1
|
Rafiq S, Mungure I, Banz Y, Niklaus NJ, Kaufmann T, Müller S, Jacquel A, Robert G, Auberger P, Torbett BE, Muller S, Tschan MP, Humbert M. HSPA8 Chaperone Complex Drives Chaperone-Mediated Autophagy Regulation in Acute Promyelocytic Leukemia Cell Differentiation. Pharmacology 2024; 109:216-230. [PMID: 38569476 DOI: 10.1159/000537864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a cancer of the hematopoietic system characterized by hyperproliferation of undifferentiated cells of the myeloid lineage. While most of AML therapies are focused toward tumor debulking, all-trans retinoic acid (ATRA) induces neutrophil differentiation in the AML subtype acute promyelocytic leukemia (APL). Macroautophagy has been extensively investigated in the context of various cancers and is often dysregulated in AML where it can have context-dependent pro- or anti-leukemogenic effects. On the contrary, the implications of chaperone-mediated autophagy (CMA) on the pathophysiology of diseases are still being explored and its role in AML remains elusive. METHODS We took advantage of human AML primary samples and databases to analyze CMA gene expression and activity. Furthermore, we used ATRA-sensitive (NB4) and -resistant (NB4-R1) APL cells to further dissect a potential function for CMA in ATRA-mediated neutrophil differentiation. NB4-R1 cells are unique in that they do respond to retinoic acid transcriptionally but do not mature in response to retinoid signaling alone unless maturation is triggered by adding cyclic adenosine monophosphate. RESULTS Here, we report that CMA-related mRNA transcripts are significantly higher expressed in immature hematopoietic cells as compared to neutrophils, contrasting the macroautophagy gene expression patterns. Accordingly, lysosomal degradation of an mCherry-KFERQ CMA reporter decreases during ATRA-induced differentiation of APL cells. On the other hand, using NB4-R1 cells we found that macroautophagy flux primed ATRA-resistant NB4-R1 cells to differentiate upon ATRA treatment but reduced the association of lysosome-associated membrane protein type 2A (LAMP-2A) and heat shock protein family A (Hsp70) member 8 (HSPA8), necessary for complete neutrophil maturation. Accordingly, depletion of HSPA8 attenuated CMA activity and facilitated APL cell differentiation. In contrast, maintaining high CMA activity by ectopic expression of LAMP-2A impeded APL differentiation. CONCLUSION Overall, our findings suggest that APL neutrophil differentiation requires CMA inactivation and that this pathway predominantly depends on HSPA8 and is possibly assisted by other co-chaperones.
Collapse
Affiliation(s)
- Sreoshee Rafiq
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Irene Mungure
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Yara Banz
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Nicolas J Niklaus
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Stefan Müller
- Flow Cytometry and Cell Sorting Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | | | | | - Bruce E Torbett
- Department of Pediatrics, School of Medicine, Center for Immunity and Immunotherapies, University of Washington and Seattle Children's Research Institute, Seattle, Washington, USA
| | - Sylviane Muller
- TRANSAUTOPHAGY: European Network of Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, Brussels, Belgium
- Ecole Supérieure de Biotechnologie de Strasbourg, CNRS and Strasbourg University, Unit Biotechnology and Cell Signaling, Illkirch, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France
- Chair Therapeutic Immunology, University of Strasbourg Institute for Advanced Study, Strasbourg, France
| | - Mario P Tschan
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- TRANSAUTOPHAGY: European Network of Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, Brussels, Belgium
| | - Magali Humbert
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- TRANSAUTOPHAGY: European Network of Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, Brussels, Belgium
| |
Collapse
|
2
|
Genomic Abnormalities as Biomarkers and Therapeutic Targets in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13205055. [PMID: 34680203 PMCID: PMC8533805 DOI: 10.3390/cancers13205055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary AML is a heterogenous malignancy with a variety of underlying genomic abnormalities. Some of the genetic aberrations in AML have led to the development of specific inhibitors which were approved by the Food and Drug Administration (FDA) and are currently used to treat eligible patients. In this review, we describe five gene mutations for which approved inhibitors have been developed, the response of AML patients to these inhibitors, and the known mechanism(s) of resistance. This review also highlights the significance of developing function-based screens for target discovery in the era of personalized medicine. Abstract Acute myeloid leukemia (AML) is a highly heterogeneous malignancy characterized by the clonal expansion of myeloid stem and progenitor cells in the bone marrow, peripheral blood, and other tissues. AML results from the acquisition of gene mutations or chromosomal abnormalities that induce proliferation or block differentiation of hematopoietic progenitors. A combination of cytogenetic profiling and gene mutation analyses are essential for the proper diagnosis, classification, prognosis, and treatment of AML. In the present review, we provide a summary of genomic abnormalities in AML that have emerged as both markers of disease and therapeutic targets. We discuss the abnormalities of RARA, FLT3, BCL2, IDH1, and IDH2, their significance as therapeutic targets in AML, and how various mechanisms cause resistance to the currently FDA-approved inhibitors. We also discuss the limitations of current genomic approaches for producing a comprehensive picture of the activated signaling pathways at diagnosis or at relapse in AML patients, and how innovative technologies combining genomic and functional methods will improve the discovery of novel therapeutic targets in AML. The ultimate goal is to optimize a personalized medicine approach for AML patients and possibly those with other types of cancers.
Collapse
|
3
|
Xiao H, Liang S, Wang L. Competing endogenous RNA regulation in hematologic malignancies. Clin Chim Acta 2020; 509:108-116. [PMID: 32479763 DOI: 10.1016/j.cca.2020.05.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022]
Abstract
The clinical application of cytogenetic analysis and molecular-targeted drugs has dramatically improved the prognosis for many patients with hematologic malignancy, especially for those with chronic myeloid leukemia (CML) and acute promyelocytic leukemia (APL). Nevertheless, the treatment of hematologic malignancies is still faced with problems, such as disease recurrence and drug resistance, so further exploring the underlying molecular mechanism is urgent. With the discovery of different RNA species, the mechanism of RNA-RNA interaction has caught more and more attention. "Competing endogenous RNA (ceRNA) hypothesis" is one of the fascinating products of recent researches. CeRNAs are endogenous RNA transcripts that share mutual microRNA response elements (MREs) and regulate expression of each other by competing for the same microRNAs pools. The hypothesis links different RNA species together and enriches our understanding of the human genome. Here, we introduce the hypothesis critically, summary the research progress in the field of hematologic malignancies and the current investigation methods, and address its promising clinical value in offering new predictive, prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Han Xiao
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Simin Liang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
4
|
The genetics and clinical characteristics of children morphologically diagnosed as acute promyelocytic leukemia. Leukemia 2018; 33:1387-1399. [PMID: 30575821 DOI: 10.1038/s41375-018-0338-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by t(15;17)(q22;q21), resulting in a PML-RARA fusion that is the master driver of APL. A few cases that cannot be identified with PML-RARA by using conventional methods (karyotype analysis, FISH, and RT-PCR) involve abnormal promyelocytes that are fully in accordance with APL in morphology, cytochemistry, and immunophenotype. To explore the mechanisms involved in pathogenesis and recurrence of morphologically diagnosed APL, we performed comprehensive variant analysis by next-generation sequencing in 111 pediatric patients morphologically diagnosed as APL. Structural variant (SV) analysis in 120 DNA samples from both diagnosis and relapse stage identified 95 samples with RARA rearrangement (including 94 with PML-RARA and one with NPM-RARA) and two samples with KMT2A rearrangement. In the eligible 13 RNA samples without any RARA rearrangement at diagnosis, one case each with CPSF6-RARG, NPM1-CCDC28A, and TBC1D15-RAB21 and two cases with a TBL1XR1-RARB fusion were discovered. These uncovered fusion genes strongly suggested their contributions to leukemogenesis as driver alternations and APL phenotype may arise by abnormalities of other members of the nuclear receptor superfamily involved in retinoid signaling (RARB or RARG) or even by mechanisms distinct from the formation of aberrant retinoid receptors. Single-nucleotide variant (SNV) analysis in 77 children (80 samples) with RARA rearrangement showed recurrent alternations of primary APL in FLT3, WT1, USP9X, NRAS, and ARID1A, with a strong potential for involvement in pathogenesis, and WT1 as the only recurrently mutated gene in relapsed APL. WT1, NPM1, NRAS, FLT3, and NSD1 were identified as recurrently mutated in 17 primary samples without RARA rearrangement and WT1, NPM1, TP53, and RARA as recurrently mutated in 9 relapsed samples. The survival of APL with RARA rearrangement is much better than without RARA rearrangement. Thus, patients morphologically diagnosed as APL that cannot be identified as having a RARA rearrangement are more reasonably classified as a subclass of AML other than APL, and individualized treatment should be considered according to the genetic abnormalities.
Collapse
|
5
|
Singh AA, Petraglia F, Nebbioso A, Yi G, Conte M, Valente S, Mandoli A, Scisciola L, Lindeboom R, Kerstens H, Janssen-Megens EM, Pourfarzad F, Habibi E, Berentsen K, Kim B, Logie C, Heath S, Wierenga ATJ, Clarke L, Flicek P, Jansen JH, Kuijpers T, Yaspo ML, Valle VD, Bernard O, Gut I, Vellenga E, Stunnenberg HG, Mai A, Altucci L, Martens JHA. Multi-omics profiling reveals a distinctive epigenome signature for high-risk acute promyelocytic leukemia. Oncotarget 2018; 9:25647-25660. [PMID: 29876014 PMCID: PMC5986653 DOI: 10.18632/oncotarget.25429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/01/2018] [Indexed: 12/30/2022] Open
Abstract
Epigenomic alterations have been associated with both pathogenesis and progression of cancer. Here, we analyzed the epigenome of two high-risk APL (hrAPL) patients and compared it to non-high-risk APL cases. Despite the lack of common genetic signatures, we found that human hrAPL blasts from patients with extremely poor prognosis display specific patterns of histone H3 acetylation, specifically hyperacetylation at a common set of enhancer regions. In addition, unique profiles of the repressive marks H3K27me3 and DNA methylation were exposed in high-risk APLs. Epigenetic comparison with low/intermediate-risk APLs and AMLs revealed hrAPL-specific patterns of histone acetylation and DNA methylation, suggesting these could be further developed into markers for clinical identification. The epigenetic drug MC2884, a newly generated general HAT/EZH2 inhibitor, induces apoptosis of high-risk APL blasts and reshapes their epigenomes by targeting both active and repressive marks. Together, our analysis uncovers distinctive epigenome signatures of hrAPL patients, and provides proof of concept for use of epigenome profiling coupled to epigenetic drugs to ‘personalize’ precision medicine.
Collapse
Affiliation(s)
- Abhishek A Singh
- Department of Molecular Biology, Radboud University, Nijmegen, Netherlands
| | - Francesca Petraglia
- Dipartimento di Biochimica Biofisica e Patologia Generale, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italy
| | - Angela Nebbioso
- Dipartimento di Biochimica Biofisica e Patologia Generale, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italy
| | - Guoqiang Yi
- Department of Molecular Biology, Radboud University, Nijmegen, Netherlands
| | | | - Sergio Valente
- Dipartimento di Chimica e Tecnologie del Farmaco 'Sapienza' Università, Roma, Italy
| | - Amit Mandoli
- Department of Molecular Biology, Radboud University, Nijmegen, Netherlands
| | - Lucia Scisciola
- Dipartimento di Biochimica Biofisica e Patologia Generale, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italy
| | - Rik Lindeboom
- Department of Molecular Biology, Radboud University, Nijmegen, Netherlands
| | - Hinri Kerstens
- Department of Molecular Biology, Radboud University, Nijmegen, Netherlands
| | | | - Farzin Pourfarzad
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Ehsan Habibi
- Department of Molecular Biology, Radboud University, Nijmegen, Netherlands
| | - Kim Berentsen
- Department of Molecular Biology, Radboud University, Nijmegen, Netherlands
| | - Bowon Kim
- Department of Molecular Biology, Radboud University, Nijmegen, Netherlands
| | - Colin Logie
- Department of Molecular Biology, Radboud University, Nijmegen, Netherlands
| | - Simon Heath
- Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Albertus T J Wierenga
- Department of Hematology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Joop H Jansen
- Department of Laboratory Medicine, Radboud UMC, Nijmegen, Netherlands
| | - Taco Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | | - Veronique Della Valle
- INSERM U1170, Universtité Paris-Saclay, Institut Gustave Roussy, Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France
| | - Olivier Bernard
- INSERM U1170, Universtité Paris-Saclay, Institut Gustave Roussy, Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France
| | - Ivo Gut
- Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Edo Vellenga
- Department of Hematology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | | | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco 'Sapienza' Università, Roma, Italy.,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Roma, Italy
| | - Lucia Altucci
- Dipartimento di Biochimica Biofisica e Patologia Generale, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italy
| | - Joost H A Martens
- Department of Molecular Biology, Radboud University, Nijmegen, Netherlands.,Dipartimento di Biochimica Biofisica e Patologia Generale, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italy
| |
Collapse
|
6
|
Chlapek P, Slavikova V, Mazanek P, Sterba J, Veselska R. Why Differentiation Therapy Sometimes Fails: Molecular Mechanisms of Resistance to Retinoids. Int J Mol Sci 2018; 19:ijms19010132. [PMID: 29301374 PMCID: PMC5796081 DOI: 10.3390/ijms19010132] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/12/2022] Open
Abstract
Retinoids represent a popular group of differentiation inducers that are successfully used in oncology for treatment of acute promyelocytic leukemia in adults and of neuroblastoma in children. The therapeutic potential of retinoids is based on their key role in the regulation of cell differentiation, growth, and apoptosis, which provides a basis for their use both in cancer therapy and chemoprevention. Nevertheless, patients treated with retinoids often exhibit or develop resistance to this therapy. Although resistance to retinoids is commonly categorized as either acquired or intrinsic, resistance as a single phenotypic feature is usually based on the same mechanisms that are closely related or combined in both of these types. In this review, we summarize the most common changes in retinoid metabolism and action that may affect the sensitivity of a tumor cell to treatment with retinoids. The availability of retinoids can be regulated by alterations in retinol metabolism or in retinoid intracellular transport, by degradation of retinoids or by their efflux from the cell. Retinoid effects on gene expression can be regulated via retinoid receptors or via other molecules in the transcriptional complex. Finally, the role of small-molecular-weight inhibitors of altered cell signaling pathways in overcoming the resistance to retinoids is also suggested.
Collapse
Affiliation(s)
- Petr Chlapek
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.
| | - Viera Slavikova
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.
| | - Pavel Mazanek
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.
| | - Jaroslav Sterba
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.
| |
Collapse
|
7
|
Kojima M, Ogiya D, Ichiki A, Hara R, Amaki J, Kawai H, Numata H, Sato A, Miyamoto M, Suzuki R, Machida S, Matsushita H, Ogawa Y, Kawada H, Ando K. Refractory acute promyelocytic leukemia successfully treated with combination therapy of arsenic trioxide and tamibarotene: A case report. Leuk Res Rep 2016; 5:11-3. [PMID: 27144119 PMCID: PMC4840419 DOI: 10.1016/j.lrr.2016.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/02/2015] [Accepted: 01/07/2016] [Indexed: 11/19/2022] Open
Abstract
A 40-year-old male developed refractory acute promyelocytic leukemia (APL) after various treatments including all-trans retinoic acid, tamibarotene, arsenic trioxide (As2O3), conventional chemotherapy, and autologous peripheral blood stem cell transplantation. We attempted to use both tamibarotene and As2O3 as a combination therapy, and he achieved molecular complete remission. Grade 2 prolongation of the QTc interval on the electrocardiogram was observed during the therapy. The combination therapy of As2O3 and tamibarotene may be effective and tolerable for treating refractory APL cases who have no treatment options, even when they have previously been treated with tamibarotene and As2O3as a single agent.
Collapse
Affiliation(s)
- Minoru Kojima
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
- Department of Hematology, Ebina General Hospital, Japan
- Corresponding author at: Department of Hematology, Ebina General Hospital, 1320 Kawaraguchi, Ebina, Kanagawa 243-0433, Japan.Department of Hematology, Ebina General Hospital1320 KawaraguchiEbinaKanagawa243-0433Japan
| | - Daisuke Ogiya
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Akifumi Ichiki
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Ryujiro Hara
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Jun Amaki
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
- Department of Hematology, Ebina General Hospital, Japan
| | - Hidetsugu Kawai
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Hiroki Numata
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Ai Sato
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Mitsuki Miyamoto
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Rikio Suzuki
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
- Division of Internal Medicine, Hadano Red Cross Hospital, Japan
| | - Shinichiro Machida
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Hiromichi Matsushita
- Department of laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Yoshiaki Ogawa
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Hiroshi Kawada
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Kiyoshi Ando
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| |
Collapse
|
8
|
Heynen GJJE, Nevedomskaya E, Palit S, Jagalur Basheer N, Lieftink C, Schlicker A, Zwart W, Bernards R, Bajpe PK. Mastermind-Like 3 Controls Proliferation and Differentiation in Neuroblastoma. Mol Cancer Res 2016; 14:411-22. [PMID: 26785999 DOI: 10.1158/1541-7786.mcr-15-0291-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/08/2016] [Indexed: 11/16/2022]
Abstract
UNLABELLED Neuroblastoma cell lines can differentiate upon treatment with retinoic acid (RA), a finding that provided the basis for the clinical use of RA to treat neuroblastoma. However, resistance to RA is often observed, which limits its clinical utility. Using a gain-of-function genetic screen, we identified an unexpected link between RA signaling and mastermind-like 3 (MAML3), a known transcriptional coactivator for NOTCH. Our findings indicate that MAML3 expression leads to the loss of activation of a subset of RA target genes, which hampers RA-induced differentiation and promotes resistance to RA. The regulatory DNA elements of this subset of RA target genes show overlap in binding of MAML3 and the RA receptor, suggesting a direct role for MAML3 in the regulation of these genes. In addition, MAML3 has RA-independent functions, including the activation of IGF1R and downstream AKT signaling via upregulation of IGF2, resulting in increased proliferation. These results demonstrate an important mechanistic role for MAML3 in proliferation and RA-mediated differentiation. IMPLICATIONS MAML3 coordinates transcription regulation with receptor tyrosine kinase pathway activation, shedding new light on why this gene is mutated in multiple cancers. Mol Cancer Res; 14(5); 411-22. ©2016 AACR.
Collapse
Affiliation(s)
- Guus J J E Heynen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands. Cancer Genomics Center Netherlands, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ekaterina Nevedomskaya
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands. Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sander Palit
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands. Cancer Genomics Center Netherlands, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Noorjahan Jagalur Basheer
- Department of Pediatric Oncology, Erasmus Medical Center/Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands. Cancer Genomics Center Netherlands, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Andreas Schlicker
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands. Cancer Genomics Center Netherlands, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wilbert Zwart
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rene Bernards
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands. Cancer Genomics Center Netherlands, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Prashanth Kumar Bajpe
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands. Cancer Genomics Center Netherlands, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Mi JQ, Chen SJ, Zhou GB, Yan XJ, Chen Z. Synergistic targeted therapy for acute promyelocytic leukaemia: a model of translational research in human cancer. J Intern Med 2015; 278:627-42. [PMID: 26058416 DOI: 10.1111/joim.12376] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acute promyelocytic leukaemia (APL), the M3 subtype of acute myeloid leukaemia, was once a lethal disease, yet nowadays the majority of patients with APL can be successfully cured by molecularly targeted therapy. This dramatic improvement in the survival rate is an example of the advantage of modern medicine. APL is characterized by a balanced reciprocal chromosomal translocation fusing the promyelocytic leukaemia (PML) gene on chromosome 15 with the retinoic acid receptor α (RARα) gene on chromosome 17. It has been found that all-trans-retinoic acid (ATRA) or arsenic trioxide (ATO) alone exerts therapeutic effect on APL patients with the PML-RARα fusion gene, and the combination of both drugs can act synergistically to further enhance the cure rate of the patients. Here, we provide an insight into the pathogenesis of APL and the mechanisms underlying the respective roles of ATRA and ATO. In addition, treatments that lead to more effective differentiation and apoptosis of APL cells, including leukaemia-initiating cells, and more thorough eradication of the disease will be discussed. Moreover, as a model of translational research, the development of a cure for APL has followed a bidirectional approach of 'bench to bedside' and 'bedside to bench', which can serve as a valuable example for the diagnosis and treatment of other malignancies.
Collapse
Affiliation(s)
- J-Q Mi
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S-J Chen
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G-B Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - X-J Yan
- Department of Hematology, the First Hospital of China Medical University, Shenyang, China
| | - Z Chen
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Wang L, Xiao H, Zhang X, Liao W, Fu S, Huang H. Restoration of CCAAT enhancer binding protein α P42 induces myeloid differentiation and overcomes all-trans retinoic acid resistance in human acute promyelocytic leukemia NB4-R1 cells. Int J Oncol 2015; 47:1685-95. [PMID: 26397153 PMCID: PMC4599186 DOI: 10.3892/ijo.2015.3163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/12/2015] [Indexed: 11/13/2022] Open
Abstract
All-trans retinoic acid (ATRA) is one of the first line agents in differentiation therapy for acute promyelocytic leukemia (APL). However, drug resistance is a major problem influencing the efficacy of ATRA. Identification of mechanisms of ATRA resistance are urgenly needed. In the present study, we found that expression of C/EBPα, an important transcription factor for myeloid differentiation, was significantly suppressed in ATRA resistant APL cell line NB4-R1 compared with ATRA sensitive NB4 cells. Moreover, two forms of C/EBPα were unequally suppressed in NB4-R1 cells. Suppression of the full-length form P42 was more pronounced than the truncated form P30. Inhibition of PI3K/Akt/mTOR pathway was also observed in NB4-R1 cells. Moreover, C/EBPα expression was reduced by PI3K inhibitor LY294002 and mTOR inhibitor RAD001 in NB4 cells, suggesting that inactivation of the PI3K/Akt/mTOR pathway was responsible for C/EBPα suppression in APL cells. We restored C/EBPα P42 and P30 by lentivirus vectors in NB4-R1 cells, respectively, and found C/EBPα P42, but not P30, could increase CD11b, CD14, G-CSFR and GM-CSFR expression, which indicated the occurrence of myeloid differentiation. Further upregulating of CD11b expression and differential morphological changes were found in NB4-R1 cells with restored C/EBPα P42 after ATRA treatment. However, CD11b expression and differential morphological changes could not be induced by ATRA in NB4-R1 cells infected with P30 expressing or control vector. Thus, we inferred that ATRA sensitivity of NB4-R1 cells was enhanced by restoration of C/EBPα P42. In addition, we used histone deacetylase inhibitor trichostatin (TSA) to restore C/EBPα expression in NB4-R1 cells. Similar enhancement of myeloid differentiation and cell growth arrest were detected. Together, the present study demonstrated that suppression of C/EBPα P42 induced by PI3K/Akt/mTOR inhibition impaired the differentiation and ATRA sensitivity of APL cells. Restoring C/EBPα P42 is an attractive approach for differentiation therapy in ATRA resistant APL.
Collapse
Affiliation(s)
- Limengmeng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Haowen Xiao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xing Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Weichao Liao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Shan Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
11
|
Zeidan AM, Gore SD. New strategies in acute promyelocytic leukemia: moving to an entirely oral, chemotherapy-free upfront management approach. Clin Cancer Res 2015; 20:4985-93. [PMID: 25274377 DOI: 10.1158/1078-0432.ccr-13-2725] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Incorporation of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) into the management paradigms of acute promyelocytic leukemia (APL) has markedly improved outcomes. Significant progress occurred in understanding the molecular pathogenesis of APL. ATO, in contrast with ATRA, is capable of eradicating the APL-initiating cells and can result in cure. Preclinical and clinical data confirmed the synergy of ATO and ATRA, and the ATRA-ATO combination was proved noninferior to a standard ATRA-chemotherapy regimen in patients with non-high-risk APL. Oral formulations of arsenic exhibited excellent activity in advanced clinical testing and their combinations with ATRA offer an opportunity for a completely oral, chemotherapy-free regimen for curing APL. Nonetheless, significant challenges remain. Reducing early death due to bleeding complications is an important area of unmet need. Data suggest that delays in initiation of ATRA upon suspecting APL continue to occur in the community and contribute to early mortality. Questions remain about the optimal place and schedule of arsenic in the therapeutic sequence and the role of the oral formulations. Refining the role of minimal residual disease in directing treatment decisions is important. Development of novel targeted agents to treat relapsed disease requires deeper understanding of the secondary resistance mechanisms to ATRA and ATO.
Collapse
Affiliation(s)
- Amer M Zeidan
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland.
| | - Steven D Gore
- Section of Hematology, Department of Internal Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
12
|
Nitto T, Sawaki K. Molecular mechanisms of the antileukemia activities of retinoid and arsenic. J Pharmacol Sci 2014; 126:179-85. [PMID: 25319615 DOI: 10.1254/jphs.14r15cp] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by the occurrence of translocations between chromosomes 15 and 17, resulting in generation of a fusion protein of promyelocytic leukemia (PML) and retinoid A receptor (RAR) α. APL cells are unable to differentiate into mature granulocytes since PML-RARα functions as a strong transcriptional repressor for a gene involved in granulocyte differentiation. All-trans retinoic acid (ATRA) is the first agent that has been developed to target specific disease-causing molecules, i.e., ATRA suppresses abnormal functions of oncogenic proteins. Moreover, ATRA facilitates the differentiation of APL cells toward mature granulocytes by changing epigenetic modifiers from corepressor complexes to co-activator complexes on target genes after binding to the ligand-binding domain at the RARα moiety of the PML-RARα oncoprotein. On the other hand, arsenic trioxide (ATO), another promising agent used to treat APL, directly binds to the PML moiety of the PML-RARα protein, causing oxidation and multimerization. ATO enhances the conjugation of small ubiquitin-like modifiers to PML-RARα, followed by ubiquitination and degradation, relieving the genes associated with granulocytic differentiation from suppressive restraint by the oncoprotein. Recent clinical studies have demonstrated that combination therapy with both ATRA and ATO is useful to achieve remission.
Collapse
Affiliation(s)
- Takeaki Nitto
- Laboratory of Pharmacotherapy, Yokohama College of Pharmacy, Japan
| | | |
Collapse
|
13
|
Takeshita A, Shinagawa K, Adachi M, Ono T, Kiguchi T, Naoe T. Tamibarotene for the treatment of acute promyelocytic leukemia. Expert Opin Orphan Drugs 2014. [DOI: 10.1517/21678707.2014.943733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Nichol JN, Garnier N, Miller WH. Triple A therapy: the molecular underpinnings of the unique sensitivity of leukemic promyelocytes to anthracyclines, all-trans-retinoic acid and arsenic trioxide. Best Pract Res Clin Haematol 2014; 27:19-31. [PMID: 24907014 DOI: 10.1016/j.beha.2014.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
If looking for a mnemonic to remember the relevant facts about acute promyelocytic leukemia (APL), one just has to remember that APL is a disease of A's. It is acute and it is highly sensitive to treatment with anthracyclines, all-trans-retinoic acid (RA) and arsenic trioxide (ATO). The presence of fusions involving the retinoic acid receptor alpha (RARA) is without question the central player driving APL and dictating the response of this disease to these therapeutic agents. However, beyond this knowledge, the molecular mechanisms that contribute to the complicated pathogenesis and the response to treatment of APL are not completely defined. As more is understood about this hematological malignancy, there are more opportunities to refine and improve treatment based on this knowledge. In this review article, we discuss the response of APL to these "A" therapies.
Collapse
Affiliation(s)
- Jessica N Nichol
- Division of Experimental Medicine, Department of Oncology, Segal Cancer Comprehensive Centre, Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Nicolas Garnier
- Division of Experimental Medicine, Department of Oncology, Segal Cancer Comprehensive Centre, Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, McGill University, Montréal, Quebec H3T 1E2, Canada
| | - Wilson H Miller
- Division of Experimental Medicine, Department of Oncology, Segal Cancer Comprehensive Centre, Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, McGill University, Montréal, Quebec H3T 1E2, Canada.
| |
Collapse
|
15
|
Combined staurosporine and retinoic acid induces differentiation in retinoic acid resistant acute promyelocytic leukemia cell lines. Sci Rep 2014; 4:4821. [PMID: 24769642 PMCID: PMC4001092 DOI: 10.1038/srep04821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/10/2014] [Indexed: 11/09/2022] Open
Abstract
All-trans retinoic acid (ATRA) resistance has been a critical problem in acute promyelocytic leukemia (APL) relapsed patients. In ATRA resistant APL cell lines NB4-R1 and NB4-R2, the combination of staurosporine and ATRA synergized to trigger differentiation accompanied by significantly enhanced protein level of CCAAT/enhancer binding protein ε (C/EBPε) and C/EBPβ as well as the phosphorylation of mitogen-activated protein (MEK) and extracellular signal-regulated kinase (ERK). Furthermore, attenuation of the MEK activation blocked not only the differentiation but also the increased protein level of C/EBPε and C/EBPβ. Taken together, we concluded that the combination of ATRA and staurosporine could overcome differentiation block via MEK/ERK signaling pathway in ATRA-resistant APL cell lines.
Collapse
|
16
|
Dos Santos GA, Kats L, Pandolfi PP. Synergy against PML-RARa: targeting transcription, proteolysis, differentiation, and self-renewal in acute promyelocytic leukemia. ACTA ACUST UNITED AC 2014; 210:2793-802. [PMID: 24344243 PMCID: PMC3865469 DOI: 10.1084/jem.20131121] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pandolfi et al. provide an in-depth discussion on the synergism between all-trans-retinoic acid and arsenic trioxide treatment and their mechanisms of action on acute promyelocytic leukemia. Acute promyelocytic leukemia (APL) is a hematological malignancy driven by a chimeric oncoprotein containing the C terminus of the retinoic acid receptor-a (RARa) fused to an N-terminal partner, most commonly promyelocytic leukemia protein (PML). Mechanistically, PML-RARa acts as a transcriptional repressor of RARa and non-RARa target genes and antagonizes the formation and function of PML nuclear bodies that regulate numerous signaling pathways. The empirical discoveries that PML-RARa–associated APL is sensitive to both all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO), and the subsequent understanding of the mechanisms of action of these drugs, have led to efforts to understand the contribution of molecular events to APL cell differentiation, leukemia-initiating cell (LIC) clearance, and disease eradication in vitro and in vivo. Critically, the mechanistic insights gleaned from these studies have resulted not only in a better understanding of APL itself, but also carry valuable lessons for other malignancies.
Collapse
Affiliation(s)
- Guilherme Augusto Dos Santos
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center; and 2 Department of Medicine and 3 Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | | | | |
Collapse
|
17
|
Cetinkalp S, Simsir IY, Sahin F, Saydam G, Ural AU, Yilmaz C. Can an oral antidiabetic (rosiglitazone) be of benefit in leukemia treatment? Saudi Pharm J 2013; 23:14-21. [PMID: 25685038 DOI: 10.1016/j.jsps.2013.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/14/2013] [Indexed: 12/22/2022] Open
Abstract
PPARs are ligand-regulated transcription factors and regulate expression of several gene products. Therefore, PPARs are being studied for their possible contribution to the treatment of cancer, atherosclerosis, inflammation, infertility and demyelinating diseases. Primary AML patients were observed to have significantly elevated PPARγ mRNA expression compared to normal peripheral blood or bone marrow mononuclear cells. This study investigated the cytotoxic effects of rosiglitazone maleate, a pure PPARγ agonist, in vitro in HL-60 cell line. This study obtained results which can provide guidance for future studies. Whether the PPARy agonist rosiglitazone maleate may provide additive effects in refractory or relapsing cases of acute leukemia may be set as an objective for the future studies.
Collapse
Affiliation(s)
- Sevki Cetinkalp
- Ege University Medical Faculty, Department of Endocrinology and Metabolism, Izmir, Turkey
| | - Ilgın Yildirim Simsir
- Ege University Medical Faculty, Department of Endocrinology and Metabolism, Izmir, Turkey
| | - Fahri Sahin
- Ege University Medical Faculty, Department of Hematology, Izmir, Turkey
| | - Guray Saydam
- Ege University Medical Faculty, Department of Hematology, Izmir, Turkey
| | - Ali Ugur Ural
- Gulhane Military Medical Academy, Department of Hematology, Ankara, Turkey
| | - Candeger Yilmaz
- Ege University Medical Faculty, Department of Endocrinology and Metabolism, Izmir, Turkey
| |
Collapse
|
18
|
Mechanisms of action and resistance to all-trans retinoic acid (ATRA) and arsenic trioxide (As2O3) in acute promyelocytic leukemia. Int J Hematol 2013; 97:717-25. [DOI: 10.1007/s12185-013-1354-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 01/10/2023]
|
19
|
Arteaga MF, Mikesch JH, Qiu J, Christensen J, Helin K, Kogan SC, Dong S, So CWE. The histone demethylase PHF8 governs retinoic acid response in acute promyelocytic leukemia. Cancer Cell 2013; 23:376-89. [PMID: 23518351 PMCID: PMC6812572 DOI: 10.1016/j.ccr.2013.02.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 11/26/2012] [Accepted: 02/15/2013] [Indexed: 10/27/2022]
Abstract
While all-trans retinoic acid (ATRA) treatment in acute promyelocytic leukemia (APL) has been the paradigm of targeted therapy for oncogenic transcription factors, the underlying mechanisms remain largely unknown, and a significant number of patients still relapse and become ATRA resistant. We identified the histone demethylase PHF8 as a coactivator that is specifically recruited by RARα fusions to activate expression of their downstream targets upon ATRA treatment. Forced expression of PHF8 resensitizes ATRA-resistant APL cells, whereas its downregulation confers resistance. ATRA sensitivity depends on the enzymatic activity and phosphorylation status of PHF8, which can be pharmacologically manipulated to resurrect ATRA sensitivity to resistant cells. These findings provide important molecular insights into ATRA response and a promising avenue for overcoming ATRA resistance.
Collapse
MESH Headings
- Animals
- Drug Resistance, Neoplasm
- Histone Demethylases/genetics
- Histone Demethylases/metabolism
- Histones
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Proteins/metabolism
- Okadaic Acid/pharmacology
- Oncogene Proteins, Fusion/metabolism
- Phosphorylation
- RNA Interference
- RNA, Small Interfering
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Tretinoin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Maria Francisca Arteaga
- Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King’s College London, Denmark Hill, London SE5 9NU, UK
| | - Jan-Henrik Mikesch
- Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King’s College London, Denmark Hill, London SE5 9NU, UK
| | - Jihui Qiu
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC)
- Centre for Epigenetics
- The Danish Stem Cell Center (Danstem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Scott C. Kogan
- Helen Diller Family Comprehensive Cancer Center and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shuo Dong
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chi Wai Eric So
- Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King’s College London, Denmark Hill, London SE5 9NU, UK
- Correspondence:
| |
Collapse
|
20
|
Treatment-influenced associations of PML-RARα mutations, FLT3 mutations, and additional chromosome abnormalities in relapsed acute promyelocytic leukemia. Blood 2012; 120:2098-108. [PMID: 22734072 DOI: 10.1182/blood-2012-01-407601] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the all-trans retinoic acid (ATRA)-targeted ligand binding domain of PML-RARα (PRα/LBD+) have been implicated in the passive selection of ATRA-resistant acute promyelocytic leukemia clones leading to disease relapse. Among 45 relapse patients from the ATRA/chemotherapy arm of intergroup protocol C9710, 18 patients harbored PRα/LBD+ (40%), 7 of whom (39%) relapsed Off-ATRA selection pressure, suggesting a possible active role of PRα/LBD+. Of 41 relapse patients coanalyzed, 15 (37%) had FMS-related tyrosine kinase 3 internal tandem duplication mutations (FLT3-ITD+), which were differentially associated with PRα/LBD+ depending on ATRA treatment status at relapse: positively, On-ATRA; negatively, Off-ATRA. Thirteen of 21 patients (62%) had additional chromosome abnormalities (ACAs); all coanalyzed PRα/LBD mutant patients who relapsed off-ATRA (n = 5) had associated ACA. After relapse Off-ATRA, ACA and FLT3-ITD+ were negatively associated and were oppositely associated with presenting white blood count and PML-RARα type: ACA, low, L-isoform; FLT3-ITD+, high, S-isoform. These exploratory results suggest that differing PRα/LBD+ activities may interact with FLT3-ITD+ or ACA, that FLT3-ITD+ and ACA are associated with different intrinsic disease progression pathways manifest at relapse Off-ATRA, and that these different pathways may be short-circuited by ATRA-selectable defects at relapse On-ATRA. ACA and certain PRα/LBD+ were also associated with reduced postrelapse survival.
Collapse
|
21
|
Tabe Y, Konopleva M, Andreeff M, Ohsaka A. Effects of PPARγ Ligands on Leukemia. PPAR Res 2012; 2012:483656. [PMID: 22685453 PMCID: PMC3364693 DOI: 10.1155/2012/483656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 03/21/2012] [Indexed: 12/18/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) and retinoic acid receptors (RARs), members of the nuclear receptor superfamily, are transcription factors that regulate a variety of important cellular functions. PPARs form heterodimers retinoid X receptor (RXR), an obligate heterodimeric partner for other nuclear receptors. Several novel links between retinoid metabolism and PPAR responses have been identified, and activation of PPAR/RXR expression has been shown to increase response to retinoids. PPARγ has emerged as a key regulator of cell growth and survival, whose activity is modulated by a number of synthetic and natural ligands. While clinical trials in cancer patients with thiazolidinediones (TZD) have been disappointing, novel structurally different PPARγ ligands, including triterpenoids, have entered clinical arena as therapeutic agents for epithelial and hematopoietic malignancies. Here we shall review the antitumor advances of PPARγ, alone and in combination with RARα ligands in control of cell proliferation, differentiation, and apoptosis and their potential therapeutic applications in hematological malignancies.
Collapse
Affiliation(s)
- Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Marina Konopleva
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Akimichi Ohsaka
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
22
|
Farris M, Lague A, Manuelyan Z, Statnekov J, Francklyn C. Altered nuclear cofactor switching in retinoic-resistant variants of the PML-RARα oncoprotein of acute promyelocytic leukemia. Proteins 2012; 80:1095-109. [PMID: 22228505 DOI: 10.1002/prot.24010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 11/18/2011] [Accepted: 11/28/2011] [Indexed: 11/06/2022]
Abstract
Acute promyelocytic leukemia (APL) results from a reciprocal translocation that fuses the gene for the PML tumor suppressor to that encoding the retinoic acid receptor alpha (RARα). The resulting PML-RARα oncogene product interferes with multiple regulatory pathways associated with myeloid differentiation, including normal PML and RARα functions. The standard treatment for APL includes anthracycline-based chemotherapeutic agents plus the RARα agonist all-trans retinoic acid (ATRA). Relapse, which is often accompanied by ATRA resistance, occurs in an appreciable frequency of treated patients. One potential mechanism suggested by model experiments featuring the selection of ATRA-resistant APL cell lines involves ATRA-resistant versions of the PML-RARα oncogene, where the relevant mutations localize to the RARα ligand-binding domain (LBD). Such mutations may act by compromising agonist binding, but other mechanisms are possible. Here, we studied the molecular consequence of ATRA resistance by use of circular dichroism, protease resistance, and fluorescence anisotropy assays employing peptides derived from the NCOR nuclear corepressor and the ACTR nuclear coactivator. The consequences of the mutations on global structure and cofactor interaction functions were assessed quantitatively, providing insights into the basis of agonist resistance. Attenuated cofactor switching and increased protease resistance represent features of the LBDs of ATRA-resistant PML-RARα, and these properties may be recapitulated in the full-length oncoproteins.
Collapse
Affiliation(s)
- Mindy Farris
- Department of Microbiology and Molecular Genetics, University of Vermont, Health Sciences Complex, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
23
|
Missense mutations in PML-RARA are critical for the lack of responsiveness to arsenic trioxide treatment. Blood 2011; 118:1600-9. [DOI: 10.1182/blood-2011-01-329433] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AbstractArsenic trioxide (As2O3) is a highly effective treatment for patients with refractory/relapsed acute promyelocytic leukemia (APL), but resistance to As2O3 has recently been seen. In the present study, we report the findings that 2 of 15 patients with refractory/relapsed APL treated with As2O3 were clinically As2O3 resistant. Leukemia cells from these 2 patients harbored missense mutations in promyelocytic leukemia gene–retinoic acid receptor-α gene (PML-RARA) transcripts, resulting in amino acid substitutions of A216V and L218P in the PML B2 domain. When wild-type or mutated PML-RARA (PR-WT and PR-B/L-mut, respectively) were overexpressed in HeLa cells, immunoblotting showed SUMOylated and/or oligomerized protein bands in PR-WT but not in PR-B/L-mut after As2O3 treatment. Protein-localization analysis indicated that PR-WT in the soluble fraction was transferred to the insoluble fraction after treatment with As2O3, but PR-B/L-mut was stably detected in fractions both with and without As2O3. Immunofluorescent microscopy analysis showed PR-WT localization as a microgranular pattern in the cytoplasm without As2O3 and as a macrogranular pattern with As2O3. PR-B/L-mut was diffusely observed in the cytoplasm with and without As2O3. Nearly identical localization patterns were observed in patients' primary cells. Therefore, B2 domain mutations may play an important role in aberrant molecular responses to As2O3 and may be critical for As2O3 resistance in APL.
Collapse
|
24
|
Targeting PKC delta-mediated topoisomerase II beta overexpression subverts the differentiation block in a retinoic acid-resistant APL cell line. Leukemia 2010; 24:729-39. [PMID: 20200558 DOI: 10.1038/leu.2010.27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retinoic acid (RA) relieves the maturation block in t(15:17) acute promyelocytic leukemia (APL), leading to granulocytic differentiation. However, RA treatment alone invariably results in RA resistance, both in vivo and in vitro. RA-resistant cell lines have been shown to serve as useful models for elucidation of mechanisms of resistance. Previously, we identified topoisomerase II beta (TOP2B) as a novel mediator of RA-resistance in APL cell lines. In this study, we show that both TOP2B protein stability and activity are regulated by a member of the protein kinase C (PRKC) family, PRKC delta (PRKCD). Co-treatment with a pharmacologic inhibitor of PRKCD and RA resulted in the induction of an RA responsive reporter construct, as well as the endogenous RA target genes, CEBPE, CYP26A1 and RIG-I. Furthermore, the co-treatment overcame the differentiation block in RA-resistant cells, as assessed by morphological analysis, restoration of promyelocytic leukemia nuclear bodies, induction of CD11c cell surface expression and an increase in nitro-blue-tetrazolium reduction. Cumulatively, our data suggest a model whereby inhibition of PRKCD decreases TOP2B protein levels, leading to a loss of TOP2B-mediated repressive effects on RA-induced transcription and granulocytic differentiation.
Collapse
|
25
|
Gallagher RE, Schachter-Tokarz EL, Zhou DC, Ding W, Kim SH, Sankoorikal BJ, Bi W, Livak KJ, Slack JL, Willman CL. Relapse of acute promyelocytic leukemia with PML-RARalpha mutant subclones independent of proximate all-trans retinoic acid selection pressure. Leukemia 2006; 20:556-62. [PMID: 16437139 PMCID: PMC1410817 DOI: 10.1038/sj.leu.2404118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Relapse of acute promyelocytic leukemia (APL) following all-trans retinoic acid (ATRA) therapy has been associated with the acquisition of mutations in the high-affinity ATRA binding site in PML-RARalpha, but little information is available about the selection dynamics of the mutation-harboring subclones. In this study, 6/18 patients treated with sequential ATRA and chemotherapy on protocol INT0129 relapsed with complete replacement of the nonmutant pretreatment APL cell population by a PML-RARalpha mutant subclone. Two patients relapsed in proximity of ATRA treatment; however, in four patients there was a 6-48 month hiatus between the last ATRA treatment and relapse. The mutant subclones were not detectable in samples tested > or = 3 months before relapse at > or = 1 in 10(2) (10(-2)) sensitivity. In one patient, a functionally weak mutation was detected at 10(-4) sensitivity before therapy but only limited pre-relapse enrichment of the mutant subclone was observed on subsequent ATRA therapy. These results indicate that proximate ATRA selection pressure is frequently not the main determinant for the emergence of strongly dominant PML-RARalpha mutant subclones and suggest that APL subclones harboring PML-RARalpha mutations are predisposed to the acquisition of secondary genetic/epigenetic alterations that result in a growth/survival advantage.
Collapse
Affiliation(s)
- R E Gallagher
- Department of Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY 10467, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Matsushita H, Scaglioni PP, Bhaumik M, Rego EM, Cai LF, Majid SM, Miyachi H, Kakizuka A, Miller WH, Pandolfi PP. In vivo analysis of the role of aberrant histone deacetylase recruitment and RAR alpha blockade in the pathogenesis of acute promyelocytic leukemia. ACTA ACUST UNITED AC 2006; 203:821-8. [PMID: 16549595 PMCID: PMC2118271 DOI: 10.1084/jem.20050616] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The promyelocytic leukemia–retinoic acid receptor α (PML-RARα) protein of acute promyelocytic leukemia (APL) is oncogenic in vivo. It has been hypothesized that the ability of PML-RARα to inhibit RARα function through PML-dependent aberrant recruitment of histone deacetylases (HDACs) and chromatin remodeling is the key initiating event for leukemogenesis. To elucidate the role of HDAC in this process, we have generated HDAC1–RARα fusion proteins and tested their activity and oncogenicity in vitro and in vivo in transgenic mice (TM). In parallel, we studied the in vivo leukemogenic potential of dominant negative (DN) and truncated RARα mutants, as well as that of PML-RARα mutants that are insensitive to retinoic acid. Surprisingly, although HDAC1-RARα did act as a bona fide DN RARα mutant in cellular in vitro and in cell culture, this fusion protein, as well as other DN RARα mutants, did not cause a block in myeloid differentiation in vivo in TM and were not leukemogenic. Comparative analysis of these TM and of TM/PML−/− and p53−/− compound mutants lends support to a model by which the RARα and PML blockade is necessary, but not sufficient, for leukemogenesis and the PML domain of the fusion protein provides unique functions that are required for leukemia initiation.
Collapse
MESH Headings
- Animals
- Cell Line
- Histone Deacetylases/metabolism
- Leukemia, Promyelocytic, Acute/enzymology
- Leukemia, Promyelocytic, Acute/etiology
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Mice
- Mice, Nude
- Mice, Transgenic
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Promyelocytic Leukemia Protein
- Receptors, Retinoic Acid/antagonists & inhibitors
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/physiology
- Retinoic Acid Receptor alpha
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/physiology
- Tumor Suppressor Proteins/antagonists & inhibitors
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/physiology
Collapse
Affiliation(s)
- Hiromichi Matsushita
- Cancer Biology and Genetics Program, Department of Pathology, Weill Graduate School of Medical Sciences, Cornell University, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhu J, Zhou J, Peres L, Riaucoux F, Honoré N, Kogan S, de Thé H. A sumoylation site in PML/RARA is essential for leukemic transformation. Cancer Cell 2005; 7:143-53. [PMID: 15710327 DOI: 10.1016/j.ccr.2005.01.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 06/18/2004] [Accepted: 01/12/2005] [Indexed: 11/15/2022]
Abstract
Pathogenesis of acute promyelocytic leukemia (APL) has been proposed to involve transcriptional repression through enhanced corepressors binding onto RARA moieties of PML/RARA homodimers. Unexpectedly, we show that the K160 sumoylation site in the PML moiety of PML/RARA is required for efficient immortalization/differentiation arrest ex vivo, implying that RARA homodimerization is insufficient to fully immortalize primary hematopoietic progenitor cells. Similarly, PML/RARAK160R transgenic mice develop myeloproliferative syndromes, but never APL. The Daxx repressor no longer binds PML/RARAK160R, but fusion of these two proteins restores the differentiation block ex vivo. Thus, transcriptional repression dependent on a specific sumoylation site in PML is critical for the APL phenotype, while forced RARA dimerization could control expansion of the myeloid compartment.
Collapse
Affiliation(s)
- Jun Zhu
- CNRS UPR 9051, laboratoire associé N11 du comité de Paris de la Ligue contre le Cancer, affilié à l'Université de Paris VII, Hôpital St. Louis, 1 avenue Claude Vellefaux, 75475 Paris, Cedex 10, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 2005; 45:495-528. [PMID: 15822187 DOI: 10.1146/annurev.pharmtox.45.120403.095825] [Citation(s) in RCA: 444] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acetylation is a key posttranslational modification of many proteins responsible for regulating critical intracellular pathways. Although histones are the most thoroughly studied of acetylated protein substrates, histone acetyltransferases (HATs) and deacetylases (HDACs) are also responsible for modifying the activity of diverse types of nonhistone proteins, including transcription factors and signal transduction mediators. HDACs have emerged as uncredentialed molecular targets for the development of enzymatic inhibitors to treat human cancer, and six structurally distinct drug classes have been identified with in vivo bioavailability and intracellular capability to inhibit many of the known mammalian members representing the two general types of NAD+-independent yeast HDACs, Rpd3 (HDACs 1, 2, 3, 8) and Hda1 (HDACs 4, 5, 6, 7, 9a, 9b, 10). Initial clinical trials indicate that HDAC inhibitors from several different structural classes are very well tolerated and exhibit clinical activity against a variety of human malignancies; however, the molecular basis for their anticancer selectivity remains largely unknown. HDAC inhibitors have also shown preclinical promise when combined with other therapeutic agents, and innovative drug delivery strategies, including liposome encapsulation, may further enhance their clinical development and anticancer potential. An improved understanding of the mechanistic role of specific HDACs in human tumorigenesis, as well as the identification of more specific HDAC inhibitors, will likely accelerate the clinical development and broaden the future scope and utility of HDAC inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Daryl C Drummond
- Hermes Biosciences, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | |
Collapse
|
29
|
Jyrkkärinne J, Windshügel B, Mäkinen J, Ylisirniö M, Peräkylä M, Poso A, Sippl W, Honkakoski P. Amino acids important for ligand specificity of the human constitutive androstane receptor. J Biol Chem 2004; 280:5960-71. [PMID: 15572376 DOI: 10.1074/jbc.m411241200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human constitutive androstane receptor (CAR, NR1I3) is an important ligand-activated regulator of oxidative and conjugative enzymes and transport proteins. Because of the lack of a crystal structure of the ligand-binding domain (LBD), wide species differences in ligand specificity and the scarcity of well characterized ligands, the factors that determine CAR ligand specificity are not clear. To address this issue, we developed highly defined homology models of human CAR LBD to identify residues lining the ligand-binding pocket and to perform molecular dynamics simulations with known human CAR modulators. The roles of 22 LBD residues for basal activity, ligand selectivity, and interactions with co-regulators were studied using site-directed mutagenesis, mammalian co-transfection, and yeast two-hybrid assays. These studies identified several amino acids within helices 3 (Asn(165)), 5 (Val(199)), 11 (Tyr(326), Ile(330), and Gln(331)), and 12 (Leu(343) and Ile(346)) that contribute to the high basal activity of human CAR. Unique residues within helices 3 (Ile(164) and Asn(165)), 5 (Cys(202) and His(203)), and 7 (Phe(234) and Phe(238)) were found control the selectivity for CAR activators and inhibitors. A single residue in helix 7 (Phe(243)) appears to explain the human/mouse species difference in response of CAR to 17alpha-ethynyl-3,17beta-estradiol.
Collapse
Affiliation(s)
- Johanna Jyrkkärinne
- Department of Pharmaceutics, University of Kuopio, P. O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Côté S, McNamara S, Brambilla D, Bianchini A, Rizzo G, del Rincón SV, Grignani F, Nervi C, Miller WH. Expression of SMRTbeta promotes ligand-induced activation of mutated and wild-type retinoid receptors. Blood 2004; 104:4226-35. [PMID: 15319284 DOI: 10.1182/blood-2003-10-3583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear receptors are ligand-modulated transcription factors regulated by interactions with corepressors and coactivators, whose functions are not fully understood. Acute promyelocytic leukemia (APL) is characterized by a translocation, t(15;17), that produces a PML/RARalpha fusion oncoprotein, whose abnormal transcriptional function is successfully targeted by pharmacologic levels of all-trans-retinoic acid (ATRA). Mutations in the ligand-binding domain of PML/RARalpha that confer resistance to ATRA have been studied by expression in nonhematopoietic cells, such as Cos-1. Here, we show that ATRA binding and transcriptional activation by the same PML/RARalpha mutant differ markedly between nonhematopoietic and leukemic cell lines. Differential expression of the corepressor isoform silencing mediator for retinoid and thyroid receptors beta (SMRTbeta) correlates with increased ligand binding and transcription by the mutant PML/RARalpha. Transient and stable overexpression of SMRTbeta in hematopoietic cells that only express SMRTalpha increased ATRA binding, ligand-induced transcription, and ATRA-induced cell differentiation. This effect may not be limited to abnormal nuclear receptors, because overexpression of SMRTbeta increased ATRA-induced binding and transcriptional activation of wild-type receptors PML/RARalpha and RARalpha. Our results suggest a novel role for the SMRTbeta isoform whereby its cell-specific expression may influence the binding and transcriptional capacities of nuclear receptors, thus providing new evidence of distinct functions of corepressor isoforms and adding complexity to transcriptional regulation.
Collapse
MESH Headings
- Cell Line, Tumor
- Chromosomes, Human, Pair 15
- Chromosomes, Human, Pair 17
- DNA-Binding Proteins/genetics
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Jurkat Cells
- Leukemia, Promyelocytic, Acute/genetics
- Ligands
- Neoplasm Proteins/genetics
- Nuclear Receptor Co-Repressor 2
- Oncogene Proteins, Fusion/genetics
- Plasmids
- Receptors, Retinoic Acid/genetics
- Repressor Proteins/genetics
- Transcriptional Activation
- Translocation, Genetic
- Tretinoin/pharmacokinetics
- Tretinoin/toxicity
Collapse
Affiliation(s)
- Sylvie Côté
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, 3755, Chemin de la Côte Ste-Catherine, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sun Y, Kim SH, Zhou DC, Ding W, Paietta E, Guidez F, Zelent A, Ramesh KH, Cannizzaro L, Warrell RP, Gallagher RE. Acute promyelocytic leukemia cell line AP-1060 established as a cytokine-dependent culture from a patient clinically resistant to all-trans retinoic acid and arsenic trioxide. Leukemia 2004; 18:1258-69. [PMID: 15116119 DOI: 10.1038/sj.leu.2403372] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AP-1060 is a newly established acute promyelocytic leukemia (APL) cell line from a multiple-relapse patient clinically resistant to both all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). The line was initially derived as a granulocyte colony-stimulating factor-dependent strain that underwent replicative senescence and, following ethylnitrosourea treatment, as a phenotypically similar immortalized line. Immortalization was associated with broadened cytokine sensitivity but not growth autonomy, in contrast to three previously derived APL lines. Both the AP-1060 strain and line had shortened telomeres and low telomerase activity, while the line had higher expression of many genes associated with macromolecular synthesis. The karyotype was 46,XY,t(3;14)(p21.1;q11.2),t(15;17)(q22;q11)[100%]; the unique t(3;14) was observed in 4/9 t(15;17)-positive metaphase cells at previous relapse on ATRA therapy. The PML-RARalpha mRNA harbored a missense mutation in the RARalpha-region ligand-binding domain (Pro900Ser). This was associated with a right-shift and sharpening of the ATRA-induced maturation response compared to ATRA-sensitive NB4 cells, which corresponded to the transcriptional activation by PML-RARalphaPro900Ser of a cotransfected ATRA-targeted reporter vector in COS-1 cells. AP-1060 also manifested relative resistance to ATO-induced apoptosis at >/=1 microM, while 0.25 microM ATO stimulated limited atypical maturation. These findings suggest that AP-1060 will be useful for further assessing molecular elements involved in APL progression and drug response/resistance.
Collapse
Affiliation(s)
- Y Sun
- Department of Oncology, Montefiore Medical Center, Bronx, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sato A, Imaizumi M, Hoshi Y, Rikiishi T, Fujii K, Kizaki M, Kagechika H, Kakizuka A, Hayashi Y, Iinuma K. Alteration in the cellular response to retinoic acid of a human acute promyelocytic leukemia cell line, UF-1, carrying a patient-derived mutant PML-RARalpha chimeric gene. Leuk Res 2004; 28:959-67. [PMID: 15234573 DOI: 10.1016/j.leukres.2003.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Accepted: 12/31/2003] [Indexed: 11/28/2022]
Abstract
Cellular response to all-trans retinoic acid (ATRA) of acute promyelocytic leukemia (APL) with patient-derived mutant PML-retinoic acid receptor-alpha (PML-RARalpha) was investigated using an APL cell line, UF-1, carrying Arg611Trp mutation in PML-RARalpha. Although the mutant protein showed a decreased ligand-dependent transcriptional activity and retained a dominant-negative effect on normal RARalpha, UF-1 cells underwent growth inhibition, maturation and apoptosis in response to ATRA at 1 microM, but not < or = 100 nM, after 4 days of treatment with ATRA. Moreover, in the presence of 1 microM ATRA, approximately 50% of UF-1 cells expressing annexin V, an early-apoptotic marker, was negative for CD11b and showed immature morphology. These findings suggest that UF-1 cells, despite expressing mutant PML-RARalpha protein, can be induced by ATRA to undergo differentiation and apoptosis through RA-inducible mechanism(s), in which a proportion of apoptosis may occur independent of terminal differentiation. This unique cell line may be useful for investigating the pathogenesis of ATRA resistance and the mechanism of ATRA-induced apoptosis in APL.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Higuchi T, Kizaki M, Omine M. Induction of differentiation of retinoic acid-resistant acute promyelocytic leukemia cells by the combination of all-trans retinoic acid and granulocyte colony-stimulating factor. Leuk Res 2004; 28:525-32. [PMID: 15068906 DOI: 10.1016/j.leukres.2003.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Accepted: 09/30/2003] [Indexed: 11/18/2022]
Abstract
An acute promyelocytic leukemia (APL) cell line with natural resistance to all-trans retinoic acid (ATRA), UF-1, was induced to differentiate into mature granulocyte when treated with the combination of ATRA and granulocyte colony-stimulating factor (G-CSF), while neither of them alone was capable of inducing the differentiation effectively. Continuous presence of both agents was required for the maximal differentiation-inductive effect. Neither proliferation arrest nor induction of apoptosis preceded the differentiation. Differentiated phenotype was accompanied by growth arrest, however, not by increased apoptosis. It was assumed that cellular events at the downstream of the signaling pathways of ATRA and G-CSF cooperatively played pivotal roles in the differentiation-induction.
Collapse
Affiliation(s)
- Takakazu Higuchi
- Division of Hematology, Internal Medicine, Showa University Fujigaoka Hospital, 1-30 Fujigaoka, Aoba-ku, Yokohama 227-8501, Japan.
| | | | | |
Collapse
|
34
|
Davison K, Mann KK, Waxman S, Miller WH. JNK activation is a mediator of arsenic trioxide-induced apoptosis in acute promyelocytic leukemia cells. Blood 2003; 103:3496-502. [PMID: 14701702 DOI: 10.1182/blood-2003-05-1412] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arsenic trioxide induces c-jun N-terminal kinase (JNK) activation and apoptosis in acute promyelocytic leukemia (APL), where it has major clinical activity, but whether JNK is necessary to induce apoptosis is unknown. To clarify this necessity, we established 2 arsenic trioxide (As(2)O(3))-resistant subclones of the APL cell line, NB4. Both resistant lines showed little activation of JNK1 following treatment with As(2)O(3), even at doses sufficient to elicit robust activation in NB4 cells. One mechanism of resistance in these cells is up-regulated glutathione (GSH) content, and GSH depletion by l-buthionine-[S,R]-sulfoximine (BSO) restores JNK activation and As(2)O(3) sensitivity. This correlation between JNK activation and apoptosis led us to test whether inhibition of JNK would protect cells from As(2)O(3)-induced apoptosis. SEK1(-/-) mouse embryo fibroblasts (MEFs) showed diminished JNK activation following As(2)O(3) treatment and were protected from As(2)O(3)-induced but not doxorubicin-induced apoptosis. Furthermore, treatment of arsenic trioxide-sensitive APL cells with the JNK inhibitor, dicumarol, significantly increased growth and survival in response to As(2)O(3) but did not protect cells from doxorubicin. Together, these data support an essential role for JNK signaling in the induction of growth inhibition and apoptosis by As(2)O(3) and suggest that activating JNK may provide a therapeutic advantage in the treatment of cancers that do not respond to arsenic alone.
Collapse
Affiliation(s)
- Kelly Davison
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
35
|
Mistry AR, Pedersen EW, Solomon E, Grimwade D. The molecular pathogenesis of acute promyelocytic leukaemia: implications for the clinical management of the disease. Blood Rev 2003; 17:71-97. [PMID: 12642121 DOI: 10.1016/s0268-960x(02)00075-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acute promyelocytic leukaemia (APL) is characterised by chromosomal rearrangements of 17q21, leading to fusion of the gene encoding retinoic acid receptor alpha (RARalpha) to a number of alternative partner genes (X), the most frequent of which are PML (>95%), PLZF (0.8%) and NPM (0.5%). Over the last few years, it has been established that the X-RARalpha fusion proteins play a key role in the pathogenesis of APL through recruitment of co-repressors and the histone deacetylase (HDAC)-complex to repress genes implicated in myeloid differentiation. Paradoxically, the X-RARalpha fusion protein has the potential to mediate myeloid differentiation at pharmacological doses of its ligand (all trans-retinoic acid (ATRA)), which is dependent on the dissociation of the HDAC/co-repressor complex. Arsenic compounds have also been shown to be promising therapeutic agents, leading to differentiation and apoptosis of APL blasts. It is now apparent that the nature of the RARalpha-fusion partner is a critical determinant of response to ATRA and arsenic, underlining the importance of cytogenetic and molecular characterisation of patients with suspected APL to determine the most appropriate treatment approach. Standard protocols involving ATRA combined with anthracycline-based chemotherapy, lead to cure of approximately 70% patients with PML-RARalpha-associated APL. Patients at high risk of relapse can be identified by minimal residual disease monitoring. The challenge for future studies is to improve complete remission rates through reduction of induction deaths, particularly due to haemorrhage, identification of patients at high risk of relapse who would benefit from additional therapy, and identification of a favourable-risk group, for which treatment intensity could be reduced, thereby reducing risks of treatment toxicity and development of secondary leukaemia/myelodysplasia. With the advent of ATRA and arsenic, APL has already provided the first example of successful molecularly targeted therapy; it is hoped that with further understanding of the pathogenesis of the disease, the next decade will yield further improvements in the outlook for these patients.
Collapse
MESH Headings
- Animals
- Gene Rearrangement
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Leukemia, Promyelocytic, Acute/therapy
- Models, Biological
- Mutation
- Neoplasm, Residual/genetics
- Neoplasm, Residual/pathology
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Translocation, Genetic
Collapse
Affiliation(s)
- Anita R Mistry
- Division of Medical and Molecular Genetics, Guy's, King's and St Thomas' School of Medicine, London, UK
| | | | | | | |
Collapse
|
36
|
Davison K, Côté S, Mader S, Miller WH. Glutathione depletion overcomes resistance to arsenic trioxide in arsenic-resistant cell lines. Leukemia 2003; 17:931-40. [PMID: 12750708 DOI: 10.1038/sj.leu.2402876] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arsenic trioxide (As(2)O(3)) is an effective treatment for acute promyelocytic leukemia (APL), but is less effective against other leukemias. Although the response of APL cells to As(2)O(3) has been linked to degradation of the PML/RARalpha fusion oncoprotein, there is evidence that PML/RARalpha expression is not the only mediator of arsenic sensitivity. Indeed, we found that exogenous expression of PML/RARalpha did not sensitize a non-APL leukemic line to As(2)O(3). To evaluate possible other determinants of sensitivity of leukemic cells to As(2)O(3), we derived two arsenic-resistant NB4 subclones. Despite being approximately 10-fold more resistant to arsenic than their parental cell line, PML/RARalpha protein was still degraded by As(2)O(3) in these cells, providing further evidence that loss of expression of the oncoprotein does not confer arsenic sensitivity. Both arsenic-resistant clones contained high glutathione (GSH) levels, however, and we found that GSH depletion coupled with As(2)O(3) treatment dramatically inhibited their growth. Annexin V-staining and TUNEL analysis confirmed a synergistic induction of apoptosis. In addition, these cells failed to accumulate ROS in response to arsenic treatment, in contrast to their arsenic-sensitive parental cells, unless cotreated with buthionine sulfoximine. While other malignant cells did not show a good correlation between arsenic sensitivity and GSH content, GSH depletion nevertheless sensitized all cell lines examined, regardless of their initial response to arsenic alone. These findings suggest that PML/RARalpha expression is not a determinant of arsenic sensitivity, and further support the coupling of GSH depletion and arsenic treatment as a novel treatment for human malignancies that are unresponsive to arsenic alone.
Collapse
Affiliation(s)
- K Davison
- Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
37
|
Eskiw CH, Bazett-Jones DP. The promyelocytic leukemia nuclear body: sites of activity? Biochem Cell Biol 2003; 80:301-10. [PMID: 12123283 DOI: 10.1139/o02-079] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The promyelocytic leukemia (PML) nuclear body is one of many subnuclear domains in the eukaryotic cell nucleus. It has received much attention in the past few years because it accumulates the promyelocytic leukemia protein called PML. This protein is implicated in many nuclear events and is found as a fusion with the retinoic acid receptor RARalpha in leukemic cells. The importance of PML bodies in cell differentiation and growth is implicated in acute promyelocitic leukemia cells, which do not contain PML bodies. Treatment of patients with drugs that reverse the disease phenotype also causes PML bodies to reform. In this review, we discuss the structure, composition, and dynamics that may provide insights into the function of PML bodies. We also discuss the repsonse of PML bodies to cellular stresses, such as virus infection and heat shock. We interpret the changes that occur as evidence for a role of these structures in gene transcription. We also examine the role of the posttranslational modification. SUMO-1 addition, in directing proteins to this nuclear body. Characterization of the mobility of PML body associated proteins further supports a role in specific nuclear events, rather than the bodies resulting from random accumulations of proteins.
Collapse
Affiliation(s)
- Christopher H Eskiw
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
38
|
Mozziconacci MJ, Rosenauer A, Restouin A, Fanelli M, Shao W, Fernandez F, Toiron Y, Viscardi J, Gambacorti-Passerini C, Miller WH, Lafage-Pochitaloff M. Molecular cytogenetics of the acute promyelocytic leukemia-derived cell line NB4 and of four all-trans retinoic acid-resistant subclones. Genes Chromosomes Cancer 2002; 35:261-70. [PMID: 12353268 DOI: 10.1002/gcc.10117] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The retinoic acid (RA)-sensitive NB4 cell line was the first established acute promyelocytic leukemia (APL) permanent cell line. It harbors the (15;17) translocation, which fuses the PML and RARA genes. Given the low frequency of APLs, their generally low white blood cell count, and the difficulty to work on APL patient cells, this cell line represents a remarkable tool for biomolecular studies. To investigate possible mechanisms of retinoid resistance, subclones of NB4 resistant to all-trans retinoic acid (ATRA) were established. To characterize better the parental NB4 cell line and four ATRA-resistant subclones (NB4-R4, NB4-A1, NB4-B1, and NB4-007/6), we have performed both conventional and 24-color FISH karyotyping. Thus, we could identify all chromosomal abnormalities including marker chromosomes that were unclassified with R banding. Moreover, we have performed dual-color FISH by use of specific PML and RARA probes, to evaluate the number of copies for each gene and fusion gene. Interestingly, the number of copies of PML, RARA, and fusion genes was different for each cell line. Finally, we assessed the presence of the PML, RARA, PML/RARA, and RARA/PML transcripts by RT-PCR and of the PML/RARA and RARA proteins by Western blotting in all the cell lines. These data could focus further research for a better understanding of the molecular mechanisms underlying response or resistance to differentiating and/or apoptotic reagents.
Collapse
MESH Headings
- Chromosome Banding/methods
- Chromosome Painting/methods
- Clone Cells
- Cytogenetic Analysis/methods
- DNA Probes/genetics
- DNA, Neoplasm/genetics
- Drug Resistance, Neoplasm/genetics
- Humans
- In Situ Hybridization, Fluorescence/methods
- Karyotyping/methods
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Neoplasm Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Protein Isoforms/genetics
- Translocation, Genetic/genetics
- Tretinoin/metabolism
- Tumor Cells, Cultured
Collapse
|
39
|
Côté S, Rosenauer A, Bianchini A, Seiter K, Vandewiele J, Nervi C, Miller WH. Response to histone deacetylase inhibition of novel PML/RARalpha mutants detected in retinoic acid-resistant APL cells. Blood 2002; 100:2586-96. [PMID: 12239173 DOI: 10.1182/blood-2002-02-0614] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to all-trans retinoic acid (ATRA) remains a clinical problem in the treatment of acute promyelocytic leukemia (APL) and provides a model for the development of novel therapies. Molecular alterations in the ligand-binding domain (LBD) of the PML/RARalpha fusion gene that characterizes APL constitute one mechanism of acquired resistance to ATRA. We identified missense mutations in PML/RARalpha from an additional ATRA-resistant patient at relapse and in a novel ATRA-resistant cell line, NB4-MRA1. These cause altered binding to ligand and transcriptional coregulators, leading to a dominant-negative block of transcription. These mutations are in regions of the LBD that appear to be mutational hot spots occurring repeatedly in ATRA-resistant APL patient cells. We evaluated whether histone deacetylase (HDAC) inhibition could overcome the effects of these mutations on ATRA-induced gene expression. Cotreatment with ATRA and TSA restored RARbeta gene expression in NB4-MRA1 cells, whose PML/RARalpha mutation is in helix 12 of the LBD, but not in an APL cell line harboring the patient-derived PML/RARalpha mutation, which was between helix 5 and 6. Furthermore, ATRA combined with TSA increases histone 4 acetylation on the RARbeta promoter only in NB4-MRA1 cells. Consistent with these results, the combined treatment induces differentiation of NB4-MRA1 only. Thus, the ability of an HDAC inhibitor to restore ATRA sensitivity in resistant cells may depend on their specific molecular defects. The variety of PML/RARalpha mutations arising in ATRA-resistant patients begins to explain how APL patients in relapse may differ in response to transcription therapy with HDAC inhibitors.
Collapse
Affiliation(s)
- Sylvie Côté
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital and McGill University Department of Oncology and Medicine, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Grimwade D, Lo Coco F. Acute promyelocytic leukemia: a model for the role of molecular diagnosis and residual disease monitoring in directing treatment approach in acute myeloid leukemia. Leukemia 2002; 16:1959-73. [PMID: 12357347 DOI: 10.1038/sj.leu.2402721] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2002] [Accepted: 06/21/2002] [Indexed: 11/08/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by a number of features that underpin the need for rapid and accurate diagnosis and demand a highly specific treatment approach. These include the potentially devastating coagulopathy, sensitivity to anthracycline-based chemotherapy regimens, as well as unique responses to all-trans retinoic acid and arsenic trioxide that have revolutionized therapy over the last decade. The chromosomal translocation t(15;17) which generates the PML-RARalpha fusion gene has long been considered the diagnostic hallmark of APL; however, this abnormality is not detected in approximately 10% cases with successful karyotype analysis. In the majority of these cases, the PML-RARalpha fusion gene is still formed, resulting from insertion events or more complex rearrangements. These cases share the beneficial response to retinoids and favorable prognosis of those with documented t(15;17), underscoring the clinical relevance of molecular analyses in diagnostic refinement. In other cases of t(15;17) negative APL, various chromosomal rearrangements involving 17q21 have been documented leading to fusion of RARalpha to alternative partners, namely PLZF, NPM, NuMA and STAT5b. The nature of the fusion partner has a significant bearing upon disease characteristics, including sensitivity to retinoids and arsenic trioxide. APL has provided an exciting treatment model for other forms of AML whereby therapeutic approach is directed towards cytogenetically and molecularly defined subgroups and further modified according to response as determined by minimal residual disease (MRD) monitoring. Recent studies suggest that rigorous MRD monitoring, coupled with pre-emptive therapy at the point of molecular relapse improves survival in the relatively small subgroup of PML-RARalpha positive patients with 'poor risk' disease. Advent of 'real-time' quantitative RT-PCR technology seems set to yield further improvements in the predictive value of MRD assessment, achieve more rapid sample throughput and facilitate inter- and intra-laboratory standardization, thereby enabling more reliable comparison of data between international trial groups.
Collapse
MESH Headings
- Acute Disease
- Chromosomes, Human, Pair 15
- Chromosomes, Human, Pair 17
- Humans
- Leukemia, Myeloid/therapy
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/therapy
- Monitoring, Physiologic
- Neoplasm, Residual
- Translocation, Genetic
Collapse
Affiliation(s)
- D Grimwade
- Division of Medical and Molecular Genetics, Guy's, King's and St Thomas' School of Medicine, London, UK
| | | |
Collapse
|
41
|
Gallagher RE. Retinoic acid resistance in acute promyelocytic leukemia. Leukemia 2002; 16:1940-58. [PMID: 12357346 DOI: 10.1038/sj.leu.2402719] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2002] [Accepted: 06/21/2002] [Indexed: 01/01/2023]
Abstract
Primary resistance of PML-RARalpha-positive acute promyelocytic leukemia (APL) to the induction of clinical remission (CR) by all-trans retinoic acid (ATRA) is rare but markedly increases in frequency after > or =2 relapses from chemotherapy-induced CRs. Nevertheless, even in de novo cases, the primary response of ATRA-naive cases is variable by several measures, suggesting involvement of heterogeneous molecular elements. Secondary, acquired ATRA resistance occurs in most patients treated with ATRA alone and in many patients who relapse from combination ATRA chemotherapy regimens despite limited ATRA exposure. Although early studies suggested that an adaptive hypercatabolic response to pharmacological ATRA levels is the principal mechanism of ATRA resistance, recent studies suggest that molecular disturbances in APL cells have a predominant role, particularly if disease relapse occurs a few months after discontinuing ATRA therapy. This review summarizes the systemic and APL cellular elements that have been linked to clinical ATRA resistance with emphasis on identifying areas of deficient information and important topics for further investigation. Overall, the subject review strongly supports the hypothesis that, although APL is an infrequent and nearly cured disease, much can be gained by understanding the complex relationship of ATRA resistance to the progression and relapse of APL, which has important implications for other leukemias and malignancies.
Collapse
Affiliation(s)
- R E Gallagher
- Department of Oncology, Montefiore Medical Center, New York 10467, USA
| |
Collapse
|
42
|
Abstract
Drug resistance has always been a concern in cancer treatment, often blamed on the genetic complexity and instability of tumor cells. While studies of cancer cell lines have implicated an array of potential mechanisms, it has been difficult to translate these insights into clinically meaningful improvements in cancer treatment. The successful deployment of molecularly targeted therapeutics in some cancers has led to widespread optimism that this approach will become broadly applicable. Despite their early promise in the clinic, the novel therapeutics are often plagued with the age old problem of acquired drug resistance. Progress in understanding why certain patients respond and why some develop resistance can be made rapidly through studies of the drug target in tumor tissue from patient. One important lesson is that many cancers, even in the most advanced stages, continue to rely on a limited number of critical oncogenic signals for maintenance of the malignant phenotype. This article reviews the mechanisms of drug resistance to a variety of cancer therapeutics and provides an approach for how measures of drug target activity can be incorporated into clinical trial design.
Collapse
Affiliation(s)
- Ingo K Mellinghoff
- Departments of Medicine and Molecular Biology Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | |
Collapse
|
43
|
Zhou DC, Kim SH, Ding W, Schultz C, Warrell RP, Gallagher RE. Frequent mutations in the ligand-binding domain of PML-RARalpha after multiple relapses of acute promyelocytic leukemia: analysis for functional relationship to response to all-trans retinoic acid and histone deacetylase inhibitors in vitro and in vivo. Blood 2002; 99:1356-63. [PMID: 11830487 DOI: 10.1182/blood.v99.4.1356] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study identified missense mutations in the ligand binding domain of the oncoprotein PML-RARalpha in 5 of 8 patients with acute promyelocytic leukemia (APL) with 2 or more relapses and 2 or more previous courses of all-trans retinoic acid (RA)-containing therapy. Four mutations were novel (Lys207Asn, Gly289Arg, Arg294Trp, and Pro407Ser), whereas one had been previously identified (Arg272Gln; normal RARalpha1 codon assignment). Five patients were treated with repeat RA plus phenylbutyrate (PB), a histone deacetylase inhibitor, and one patient experienced a prolonged clinical remission. Of the 5 RA + PB-treated patients, 4 had PML-RARalpha mutations. The Gly289Arg mutation in the clinical responder produced the most defective PML-RARalpha function in the presence of RA with or without sodium butyrate (NaB) or trichostatin A. Relapse APL cells from this patient failed to differentiate in response to RA but partially differentiated in response to NaB alone, which was augmented by RA. In contrast, NaB alone had no differentiation effect on APL cells from another mutant case (Pro407Ser) but enhanced differentiation induced by RA. These results indicate that PML-RARalpha mutations occurred with high frequency after multiple RA treatment relapses, indicate that the functional potential of PML-RARalpha was not correlated with clinical response to RA + PB treatment, and suggest that the response to RA + PB therapy in one patient was related to the ability of PB to circumvent the blocked RA-regulated gene response pathway.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Binding Sites/genetics
- Butyrates/administration & dosage
- Butyrates/pharmacology
- Cell Differentiation/drug effects
- DNA Mutational Analysis
- Enzyme Inhibitors/administration & dosage
- Enzyme Inhibitors/pharmacology
- Histone Deacetylase Inhibitors
- Humans
- Hydroxamic Acids/administration & dosage
- Hydroxamic Acids/pharmacology
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Mutation, Missense
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Phenylbutyrates/administration & dosage
- Phenylbutyrates/pharmacology
- Prognosis
- Protein Binding
- Recurrence
- Transcriptional Activation/drug effects
- Treatment Outcome
- Tretinoin/administration & dosage
- Tretinoin/metabolism
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Da-Cheng Zhou
- Department of Oncology, Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, NY 10467, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Retinoids have a reputation for being both detrimental and beneficial: they are teratogens, but they also have tumour-suppressive capacity. Cell biology and genetics have significantly improved our understanding of the mechanisms that underlie the anti-proliferative action of retinoids. Recent elucidation of the pathways that are activated by retinoids will help us to exploit the beneficial aspects of this powerful class of compounds for cancer therapy and prevention.
Collapse
MESH Headings
- Anticarcinogenic Agents/pharmacology
- Anticarcinogenic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Cell Differentiation/drug effects
- Dimerization
- Forecasting
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Models, Biological
- Morphogenesis/drug effects
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/prevention & control
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Receptor Cross-Talk
- Receptors, Retinoic Acid/chemistry
- Receptors, Retinoic Acid/drug effects
- Receptors, Retinoic Acid/physiology
- Retinoids/chemistry
- Retinoids/pharmacology
- Retinoids/therapeutic use
- Skin Neoplasms/chemically induced
- Skin Neoplasms/genetics
- Skin Neoplasms/prevention & control
- Structure-Activity Relationship
- Transcription Factor AP-1/antagonists & inhibitors
- Transcriptional Activation/drug effects
- Vitamin A/pharmacokinetics
- Vitamin A/physiology
Collapse
Affiliation(s)
- L Altucci
- Dipartimento di Patologia Generale e Oncologia, Seconda Università degli Studi di Napoli, Italy.
| | | |
Collapse
|
45
|
Amin HM, Saeed S, Alkan S. Histone deacetylase inhibitors induce caspase-dependent apoptosis and downregulation of daxx in acute promyelocytic leukaemia with t(15;17). Br J Haematol 2001; 115:287-97. [PMID: 11703323 DOI: 10.1046/j.1365-2141.2001.03123.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Histone deacetylase (HDAC) appears to play an important role in the pathogenesis of acute promyelocytic leukaemia (APL) as it is recruited by both PML-RARalpha and PLZF/RAR alpha in leukaemic cells with t(15;17) and t(11;17) respectively. Recent studies have demonstrated that HDAC inhibitors can be therapeutically used in various neoplastic disorders including APL. Cell differentiation was considered the major mechanism of the anti-leukaemic effects of HDAC inhibitors in APL. However, most of these studies either evaluated the effect of HDAC inhibitors in combination with all-trans retinoic acid (ATRA) or focused on the less common form of APL with t(11;17). To investigate the cellular effects of HDAC inhibitors, including sodium butyrate, trichostatin A, and suberoylanilide hydroxamic acid (SAHA), we used two APL cell lines, NB4 and the ATRA-resistant derivative NB4.306. Moreover, primary cells from five patients with cytogenetic evidence for t(15;17) were also studied. Our results demonstrated that HDAC inhibitors induce distinct caspase-dependent apoptosis in APL, which showed both concentration-and time-dependence. In addition, changes in the apoptosis-regulatory proteins, daxx, bcl-2 and bax were analysed. HDAC inhibitors induced downregulation of daxx, but no significant changes were detected in bcl-2 or bax. In conclusion, apoptosis induced by HDAC inhibitors in APL could provide an effective strategy for treatment of patients with t(15;17).
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adult
- Aged
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Butyrates/pharmacology
- Carrier Proteins/metabolism
- Caspases/physiology
- Chromosomes, Human, Pair 15
- Chromosomes, Human, Pair 17
- Co-Repressor Proteins
- Down-Regulation/drug effects
- Enzyme Inhibitors/pharmacology
- Female
- Flow Cytometry
- Fluorescent Antibody Technique
- Histone Deacetylase Inhibitors
- Humans
- Hydroxamic Acids/pharmacology
- Intracellular Signaling Peptides and Proteins
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Middle Aged
- Molecular Chaperones
- Neoplasm Proteins/metabolism
- Nuclear Proteins
- Translocation, Genetic
- Tumor Cells, Cultured
- Vorinostat
Collapse
Affiliation(s)
- H M Amin
- Department of Pathology, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | |
Collapse
|
46
|
Garattini E, Terao M. Cytodifferentiation: a novel approach to cancer treatment and prevention. Curr Opin Pharmacol 2001; 1:358-63. [PMID: 11710733 DOI: 10.1016/s1471-4892(01)00062-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytodifferentiation therapy promises to control cancer growth and progression with less serious side effects than cytotoxic chemotherapy. Despite recent progress, the molecular mechanisms regulating the differentiation of many cell types are still obscure and the number of active cytodifferentiating agents is limited. Rational ways to develop these types of agents are necessary.
Collapse
Affiliation(s)
- E Garattini
- Laboratory of Molecular Biology, Centro Catullo e Daniela Borgomainerio, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy.
| | | |
Collapse
|
47
|
Abstract
Acute promyelocytic leukemia (APL) is a disease associated with fusion oncoproteins invariably involving the retinoic acid receptor (Raralpha). Retinoic acid induces differentiation in APL cells and is successfully used in conjunction with chemotherapy to treat and cure a significant percentage of patients with APL. APL is also a model for disruption of normal retinoid-mediated transcription resulting in blocked differentiation. The study of the molecular mechanisms of APL oncogenesis has revealed novel interactions between fusion oncoproteins and transcriptional coregulators, already leading to new treatment strategies.
Collapse
MESH Headings
- Animals
- Drug Resistance, Neoplasm
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/physiopathology
- Mice
- Models, Animal
- Neoplasm Proteins/physiology
- Oncogene Proteins, Fusion/physiology
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/physiology
- Tretinoin/therapeutic use
Collapse
Affiliation(s)
- K K Mann
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, 3755 Cote Ste. Catherine Road, Montreal, Quebec, Canada
| | | | | |
Collapse
|