1
|
Alves R, Fonseca AR, Gonçalves AC, Ferreira-Teixeira M, Lima J, Abrantes AM, Alves V, Rodrigues-Santos P, Jorge L, Matoso E, Carreira IM, Botelho MF, Sarmento-Ribeiro AB. Drug transporters play a key role in the complex process of Imatinib resistance in vitro. Leuk Res 2015; 39:355-60. [DOI: 10.1016/j.leukres.2014.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/29/2014] [Accepted: 12/14/2014] [Indexed: 11/27/2022]
|
2
|
Species identification and authentification of human and rodent cell cultures using polymerase chain reaction analysis of vomeronasal receptor genes. Cytotechnology 2011; 63:553-8. [PMID: 21938467 DOI: 10.1007/s10616-011-9394-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022] Open
Abstract
Cell culture and the use of cell lines are routinely used in basic scientific research. It is therefore imperative for researchers to ensure the origin of the cell lines used and that they are routinely re-analysed for contamination and misidentification. Inter-species contamination is relatively frequent, and the most commonly used cell lines are of human, mouse and rat derivation. We have developed simple species specific primer assays based on genomic sequence differences in vomeronasal receptor gene family members to discriminate between human, mouse and rat DNA using standard agarose gel electrophoresis. Furthermore, these PCR assays are able to identify the species composition within an inter-species mixed population. This approach therefore provides a valuable tool to enable a rapid, simple and relatively inexpensive determination of the authentication and contamination of cell cultures.
Collapse
|
3
|
Rojas A, Gonzalez I, Figueroa H. Cell line cross-contamination in biomedical research: a call to prevent unawareness. Acta Pharmacol Sin 2008; 29:877-80. [PMID: 18565286 DOI: 10.1111/j.1745-7254.2008.00809.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During the 1950s, cross-contamination of cell lines emerged as a problem with serious consequences on the quality of biomedical research. Unfortunately, this situation has worsened over years. In this context, some actions should be urgently undertaken to avoid the generation of misleading data due to the increasingly and sometimes neglected use of cross-contaminated cell lines. Unawareness about this problem may then turn many scientists into victims or even perpetrators of this unwanted situation. Collaborative actions involving researchers, cell banks, journals, and funding agencies are needed to save the scientific reputation as well as many public or private resources that are used to produce misleading data.
Collapse
|
4
|
Liu M, Liu H, Tang X, Vafai A. Rapid identification and authentication of closely related animal cell culture by polymerase chain reaction. In Vitro Cell Dev Biol Anim 2008; 44:224-7. [DOI: 10.1007/s11626-008-9121-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 04/29/2008] [Indexed: 11/28/2022]
|
5
|
Hughes P, Marshall D, Reid Y, Parkes H, Gelber C. The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? Biotechniques 2007; 43:575, 577-8, 581-2 passim. [DOI: 10.2144/000112598] [Citation(s) in RCA: 279] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Increasing data demonstrate that cellular cross-contamination, misidentified cell lines, and the use of cultures at high-passage levels contribute to the generation of erroneous and misleading results as well as wasted research funds. Contamination of cell lines by other lines has been recognized and documented back to the 1950s. Based on submissions to major cell repositories in the last decade, it is estimated that between 18% and 36% of cell lines may be contaminated or misidentified. More recently, problems surrounding practices of over-subculturing cells are being identified. As a result of selective pressures and genetic drift, cell lines, when kept in culture too long, exhibit reduced or altered key functions and often no longer represent reliable models of their original source material. A review of papers showing significant experimental variances between low- and high-passage cell culture numbers, as well as contaminated lines, makes a strong case for using verified, tested cell lines at low- or defined passage numbers. In the absence of cell culture guidelines, mandates from the National Institutes of Health (NIH) and other funding agencies or journal requirements, it becomes the responsibility of the scientific community to perform due diligence to ensure the integrity of cell cultures used in research.
Collapse
|
6
|
Azari S, Ahmadi N, Tehrani MJ, Shokri F. Profiling and authentication of human cell lines using short tandem repeat (STR) loci: Report from the National Cell Bank of Iran. Biologicals 2007; 35:195-202. [PMID: 17254797 DOI: 10.1016/j.biologicals.2006.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/29/2006] [Accepted: 10/23/2006] [Indexed: 02/05/2023] Open
Abstract
Assurance of cell line homogeneity and capability of cell contamination detection are among the most essential steps of cell based research. Due to high discriminatory efficiency, low cost and reliability, analysis of short tandem repeats (STR) has been introduced as a method of choice for human cell line authentication. In the present study 13 Combined DNA Index System (CODIS) based STRs along with the gender determination (Amelogenin) gene were utilized to establish a reproducible approach for the authentication of 100 human cell lines deposited in the National Cell Bank of Iran (NCBI), using the polymerase chain reaction (PCR) method. PCR products were subsequently analyzed by polyacrylamide gel electrophoresis (PAGE) and visualized by silver staining followed by gel documentation and software analysis. STR profiles obtained were compared with those of the American Type Culture Collection (ATCC) and the Japanese Collection of Research Bioresource (JCRB) as STR references. We detected 18.8% cross contamination among the NCBI human cell lines. To our knowledge, this is the first report of authentication of human cell lines using the 13 CODIS core STRs combined with Amelogenin.
Collapse
Affiliation(s)
- Shahram Azari
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | |
Collapse
|
7
|
Motiwala T, Ghoshal K, Das A, Majumder S, Weichenhan D, Wu YZ, Holman K, James SJ, Jacob ST, Plass C. Suppression of the protein tyrosine phosphatase receptor type O gene (PTPRO) by methylation in hepatocellular carcinomas. Oncogene 2003; 22:6319-31. [PMID: 14508512 PMCID: PMC3020652 DOI: 10.1038/sj.onc.1206750] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Revised: 04/23/2003] [Accepted: 04/26/2003] [Indexed: 11/09/2022]
Abstract
A diet lacking folic acid and choline and low in methionine (folate/methyl deficient diet, FMD diet) fed to rats is known to produce preneoplastic nodules (PNNs) after 36 weeks and hepatocellular carcinomas (tumors) after 54 weeks. FMD diet-induced tumors exhibit global hypomethylation and regional hypermethylation. Restriction landmark genome scanning analysis with methylation-sensitive enzyme NotI (RLGS-M) of genomic DNA isolated from control livers, PNNs and tumor tissues was performed to identify the genes that are differentially methylated or amplified during multistage hepatocarcinogenesis. Out of the 1250 genes analysed, 2 to 5 genes were methylated in the PNNs, whereas 5 to 45 genes were partially or completely methylated in the tumors. This analysis also showed amplification of 3 to 12 genes in the primary tumors. As a first step towards identifying the genes methylated in the PNNs and primary hepatomas, we generated a rat NotI-EcoRV genomic library in the pBluescriptKS vector. Here, we describe identification of one methylated and downregulated gene as the rat protein tyrosine phosphatase receptor type O (PTPRO) and one amplified gene as rat C-MYC. Methylation of PTPRO at the NotI site located immediate upstream of the trancription start site in the PNNs and tumors, and amplification of C-MYC gene in the tumors were confirmed by Southern blot analyses. Bisulfite genomic sequencing of the CpG island encompassing exon 1 of the PTPRO gene revealed dense methylation in the PNNs and tumors, whereas it was methylation free in the livers of animals on normal diet. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed significant decrease in the expression of PTPRO in the tumors and in a transplanted rat hepatoma. The expression of PTPRO mRNA in the transplanted hepatoma after demethylation with 5-azacytidine, a potent inhibitor of DNA methyltransferases, further confirmed the role of methylation in PTPRO gene expression. These results demonstrate alteration in methylation profile and expression of specific genes during tumor progression in the livers of rats in response to folate/methyl deficiency, and further implicate the potential role of PTPRO as a novel growth regulatory gene at least in the hepatocellular carcinomas.
Collapse
Affiliation(s)
- Tasneem Motiwala
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Kalpana Ghoshal
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Anindita Das
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Sarmila Majumder
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Dieter Weichenhan
- Medizinische Universität zu Lübeck, Institut für Biologie, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Yue-Zhong Wu
- Division of Human Cancer Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kristen Holman
- Division of Human Cancer Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - S Jill James
- Division of Biochemical Toxicology, Food and Drug administration, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Samson T Jacob
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Christoph Plass
- Division of Human Cancer Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Drexler HG, Dirks WG, Matsuo Y, MacLeod RAF. False leukemia-lymphoma cell lines: an update on over 500 cell lines. Leukemia 2003; 17:416-26. [PMID: 12592342 DOI: 10.1038/sj.leu.2402799] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2002] [Accepted: 10/01/2002] [Indexed: 11/09/2022]
Abstract
Human leukemia-lymphoma (LL) cell lines represent an extremely important resource for research in a variety of fields and disciplines. As the cell lines are used as in vitro model systems in lieu of primary cell material, it is crucial that the cells in the culture flasks faithfully correspond to the purported objects of study. Obviously, proper authentication of cell line derivation and precise characterization are indispensable requirements to use as model systems. A number of studies has shown an unacceptable level of LL cell lines to be false. We present here the results of authenticating a comprehensively large sample (n = 550) of LL cell lines mainly by DNA fingerprinting and cytogenetic evaluation. Surprisingly, near-identical incidences (ca 15%) of false cell lines were observed among cell lines obtained directly from original investigators (59/395: 14.9%) and from secondary sources (23/155: 14.8%) implying that most cross-contamination is perpetrated by originators, presumably during establishment. By comparing our data with those published, we were further able to subclassify the false cell lines as (1) virtual: cross-contaminated with and unretrievably overgrown by other cell lines during initiation, never enjoying independent existence; (2) misidentified: cross-contaminated subsequent to establishment so that an original prototype may still exist; or (3) misclassified: unwittingly established from an unintended (often normal) cell type. Prolific classic leukemia cell lines were found to account for the majority of cross-contaminations, eg CCRF-CEM, HL-60, JURKAT, K-562 and U-937. We discuss the impact of cross-contaminations on scientific research, the reluctance of scientists to address the problem, and consider possible solutions. These findings provide a rationale for mandating the procurement of reputably sourced LL cell lines and their regular authentication thereafter.
Collapse
Affiliation(s)
- H G Drexler
- DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Cultures, Braunschweig, Germany
| | | | | | | |
Collapse
|
9
|
Alvarez S, MacGrogan D, Rodriguez-Perales S, Martinez-Ramirez A, Urioste M, Benitez J, Nimer SD, Cigudosa JC. Cytogenetic characterization reveals that the SAM-1 erythroid cell line is derived from K-562 cells. Blood 2002; 100:3435-6. [PMID: 12412578 DOI: 10.1182/blood-2002-07-2328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Dai Z, Weichenhan D, Wu YZ, Hall JL, Rush LJ, Smith LT, Raval A, Yu L, Kroll D, Muehlisch J, Frühwald MC, de Jong P, Catanese J, Davuluri RV, Smiraglia DJ, Plass C. An AscI boundary library for the studies of genetic and epigenetic alterations in CpG islands. Genome Res 2002; 12:1591-8. [PMID: 12368252 PMCID: PMC187524 DOI: 10.1101/gr.197402] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Knudson's two-hit hypothesis postulates that genetic alterations in both alleles are required for the inactivation of tumor-suppressor genes. Genetic alterations include small or large deletions and mutations. Over the past years, it has become clear that epigenetic alterations such as DNA methylation are additional mechanisms for gene silencing. Restriction Landmark Genomic Scanning (RLGS) is a two-dimensional gel electrophoresis that assesses the methylation status of thousands of CpG islands. RLGS has been applied successfully to scan cancer genomes for aberrant DNA methylation patterns. So far, the majority of this work was done using NotI as the restriction landmark site. Here, we describe the development of RLGS using AscI as the restriction landmark site for genome-wide scans of cancer genomes. The availability of AscI as a restriction landmark for RLGS allows for scanning almost twice as many CpG islands in the human genome compared with using NotI only. We describe the development of an AscI-EcoRV boundary library that supports the cloning of novel methylated genes. Feasibility of this system is shown in three tumor types, medulloblastomas, lung cancers, and head and neck cancers. We report the cloning of 178 AscI RLGS fragments via two methods by use of this library.
Collapse
Affiliation(s)
- Zunyan Dai
- Division of Human Cancer Genetics, Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Smiraglia DJ, Plass C. The study of aberrant methylation in cancer via restriction landmark genomic scanning. Oncogene 2002; 21:5414-26. [PMID: 12154404 DOI: 10.1038/sj.onc.1205608] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Restriction landmark genomic scanning (RLGS) has been used to study DNA methylation in cancer for nearly a decade. The strong bias of RLGS for assessing the methylation state of CpG islands genome wide makes this an attractive technique to study both hypo- and hypermethylation of regions of the genome likely to harbor genes. RLGS has been used successfully to identify regions of hypomethylation, candidate tumor suppressor genes, correlations between hypermethylation events and clinical factors, and quantification of hypermethylation in a multitude of malignancies. This review will examine the major uses of RLGS in the study of aberrant methylation in cancer and discuss the significance of some of the findings.
Collapse
Affiliation(s)
- Dominic J Smiraglia
- Division of Human Cancer Genetics, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, OH 43210, USA.
| | | |
Collapse
|