIM4), ENH (PDLIM5), ZASP (PDLIM6), and Enigma (PDLIM7). In this review, we will outline the evolution and function of their protein domains which confers their versatility. Additionally, we highlight their role in different cellular environments, focusing specifically on recent advances in muscle research using Drosophila as a model organism. Finally, we show the relevance of this protein family to human myopathies and the development of muscle-related diseases.
Collapse
|
2
|
Joladarashi D, Zhu Y, Willman M, Nash K, Cimini M, Thandavarayan RA, Youker KA, Song X, Ren D, Li J, Kishore R, Krishnamurthy P, Wang L. STK35 Gene Therapy Attenuates Endothelial Dysfunction and Improves Cardiac Function in Diabetes. Front Cardiovasc Med 2022; 8:798091. [PMID: 35097018 PMCID: PMC8792894 DOI: 10.3389/fcvm.2021.798091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by microvascular pathology and interstitial fibrosis that leads to progressive heart failure. The mechanisms underlying DCM pathogenesis remain obscure, and no effective treatments for the disease have been available. In the present study, we observed that STK35, a novel kinase, is decreased in the diabetic human heart. High glucose treatment, mimicking hyperglycemia in diabetes, downregulated STK35 expression in mouse cardiac endothelial cells (MCEC). Knockdown of STK35 attenuated MCEC proliferation, migration, and tube formation, whereas STK35 overexpression restored the high glucose-suppressed MCEC migration and tube formation. Angiogenesis gene PCR array analysis revealed that HG downregulated the expression of several angiogenic genes, and this suppression was fully restored by STK35 overexpression. Intravenous injection of AAV9-STK35 viral particles successfully overexpressed STK35 in diabetic mouse hearts, leading to increased vascular density, suppression of fibrosis in the heart, and amelioration of left ventricular function. Altogether, our results suggest that hyperglycemia downregulates endothelial STK35 expression, leading to microvascular dysfunction in diabetic hearts, representing a novel mechanism underlying DCM pathogenesis. Our study also emerges STK35 is a novel gene therapeutic target for preventing and treating DCM.
Collapse
Affiliation(s)
- Darukeshwara Joladarashi
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, Bryd Alzheimer's Research Institute, University of South Florida, Tampa, FL, United States
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yanan Zhu
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, Bryd Alzheimer's Research Institute, University of South Florida, Tampa, FL, United States
| | - Matthew Willman
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, Bryd Alzheimer's Research Institute, University of South Florida, Tampa, FL, United States
| | - Kevin Nash
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, Bryd Alzheimer's Research Institute, University of South Florida, Tampa, FL, United States
| | - Maria Cimini
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | | | - Keith A. Youker
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, United States
| | - Xuehong Song
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, Bryd Alzheimer's Research Institute, University of South Florida, Tampa, FL, United States
| | - Di Ren
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, Bryd Alzheimer's Research Institute, University of South Florida, Tampa, FL, United States
| |
Collapse
|
3
|
Dao M, MacDonald I, Asaro RJ. Erythrocyte flow through the interendothelial slits of the splenic venous sinus. Biomech Model Mechanobiol 2021; 20:2227-2245. [PMID: 34535857 DOI: 10.1007/s10237-021-01503-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
The flow patterns of red blood cells through the spleen are intimately linked to clearance of senescent RBCs, with clearance principally occurring within the open flow through the red pulp and slits of the venous sinus system that exists in humans, rats, and dogs. Passage through interendothelial slits (IESs) of the sinus has been shown by MacDonald et al. (Microvasc Res 33:118-134, 1987) to be mediated by the caliber, i.e., slit opening width, of these slits. IES caliber within a given slit of a given sinus section has been shown to operate in an asynchronous manner. Here, we describe a model and simulation results that demonstrate how the supporting forces exerted on the sinus by the reticular meshwork of the red pulp, combined with asymmetrical contractility of stress fibers within the endothelial cells comprising the sinus, describe this vital and intriguing behavior. These results shed light on the function of the sinus slits in species such as humans, rats, and dogs that possess sinusoidal sinuses. Instead of assuming a passive mechanical filtering mechanism of the IESs, our proposed model provides a mechanically consistent explanation for the dynamically modulated IES opening/filtering mechanism observed in vivo. The overall perspective provided is also consistent with the view that IES passage serves as a self-protective mechanism in RBC vesiculation and inclusion removal.
Collapse
Affiliation(s)
- Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ian MacDonald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry Western University, London, ON, Canada
| | - R J Asaro
- Department of Structural Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Benvenuti S, Cramer R, Bruce J, Waterfield MD, Jat PS. Identification of novel candidates for replicative senescence by functional proteomics. Oncogene 2002; 21:4403-13. [PMID: 12080471 DOI: 10.1038/sj.onc.1205525] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2002] [Revised: 03/26/2002] [Accepted: 03/26/2002] [Indexed: 11/08/2022]
Abstract
To identify the underlying mechanisms that limit the mitotic potential of normal somatic cells, we have undertaken a high resolution differential proteomic analysis aimed at identifying proteins that were differentially expressed upon replicative senescence. Since replicative senescence in heterogeneous primary fibroblast cultures is asynchronous, we analysed a group of conditionally immortalized rat embryo fibroblast cell lines that have previously been shown to undergo synchronous senescence upon inactivation of SV40 tsA58 T antigen. This identified 43 spots that were differentially expressed in these cell lines. Comparison of the identity of these features with those identified in a complimentary independent differential proteomic analysis of replicative senescence, directly in primary rat embryo fibroblasts upon serial passaging, identified nine features that were in common between the two studies even though they had been conducted entirely separately. None of these proteins have previously been recognized to be involved with replicative senescence. Thus, they represent novel starting points for elucidating the underlying mechanism that regulates the finite mitotic life span of somatic cells and how it can be overcome in cancer cells.
Collapse
Affiliation(s)
- Silvia Benvenuti
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, Courtauld Building, 91 Riding House Street, London W1W 7BS, UK
| | | | | | | | | |
Collapse
|