1
|
Venton G, Colle J, Tichadou A, Quessada J, Baier C, Labiad Y, Perez M, De Lassus L, Loosveld M, Arnoux I, Abbou N, Ceylan I, Martin G, Costello R. Reactive oxygen species and aldehyde dehydrogenase 1A as prognosis and theragnostic biomarker in acute myeloid leukaemia patients. J Cell Mol Med 2024; 28:e70011. [PMID: 39392121 PMCID: PMC11467733 DOI: 10.1111/jcmm.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 10/12/2024] Open
Abstract
Acute myeloid leukaemia (AML) remains a major unmet medical, despite recent progress in targeted molecular therapies. One aspect of leukaemic cell resistance to chemotherapy is the development of clones with increased capacity to respond to cellular stress and the production of reactive oxygen species (ROS), thanks in particular to a high aldehyde dehydrogenases (ALDH) 1A1/2 activity. At diagnosis, ROS level and ALDH1A1/2 activity in AML patients BM are correlated with the different ELN 2022 prognostic groups and overall survival (OS). A significant lower ALDH1A1/2 activity in BM was observed in the favourable ELN2022 subgroup compared to the intermediate and adverse group (p < 0.01). In the same way, the ROS levels were significantly lower in the favourable ELN 2022 subgroup compared to the intermediate group (p < 0.0001) and adverse group (p < 0.0002). ROShigh AML patients had a significantly lower median overall survival (OS) (8.2 months) than ROSlow patients (24.6 months) (p = 0.0368). After first-line therapy, a significant increase of ROS level (p = 0.015) and ALDH1A1/2 activity (0 = 0.0273) in leukaemic blasts was observed, especially in the refractory ones. ABD-3001, a competitive and irreversible inhibitor of ALDHs 1 and 3, can in vitro inhibit the proliferation of patient-derived leukaemic cells in accordance with redox balance. In multivariate analysis, ROS level was the most significant (p < 0.05) and the strongest predictive factor for the sensitivity of cells to ABD-3001. The safety profile of ABD-3001 is currently being assessed through the first inhuman multicenter phase 1 clinical trial "ODYSSEY" (NCT05601726) for patients with relapsed AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Reactive Oxygen Species/metabolism
- Prognosis
- Male
- Biomarkers, Tumor/metabolism
- Middle Aged
- Female
- Aldehyde Dehydrogenase 1 Family/metabolism
- Adult
- Aged
- Retinal Dehydrogenase/metabolism
- Aged, 80 and over
- Young Adult
- Aldehyde Dehydrogenase, Mitochondrial/metabolism
- Aldehyde Dehydrogenase, Mitochondrial/genetics
- Aldehyde Dehydrogenase/metabolism
Collapse
Affiliation(s)
- G. Venton
- APHM, Hôpital de la Conception, Service d'Hématologie et Thérapie CellulaireMarseilleFrance
- TAGC‐Theories and Approaches of Genomic ComplexityAix Marseille UniversityMarseilleFrance
| | - J. Colle
- APHM, Hôpital de la Conception, Service d'Hématologie et Thérapie CellulaireMarseilleFrance
- TAGC‐Theories and Approaches of Genomic ComplexityAix Marseille UniversityMarseilleFrance
| | - A. Tichadou
- APHM, Hôpital de la Conception, Service d'Hématologie et Thérapie CellulaireMarseilleFrance
- TAGC‐Theories and Approaches of Genomic ComplexityAix Marseille UniversityMarseilleFrance
| | - J. Quessada
- APHM, Hôpital La Timone, Laboratoire d'HématologieMarseilleFrance
| | | | | | | | - L. De Lassus
- APHM, Hôpital de la Conception, Service d'Hématologie et Thérapie CellulaireMarseilleFrance
| | - M. Loosveld
- APHM, Hôpital La Timone, Laboratoire d'HématologieMarseilleFrance
- CRCMInserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli CalmettesMarseilleFrance
| | - I. Arnoux
- APHM, Hôpital La Timone, Laboratoire d'HématologieMarseilleFrance
| | - N. Abbou
- APHM, Hopital La Timone, Service d'Oncobiologie, Plateforme M2GM, Hopital de la TimoneMarseilleFrance
- Aix‐Marseille Univ, INSERM, INRAE, C2VN, Laboratory of Haematology, CRB Assistance Publique‐Hôpitaux de Marseille, HemoVasc (CRB AP‐HM HemoVasc)MarseilleFrance
| | | | | | - R. Costello
- APHM, Hôpital de la Conception, Service d'Hématologie et Thérapie CellulaireMarseilleFrance
- TAGC‐Theories and Approaches of Genomic ComplexityAix Marseille UniversityMarseilleFrance
| |
Collapse
|
2
|
Zhang Z, Huang J, Zhang Z, Shen H, Tang X, Wu D, Bao X, Xu G, Chen S. Application of omics in the diagnosis, prognosis, and treatment of acute myeloid leukemia. Biomark Res 2024; 12:60. [PMID: 38858750 PMCID: PMC11165883 DOI: 10.1186/s40364-024-00600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most frequent leukemia in adults with a high mortality rate. Current diagnostic criteria and selections of therapeutic strategies are generally based on gene mutations and cytogenetic abnormalities. Chemotherapy, targeted therapies, and hematopoietic stem cell transplantation (HSCT) are the major therapeutic strategies for AML. Two dilemmas in the clinical management of AML are related to its poor prognosis. One is the inaccurate risk stratification at diagnosis, leading to incorrect treatment selections. The other is the frequent resistance to chemotherapy and/or targeted therapies. Genomic features have been the focus of AML studies. However, the DNA-level aberrations do not always predict the expression levels of genes and proteins and the latter is more closely linked to disease phenotypes. With the development of high-throughput sequencing and mass spectrometry technologies, studying downstream effectors including RNA, proteins, and metabolites becomes possible. Transcriptomics can reveal gene expression and regulatory networks, proteomics can discover protein expression and signaling pathways intimately associated with the disease, and metabolomics can reflect precise changes in metabolites during disease progression. Moreover, omics profiling at the single-cell level enables studying cellular components and hierarchies of the AML microenvironment. The abundance of data from different omics layers enables the better risk stratification of AML by identifying prognosis-related biomarkers, and has the prospective application in identifying drug targets, therefore potentially discovering solutions to the two dilemmas. In this review, we summarize the existing AML studies using omics methods, both separately and combined, covering research fields of disease diagnosis, risk stratification, prognosis prediction, chemotherapy, as well as targeted therapy. Finally, we discuss the directions and challenges in the application of multi-omics in precision medicine of AML. Our review may inspire both omics researchers and clinical physicians to study AML from a different angle.
Collapse
Affiliation(s)
- Zhiyu Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Jiayi Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhibo Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Fan C, Yang X, Yan L, Shi Z. Oxidative stress is two-sided in the treatment of acute myeloid leukemia. Cancer Med 2024; 13:e6806. [PMID: 38715546 PMCID: PMC11077289 DOI: 10.1002/cam4.6806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 05/12/2024] Open
Abstract
INTRODUCTION Oxidative stress caused by elevated ROS, as a novel therapeutic mechanism, has been implicated in various tumors including AML. AML cells are chronically under oxidative stress, yet overreliance on ROS production makes tumor cells increasingly vulnerable to further damage. Reducing the cytotoxic effect of ROS on normal cells while killing leukemia stem cell (LSC) with high levels of reactive oxygen species is a new challenge for oxidative stress therapy in leukemia. METHODS By searching literature databases, we summarized recent relevant studies. The relationship of ROS on AML genes, signaling pathways, and transcription factors, and the correlation of ROS with AML bone marrow microenvironment and autophagy were summarized. In addition, we summarize the current status of research on ROS and AML therapeutics. Finally, we discuss the research progress on redox resistance in AML. RESULTS This review discusses the evidence showing the link between redox reactions and the progression of AML and compiles the latest research findings that will facilitate future biological studies of redox effects associated with AML treatment. CONCLUSION We believe that exploiting this unique oxidative stress property of AML cells may provide a new way to prevent relapse and drug resistance.
Collapse
Affiliation(s)
- Chenyang Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xiangdong Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Lixiang Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Zhexin Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
4
|
Jing Q, Zhou C, Zhang J, Zhang P, Wu Y, Zhou J, Tong X, Li Y, Du J, Wang Y. Role of reactive oxygen species in myelodysplastic syndromes. Cell Mol Biol Lett 2024; 29:53. [PMID: 38616283 PMCID: PMC11017617 DOI: 10.1186/s11658-024-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Reactive oxygen species (ROS) serve as typical metabolic byproducts of aerobic life and play a pivotal role in redox reactions and signal transduction pathways. Contingent upon their concentration, ROS production not only initiates or stimulates tumorigenesis but also causes oxidative stress (OS) and triggers cellular apoptosis. Mounting literature supports the view that ROS are closely interwoven with the pathogenesis of a cluster of diseases, particularly those involving cell proliferation and differentiation, such as myelodysplastic syndromes (MDS) and chronic/acute myeloid leukemia (CML/AML). OS caused by excessive ROS at physiological levels is likely to affect the functions of hematopoietic stem cells, such as cell growth and self-renewal, which may contribute to defective hematopoiesis. We review herein the eminent role of ROS in the hematological niche and their profound influence on the progress of MDS. We also highlight that targeting ROS is a practical and reliable tactic for MDS therapy.
Collapse
Affiliation(s)
- Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- HEALTH BioMed Research & Development Center, Health BioMed Co., Ltd, Ningbo, 315803, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhang
- Department of Hematology, Lishui Central Hospital, Lishui, 323000, Zhejiang, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiangmin Tong
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
5
|
Lei P, Yu L, Sun X, Hao J, Shi W, Sun H, Guo X, Jia X, Liu T, Zhang DL, Li L, Wang H, Xu C. Exploring the role of PRDX4 in the development of uterine corpus endometrial carcinoma. Med Oncol 2024; 41:48. [PMID: 38177789 DOI: 10.1007/s12032-023-02265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024]
Abstract
Peroxicedoxin 4 (PRDX4), a member of the peroxicedoxins (PRDXs), has been reported in many cancer-related studies, but its role in uterine corpus endometrial carcinoma (UCEC) is not fully understood. In the present study, we found that PRDX4 was highly expressed in UCEC tissues and cell lines through the combination of bioinformatics analysis and experiments, and elevated PRDX4 levels were associated with poor prognosis. Knockdown of PRDX4 significantly blocked the proliferation and migration of the UCEC cell line Ishikawa and reduced degree of cell confluence. These findings highlight the oncogenic role of PRDX4 in UCEC. In addition, genes that interact with PRDX4 in UCEC were MT-ATP8, PBK, and PDIA6, and we speculated that these genes interacted with each other to promote disease progression in UCEC. Thus, PRDX4 is a potential diagnostic biomarker for UCEC, and targeting PRDX4 may be a potential therapeutic strategy for patients with UCEC.
Collapse
Affiliation(s)
- Ping Lei
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China
| | - Liting Yu
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xiaoli Sun
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China
| | - Junmei Hao
- Department of Pathology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China
| | - Wenning Shi
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Haojie Sun
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xiangji Guo
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xikang Jia
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Tianli Liu
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Dao-Lai Zhang
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Lianqin Li
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China.
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Dingjiaqiao 87, Nanjing, 210009, Jiangsu, China.
| | - Cong Xu
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
6
|
Arellano-Ballestero H, Sabry M, Lowdell MW. A Killer Disarmed: Natural Killer Cell Impairment in Myelodysplastic Syndrome. Cells 2023; 12:633. [PMID: 36831300 PMCID: PMC9954109 DOI: 10.3390/cells12040633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Myelodysplastic syndrome (MDS) treatment remains a big challenge due to the heterogeneous nature of the disease and its ability to progress to acute myeloid leukemia (AML). The only curative option is allogeneic hematopoietic stem cell transplantation (HSCT), but most patients are unfit for this procedure and are left with only palliative treatment options, causing a big unmet need in the context of this disease. Natural killer (NK) cells are attractive candidates for MDS immunotherapy due to their ability to target myeloid leukemic cells without prior sensitization, and in recent years we have seen an arising number of clinical trials in AML and, recently, MDS. NK cells are reported to be highly dysfunctional in MDS patients, which can be overcome by adoptive NK cell immunotherapy or activation of endogenous NK cells. Here, we review the role of NK cells in MDS, the contribution of the tumor microenvironment (TME) to NK cell impairment, and the most recent data from NK cell-based clinical trials in MDS.
Collapse
Affiliation(s)
| | - May Sabry
- Department of Haematology, University College London, London NW3 5PF, UK
- InmuneBio Inc., Boca Raton, FL 33432, USA
- Novamune Ltd., London WC2R 1DJ, UK
| | - Mark W. Lowdell
- Department of Haematology, University College London, London NW3 5PF, UK
- InmuneBio Inc., Boca Raton, FL 33432, USA
| |
Collapse
|
7
|
Montes P, Guerra-Librero A, García P, Cornejo-Calvo ME, López MDS, de Haro T, Martínez-Ruiz L, Escames G, Acuña-Castroviejo D. Effect of 5-Azacitidine Treatment on Redox Status and Inflammatory Condition in MDS Patients. Antioxidants (Basel) 2022; 11:antiox11010139. [PMID: 35052643 PMCID: PMC8773071 DOI: 10.3390/antiox11010139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
This study focused on the impact of the treatment with the hypomethylating agent 5-azacitidine on the redox status and inflammation in 24 MDS patients. Clinical and genetic features of MDS patients were recorded, and peripheral blood samples were used to determine the activity of the endogenous antioxidant defense system (superoxide dismutase, SOD; catalase, CAT; glutathion peroxidase, GPx; and reductase, GRd, activities), markers of oxidative damage (lipid peroxidation, LPO, and advanced oxidation protein products, AOPP). Moreover, pro-inflammatory cytokines and plasma nitrite plus nitrate levels as markers of inflammation, as well as CoQ10 plasma levels, were also measured. Globally, MDS patients showed less redox status in terms of a reduction in the GSSG/GSH ratio and in the LPO levels, as well as increased CAT activity compared with healthy subjects, with no changes in SOD, GPx, and GRd activities, or AOPP levels. When analyzing the evolution from early to advanced stages of the disease, we found that the GPx activity, GSSG/GSH ratio, LPO, and AOPP increased, with a reduction in CAT. GPx changes were related to the presence of risk factors such as high-risk IPSS-R or mutational score. Moreover, there was an increase in IL-2, IL-6, IL-8, and TNF-α plasma levels, with a further increase of IL-2 and IL-10 from early to advanced stages of the disease. However, we did not observe any association between inflammation and oxidative stress. Finally, 5-azacitidine treatment generated oxidative stress in MDS patients, without affecting inflammation levels, suggesting that oxidative status and inflammation are two independent processes.
Collapse
Affiliation(s)
- Paola Montes
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.M.); (A.G.-L.); (L.M.-R.); (G.E.)
- UGC de Laboratorios Clínicos, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (M.d.S.L.); (T.d.H.)
| | - Ana Guerra-Librero
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.M.); (A.G.-L.); (L.M.-R.); (G.E.)
- CIBERfes, Ibs.Granada, 18016 Granada, Spain
| | - Paloma García
- UGC de Hematología y Hemoterapia, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (P.G.); (M.E.C.-C.)
| | - María Elena Cornejo-Calvo
- UGC de Hematología y Hemoterapia, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (P.G.); (M.E.C.-C.)
| | - María del Señor López
- UGC de Laboratorios Clínicos, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (M.d.S.L.); (T.d.H.)
| | - Tomás de Haro
- UGC de Laboratorios Clínicos, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (M.d.S.L.); (T.d.H.)
| | - Laura Martínez-Ruiz
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.M.); (A.G.-L.); (L.M.-R.); (G.E.)
| | - Germaine Escames
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.M.); (A.G.-L.); (L.M.-R.); (G.E.)
- CIBERfes, Ibs.Granada, 18016 Granada, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.M.); (A.G.-L.); (L.M.-R.); (G.E.)
- UGC de Laboratorios Clínicos, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (M.d.S.L.); (T.d.H.)
- CIBERfes, Ibs.Granada, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-958-241-000 (ext. 20196)
| |
Collapse
|
8
|
Yao W, Wang J, Meng F, Zhu Z, Jia X, Xu L, Zhang Q, Wei L. Circular RNA CircPVT1 Inhibits 5-Fluorouracil Chemosensitivity by Regulating Ferroptosis Through MiR-30a-5p/FZD3 Axis in Esophageal Cancer Cells. Front Oncol 2021; 11:780938. [PMID: 34966683 PMCID: PMC8711269 DOI: 10.3389/fonc.2021.780938] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022] Open
Abstract
Background CircPVT1 is demonstrated to promote cancer progression in esophageal squamous cell carcinoma (ESCC). However, the role and potential functional mechanisms of circPVT1 in regulating 5-fluorouracil (5-FU) chemosensitivity remain largely unknown. Methods ESCC cells resistant to 5-FU were induced with continuous increasing concentrations of 5-FU step-wisely. A cell counting kit-8 assay was used to analyze the viability of ESCC cells. LDH release assay kit was used to evaluate the cytotoxicity. RT-qPCR was used to assess the expression level of non-coding RNAs and cDNAs. Luciferase was used to confirm the interaction between non-coding RNAs and targets. Western blotting was used to detect the expression of downstream signaling proteins. Flow cytometry and ferroptosis detection assay kit were utilized to measure the ferroptosis of ESCC cells. Results CircPVT1 was significantly upregulated in ESCC cells resistant to 5-FU. Knockdown of circPVT1 enhanced the 5-FU chemosensitivity of ESCC cells resistant to 5-FU by increasing cytotoxicity and downregulating multidrug-resistant associated proteins, including P-gp and MRP1. Luciferase assay showed that circPVT1 acted as a sponge of miR-30a-5p, and Frizzled3 (FZD3) was a downstream target of miR-30a-5p. The enhanced 5-FU chemosensitivity by circPVT1 knockdown was reversed with miR-30a-5p inhibitor. Besides, the increased 5-FU chemosensitivity by miR-30a-5p mimics was reversed with FZD3 overexpression. Furthermore, knockdown of circPVT1 increased ferroptosis through downregulating p-β-catenin, GPX4, and SLC7A11 while miR-30a-5p inhibition and FZD3 overexpression reversed the phenotype by upregulating p-β-catenin, GPX4, and SLC7A11. Conclusions These results suggested a key role for circPVT1 in ESCC 5-FU-chemosensitivity in regulating the Wnt/β-catenin pathway and ferroptosis via miR-30a-5p/FZD3 axis, which might be a potential target in ESCC therapy.
Collapse
Affiliation(s)
- Wenjian Yao
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Jianjun Wang
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Fanruo Meng
- Department of Thoracic Surgery, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zibo Zhu
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Xiangbo Jia
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Lei Xu
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Quan Zhang
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Li Wei
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| |
Collapse
|
9
|
Wang YH, Hou HA, Lin CC, Kuo YY, Yao CY, Hsu CL, Tseng MH, Tsai CH, Peng YL, Kao CJ, Chou WC, Tien HF. A CIBERSORTx-based immune cell scoring system could independently predict the prognosis of patients with myelodysplastic syndromes. Blood Adv 2021; 5:4535-4548. [PMID: 34614508 PMCID: PMC8759137 DOI: 10.1182/bloodadvances.2021005141] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
Aside from cell intrinsic factors such as genetic alterations, immune dysregulation in the bone marrow (BM) microenvironment plays a role in the development and progression of myelodysplastic syndromes (MDS). However, the prognostic implications of various immune cells in patients with MDS remain unclear. We adopted CIBERSORTx to estimate the relative fractions of 22 subtypes of immune cells in the BM of 316 patients with MDS and correlated the results with clinical outcomes. A lower fraction of unpolarized M0 macrophages and higher fractions of M2 macrophages and eosinophils were significantly associated with inferior survival. An immune cell scoring system (ICSS) was constructed based on the proportion of these 3 immune cells in the BM. The ICSS high-risk patients had higher BM blast counts, higher frequencies of poor-risk cytogenetics, and more NPM1, TP53, and WT1 mutations than intermediate- and low-risk patients. The ICSS could stratify patients with MDS into 3 risk groups with distinct leukemia-free survival and overall survival among the total cohort and in the subgroups of patients with lower and higher disease risk based on the revised International Prognostic Scoring System (IPSS-R). The prognostic significance of ICSS was also validated in another independent cohort. Multivariable analysis revealed that ICSS independently predicted prognosis, regardless of age, IPSS-R, and mutation status. Bioinformatic analysis demonstrated a significant correlation between high-risk ICSS and nuclear factor κB signaling, oxidative stress, and leukemic stem cell signature pathways. Further studies investigating the mechanistic insight into the crosstalk between stem cells and immune cells are warranted.
Collapse
Affiliation(s)
- Yu-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Chin Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yuan-Yeh Kuo
- Tai-Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan; and
| | - Chi-Yuan Yao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Hsuan Tseng
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Hong Tsai
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ling Peng
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chein-Jun Kao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
10
|
Jann JC, Mossner M, Riabov V, Altrock E, Schmitt N, Flach J, Xu Q, Nowak V, Obländer J, Palme I, Weimer N, Streuer A, Jawhar A, Darwich A, Jawhar M, Metzgeroth G, Nolte F, Hofmann WK, Nowak D. Bone marrow derived stromal cells from myelodysplastic syndromes are altered but not clonally mutated in vivo. Nat Commun 2021; 12:6170. [PMID: 34697318 PMCID: PMC8546146 DOI: 10.1038/s41467-021-26424-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 10/06/2021] [Indexed: 11/15/2022] Open
Abstract
The bone marrow (BM) stroma in myeloid neoplasms is altered and it is hypothesized that this cell compartment may also harbor clonal somatically acquired mutations. By exome sequencing of in vitro expanded mesenchymal stromal cells (MSCs) from n = 98 patients with myelodysplastic syndrome (MDS) and n = 28 healthy controls we show that these cells accumulate recurrent mutations in genes such as ZFX (n = 8/98), RANK (n = 5/98), and others. MDS derived MSCs display higher mutational burdens, increased replicative stress, senescence, inflammatory gene expression, and distinct mutational signatures as compared to healthy MSCs. However, validation experiments in serial culture passages, chronological BM aspirations and backtracking of high confidence mutations by re-sequencing primary sorted MDS MSCs indicate that the discovered mutations are secondary to in vitro expansion but not present in primary BM. Thus, we here report that there is no evidence for clonal mutations in the BM stroma of MDS patients. Bone marrow-derived mesenchymal stroma cells (MSCs) in myeloid neoplasia have been hypothesized to carry somatic mutations and contribute to pathogenesis. Here the authors analyse ex-vivo cultures and primary MSCs derived from patients with myelodysplastic syndromes, finding functional alterations but no evidence of clonal mutations.
Collapse
Affiliation(s)
- Johann-Christoph Jann
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Maximilian Mossner
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Vladimir Riabov
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Eva Altrock
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Nanni Schmitt
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Johanna Flach
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Qingyu Xu
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Verena Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Julia Obländer
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Iris Palme
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Nadine Weimer
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Alexander Streuer
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Ahmed Jawhar
- Department of Orthopedic Surgery, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Ali Darwich
- Department of Orthopedic Surgery, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Mohammad Jawhar
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Florian Nolte
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany.
| |
Collapse
|
11
|
Sinha S, Pereira-Reis J, Guerra A, Rivella S, Duarte D. The Role of Iron in Benign and Malignant Hematopoiesis. Antioxid Redox Signal 2021; 35:415-432. [PMID: 33231101 PMCID: PMC8328043 DOI: 10.1089/ars.2020.8155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/26/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
Significance: Iron is an essential element required for sustaining a normal healthy life. However, an excess amount of iron in the bloodstream and tissue generates toxic hydroxyl radicals through Fenton reactions. Henceforth, a balance in iron concentration is extremely important to maintain cellular homeostasis in both normal hematopoiesis and erythropoiesis. Iron deficiency or iron overload can impact hematopoiesis and is associated with many hematological diseases. Recent Advances: The mechanisms of action of key iron regulators such as erythroferrone and the discovery of new drugs, such as ACE-536/luspatercept, are of potential interest to treat hematological disorders, such as β-thalassemia. New therapies targeting inflammation-induced ineffective erythropoiesis are also in progress. Furthermore, emerging evidences support differential interactions between iron and its cellular antioxidant responses of hematopoietic and neighboring stromal cells. Both iron and its systemic regulator, such as hepcidin, play a significant role in regulating erythropoiesis. Critical Issues: Significant pre-clinical studies are on the way and new drugs targeting iron metabolism have been recently approved or are undergoing clinical trials to treat pathological conditions with impaired erythropoiesis such as myelodysplastic syndromes or β-thalassemia. Future Directions: Future studies should explore how iron regulates hematopoiesis in both benign and malignant conditions. Antioxid. Redox Signal. 35, 415-432.
Collapse
Affiliation(s)
- Sayantani Sinha
- Division of Hematology, Department of Pediatrics, The Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Joana Pereira-Reis
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Amaliris Guerra
- Division of Hematology, Department of Pediatrics, The Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Stefano Rivella
- Division of Hematology, Department of Pediatrics, The Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Cell and Molecular Biology Affinity Group (CAMB), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
- Penn Center for Musculoskeletal Disorders, The Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Delfim Duarte
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Department of Onco-Hematology, Instituto Português de Oncologia (IPO), Porto, Portugal
- Unit of Biochemistry, Department of Biomedicine, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), Porto, Portugal
| |
Collapse
|
12
|
DNA Methylation Is Correlated with Oxidative Stress in Myelodysplastic Syndrome-Relevance as Complementary Prognostic Biomarkers. Cancers (Basel) 2021; 13:cancers13133138. [PMID: 34201739 PMCID: PMC8268426 DOI: 10.3390/cancers13133138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Myelodysplastic syndrome (MDS) is a hematological malignancy with a high propensity to evolve to acute myeloid leukemia. Oxidative stress and abnormal DNA methylation are important in this neoplasia’s development and progression. We investigate whether oxidative stress parameters were correlated with localized and global DNA methylations in the peripheral blood of patients with MDS. We found that oxidative stress was positively correlated with DNA methylation and associated with worse overall survival. Biologically, these facts suggest a relationship between oxidative stress and DNA methylation, two common pathogenic mechanisms involved in MDS. Clinically, our findings can improve an MDS patient’s management if used as complementary prognostic biomarkers. Abstract Oxidative stress and abnormal DNA methylation have been implicated in cancer, including myelodysplastic syndromes (MDSs). This fact leads us to investigate whether oxidative stress is correlated with localized and global DNA methylations in the peripheral blood of MDS patients. Sixty-six MDS patients and 26 healthy individuals were analyzed. Several oxidative stress and macromolecule damage parameters were analyzed. Localized (gene promotor) and global DNA methylations (5-mC and 5-hmC levels; LINE-1 methylation) were assessed. MDS patients had lower levels of reduced glutathione and total antioxidant status (TAS) and higher levels of peroxides, nitric oxide, peroxides/TAS, and 8-hydroxy-2-deoxyguanosine compared with controls. These patients had higher 5-mC levels and lower 5-hmC/5-mC ratio and LINE-1 methylation and increased methylation frequency of at least one methylated gene. Peroxide levels and peroxide/TAS ratio were higher in patients with methylated genes than those without methylation and negatively correlated with LINE-1 methylation and positively with 5-mC levels. The 5-hmC/5-mC ratio was significantly associated with progression to acute leukemia and peroxide/TAS ratio with overall survival. This study points to a relationship between oxidative stress and DNA methylation, two common pathogenic mechanisms involved in MDS, and suggests the relevance of 5-hmC/5-mC and peroxide/TAS ratios as complementary prognostic biomarkers.
Collapse
|
13
|
Oxidized mitochondrial DNA released after inflammasome activation is a disease biomarker for myelodysplastic syndromes. Blood Adv 2021; 5:2216-2228. [PMID: 33890980 DOI: 10.1182/bloodadvances.2020003475] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem cell malignancies that can phenotypically resemble other hematologic disorders. Thus, tools that may add to current diagnostic practices could aid in disease discrimination. Constitutive innate immune activation is a pathogenetic driver of ineffective hematopoiesis in MDS through Nod-like receptor protein 3 (NLRP3)-inflammasome-induced pyroptotic cell death. Oxidized mitochondrial DNA (ox-mtDNA) is released upon cytolysis, acts as a danger signal, and triggers inflammasome oligomerization via DNA sensors. By using immortalized bone marrow cells from murine models of common MDS somatic gene mutations and MDS primary samples, we demonstrate that ox-mtDNA is released upon pyroptosis. ox-mtDNA was significantly increased in MDS peripheral blood (PB) plasma compared with the plasma of healthy donors, and it was significantly higher in lower-risk MDS vs higher-risk MDS, consistent with the greater pyroptotic cell fraction in lower-risk patients. Furthermore, ox-mtDNA was significantly higher in MDS PB plasma compared with all other hematologic malignancies studied, with the exception of chronic lymphocytic leukemia (CLL). Receiver operating characteristic/area under the curve (ROC/AUC) analysis demonstrated that ox-mtDNA is a sensitive and specific biomarker for patients with MDS compared with healthy donors (AUC, 0.964), other hematologic malignancies excluding CLL (AUC, 0.893), and reactive conditions (AUC, 0.940). ox-mtDNA positively and significantly correlated with levels of known alarmins S100A9, S100A8, and apoptosis-associated speck-like protein containing caspase recruitment domain (CARD) specks, which provide an index of medullary pyroptosis. Collectively, these data indicate that quantifiable ox-mtDNA released into the extracellular space upon inflammasome activation serves as a biomarker for MDS and the magnitude of pyroptotic cell death.
Collapse
|
14
|
Wang T, Dong H, Zhang M, Wen T, Meng J, Liu J, Li Z, Zhang Y, Xu H. Prussian blue nanoparticles induce myeloid leukemia cells to differentiate into red blood cells through nanozyme activities. NANOSCALE 2020; 12:23084-23091. [PMID: 33180082 DOI: 10.1039/d0nr06480g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Numerous types of diseases cause serious anemia, which is characterized by a significantly decreased number of circulating red blood cells. The key reason is retarded terminal erythroid differentiation, which is largely involved in the downregulation of intracellular reactive oxygen species (ROS) and insufficient iron uptake. Prussian blue nanoparticles (PBNPs) have been demonstrated to be capable of scavenging ROS via multienzyme-like activity and contain the iron element. The aim of this study was to figure out whether PBNPs can induce terminal erythroid differentiation in myeloid leukemia cells K562 and to investigate the underlying mechanisms. Our results showed that PBNPs were taken up by K562 cells, which reduced the intracellular ROS level in the cells, upregulated the late erythroid surface marker GYPA (CD235a) and downregulated the early erythroid surface marker TFRC (CD71), clearly indicating the occurrence of terminal erythroid differentiation. In addition, the cells became smaller in size after incubation with PBNPs, providing strong side evidence that the cells had undergone terminal differentiation. Mechanistic studies indicated that PBNP-induced terminal differentiation was associated with the upregulation of the nuclear transcriptional factor NFE2 and downregulation of GATA1, both of which are closely related to the variation of intracellular ROS levels. In conclusion, PBNPs demonstrated a novel function by effectively inducing terminal erythroid differentiation in myeloid leukemia cells, which is of great significance in improving the blood profiles of anemia patients.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Involvement of GPx-3 in the Reciprocal Control of Redox Metabolism in the Leukemic Niche. Int J Mol Sci 2020; 21:ijms21228584. [PMID: 33202543 PMCID: PMC7696155 DOI: 10.3390/ijms21228584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
The bone marrow (BM) microenvironment plays a crucial role in the development and progression of leukemia (AML). Intracellular reactive oxygen species (ROS) are involved in the regulation of the biology of leukemia-initiating cells, where the antioxidant enzyme GPx-3 could be involved as a determinant of cellular self-renewal. Little is known however about the role of the microenvironment in the control of the oxidative metabolism of AML cells. In the present study, a coculture model of BM mesenchymal stromal cells (MSCs) and AML cells (KG1a cell-line and primary BM blasts) was used to explore this metabolic pathway. MSC-contact, rather than culture with MSC-conditioned medium, decreases ROS levels and inhibits the Nrf-2 pathway through overexpression of GPx3 in AML cells. The decrease of ROS levels also inactivates p38MAPK and reduces the proliferation of AML cells. Conversely, contact with AML cells modifies MSCs in that they display an increased oxidative stress and Nrf-2 activation, together with a concomitant lowered expression of GPx-3. Altogether, these experiments suggest that a reciprocal control of oxidative metabolism is initiated by direct cell–cell contact between MSCs and AML cells. GPx-3 expression appears to play a crucial role in this cross-talk and could be involved in the regulation of leukemogenesis.
Collapse
|
16
|
Vignon C, Lachot S, Foucault A, Ravalet N, Gyan E, Picou F, Herault B, Le Nail L, Bene MC, Herault O. Reactive oxygen species levels differentiate
CD34
+
human progenitors based on
CD38
expression. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 98:516-521. [DOI: 10.1002/cyto.b.21948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 07/01/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Christine Vignon
- CNRS ERL7001 LNOx “Leukemic Niche & redox metabolism” and EA7501 GICC Tours University Tours France
| | - Sébastien Lachot
- Tours University Hospital Department of Biological Hematology Tours France
| | - Amélie Foucault
- CNRS ERL7001 LNOx “Leukemic Niche & redox metabolism” and EA7501 GICC Tours University Tours France
- Tours University Hospital Department of Biological Hematology Tours France
| | - Noémie Ravalet
- CNRS ERL7001 LNOx “Leukemic Niche & redox metabolism” and EA7501 GICC Tours University Tours France
- Tours University Hospital Department of Biological Hematology Tours France
| | - Emmanuel Gyan
- CNRS ERL7001 LNOx “Leukemic Niche & redox metabolism” and EA7501 GICC Tours University Tours France
- Tours University Hospital Department of Hematology and Cell Therapy Tours France
| | - Frédéric Picou
- CNRS ERL7001 LNOx “Leukemic Niche & redox metabolism” and EA7501 GICC Tours University Tours France
- Tours University Hospital Department of Biological Hematology Tours France
| | - Beatrice Herault
- French Blood Establishment (EFS) Centre‐Pays de la Loire Tours France
| | | | - Marie C. Bene
- Nantes University Hospital Hematology Biology & CIRCNA Nantes France
| | - Olivier Herault
- CNRS ERL7001 LNOx “Leukemic Niche & redox metabolism” and EA7501 GICC Tours University Tours France
- Tours University Hospital Department of Biological Hematology Tours France
| |
Collapse
|
17
|
El Dor M, Dakik H, Polomski M, Haudebourg E, Brachet M, Gouilleux F, Prié G, Zibara K, Mazurier F. VAS3947 Induces UPR-Mediated Apoptosis through Cysteine Thiol Alkylation in AML Cell Lines. Int J Mol Sci 2020; 21:ijms21155470. [PMID: 32751795 PMCID: PMC7432790 DOI: 10.3390/ijms21155470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) involvement has been established in the oncogenic cell signaling of acute myeloid leukemia (AML) cells and in the crosstalk with their niche. We have shown an expression of NOX subunits in AML cell lines while NOX activity is lacking in the absence of exogenous stimulation. Here, we used AML cell lines as models to investigate the specificity of VAS3947, a current NOX inhibitor. Results demonstrated that VAS3947 induces apoptosis in AML cells independently of its anti-NOX activity. High-performance liquid chromatography (HPLC) and mass spectrometry analyses revealed that VAS3947 thiol alkylates cysteine residues of glutathione (GSH), while also interacting with proteins. Remarkably, VAS3947 decreased detectable GSH in the MV-4-11 cell line, thereby suggesting possible oxidative stress induction. However, a decrease in both cytoplasmic and mitochondrial reactive oxygen species (ROS) levels was observed by flow cytometry without disturbance of mitochondrial mass and membrane potential. Thus, assuming the consequences of VAS3947 treatment on protein structure, we examined its impact on endoplasmic reticulum (ER) stress. An acute unfolded protein response (UPR) was triggered shortly after VAS3947 exposure, through the activation of inositol-requiring enzyme 1α (IRE1α) and PKR-like endoplasmic reticulum kinase (PERK) pathways. Overall, VAS3947 induces apoptosis independently of anti-NOX activity, via UPR activation, mainly due to aggregation and misfolding of proteins.
Collapse
Affiliation(s)
- Maya El Dor
- EA 7501 GICC, University of Tours, CNRS ERL7001 LNOx, Bâtiment Dutrochet, 10 boulevard Tonnellé, BP3223, CEDEX 1, 37032 Tours, France; (M.E.D.); (H.D.); (M.B.); (F.G.)
- PRASE, Beirut, Lebanon;
| | - Hassan Dakik
- EA 7501 GICC, University of Tours, CNRS ERL7001 LNOx, Bâtiment Dutrochet, 10 boulevard Tonnellé, BP3223, CEDEX 1, 37032 Tours, France; (M.E.D.); (H.D.); (M.B.); (F.G.)
| | - Marion Polomski
- EA 7501 GICC, University of Tours, IMT, 31 Avenue Monge, 37200 Tours, France; (M.P.); (E.H.); (G.P.)
| | - Eloi Haudebourg
- EA 7501 GICC, University of Tours, IMT, 31 Avenue Monge, 37200 Tours, France; (M.P.); (E.H.); (G.P.)
| | - Marie Brachet
- EA 7501 GICC, University of Tours, CNRS ERL7001 LNOx, Bâtiment Dutrochet, 10 boulevard Tonnellé, BP3223, CEDEX 1, 37032 Tours, France; (M.E.D.); (H.D.); (M.B.); (F.G.)
| | - Fabrice Gouilleux
- EA 7501 GICC, University of Tours, CNRS ERL7001 LNOx, Bâtiment Dutrochet, 10 boulevard Tonnellé, BP3223, CEDEX 1, 37032 Tours, France; (M.E.D.); (H.D.); (M.B.); (F.G.)
| | - Gildas Prié
- EA 7501 GICC, University of Tours, IMT, 31 Avenue Monge, 37200 Tours, France; (M.P.); (E.H.); (G.P.)
| | - Kazem Zibara
- PRASE, Beirut, Lebanon;
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Frédéric Mazurier
- EA 7501 GICC, University of Tours, CNRS ERL7001 LNOx, Bâtiment Dutrochet, 10 boulevard Tonnellé, BP3223, CEDEX 1, 37032 Tours, France; (M.E.D.); (H.D.); (M.B.); (F.G.)
- EA 7501 GICC, University of Tours, IMT, 31 Avenue Monge, 37200 Tours, France; (M.P.); (E.H.); (G.P.)
- Correspondence: ; Tel.: +33-2-47-36-60-75
| |
Collapse
|
18
|
Kazianka L, Staber PB. The Bone's Role in Myeloid Neoplasia. Int J Mol Sci 2020; 21:E4712. [PMID: 32630305 PMCID: PMC7369750 DOI: 10.3390/ijms21134712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
The interaction of hematopoietic stem and progenitor cells with their direct neighboring cells in the bone marrow (the so called hematopoietic niche) evolves as a key principle for understanding physiological and malignant hematopoiesis. Significant progress in this matter has recently been achieved making use of emerging high-throughput techniques that allow characterization of the bone marrow microenvironment at single cell resolution. This review aims to discuss these single cell findings in the light of other conventional niche studies that together define the current notion of the niche's implication in i) normal hematopoiesis, ii) myeloid neoplasms and iii) disease-driving pathways that can be exploited to establish novel therapeutic strategies in the future.
Collapse
Affiliation(s)
| | - Philipp B Staber
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| |
Collapse
|
19
|
Deynoux M, Sunter N, Ducrocq E, Dakik H, Guibon R, Burlaud-Gaillard J, Brisson L, Rouleux-Bonnin F, le Nail LR, Hérault O, Domenech J, Roingeard P, Fromont G, Mazurier F. A comparative study of the capacity of mesenchymal stromal cell lines to form spheroids. PLoS One 2020; 15:e0225485. [PMID: 32484831 PMCID: PMC7266346 DOI: 10.1371/journal.pone.0225485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/17/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSC)-spheroid models favor maintenance of stemness, ex vivo expansion and transplantation efficacy. Spheroids may also be considered as useful surrogate models of the hematopoietic niche. However, accessibility to primary cells, from bone marrow (BM) or adipose tissues, may limit their experimental use and the lack of consistency in methods to form spheroids may affect data interpretation. In this study, we aimed to create a simple model by examining the ability of cell lines, from human (HS-27a and HS-5) and murine (MS-5) BM origins, to form spheroids, compared to primary human MSCs (hMSCs). Our protocol efficiently allowed the spheroid formation from all cell types within 24 hours. Whilst hMSC-spheroids began to shrink after 24 hours, the size of spheroids from cell lines remained constant during three weeks. The difference was partially explained by the balance between proliferation and cell death, which could be triggered by hypoxia and induced oxidative stress. Our results demonstrate that, like hMSCs, MSC cell lines make reproductible spheroids that are easily handled. Thus, this model could help in understanding mechanisms involved in MSC functions and may provide a simple model by which to study cell interactions in the BM niche.
Collapse
Affiliation(s)
- Margaux Deynoux
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
| | - Nicola Sunter
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
| | - Elfi Ducrocq
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
| | - Hassan Dakik
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
| | - Roseline Guibon
- Anatomie et cytologie pathologique, CHRU de Tours, Tours, France
- INSERM UMR1069, Nutrition, Croissance et Cancer, Université de Tours, Tours, France
| | - Julien Burlaud-Gaillard
- Plateforme IBiSA de Microscopie Electronique, Université et CHRU de Tours, Tours, France
- INSERM U1259 MAVIVH, Université et CHRU de Tours, Tours, France
| | - Lucie Brisson
- INSERM UMR1069, Nutrition, Croissance et Cancer, Université de Tours, Tours, France
| | | | | | - Olivier Hérault
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
- Service d'hématologie biologique, CHRU de Tours, Tours, France
| | - Jorge Domenech
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
- Service d'hématologie biologique, CHRU de Tours, Tours, France
| | - Philippe Roingeard
- Plateforme IBiSA de Microscopie Electronique, Université et CHRU de Tours, Tours, France
- INSERM U1259 MAVIVH, Université et CHRU de Tours, Tours, France
| | - Gaëlle Fromont
- Anatomie et cytologie pathologique, CHRU de Tours, Tours, France
- INSERM UMR1069, Nutrition, Croissance et Cancer, Université de Tours, Tours, France
| | - Frédéric Mazurier
- EA 7501 GICC, CNRS ERL 7001 LNOx, Université de Tours, Tours, France
- * E-mail:
| |
Collapse
|
20
|
Panuzzo C, Jovanovski A, Pergolizzi B, Pironi L, Stanga S, Fava C, Cilloni D. Mitochondria: A Galaxy in the Hematopoietic and Leukemic Stem Cell Universe. Int J Mol Sci 2020; 21:ijms21113928. [PMID: 32486249 PMCID: PMC7312164 DOI: 10.3390/ijms21113928] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the main fascinating energetic source into the cells. Their number, shape, and dynamism are controlled by the cell’s type and current behavior. The perturbation of the mitochondrial inward system via stress response and/or oncogenic insults could activate several trafficking molecular mechanisms with the intention to solve the problem. In this review, we aimed to clarify the crucial pathways in the mitochondrial system, dissecting the different metabolic defects, with a special emphasis on hematological malignancies. We investigated the pivotal role of mitochondria in the maintenance of hematopoietic stem cells (HSCs) and their main alterations that could induce malignant transformation, culminating in the generation of leukemic stem cells (LSCs). In addition, we presented an overview of LSCs mitochondrial dysregulated mechanisms in terms of (1) increasing in oxidative phosphorylation program (OXPHOS), as a crucial process for survival and self-renewal of LSCs,(2) low levels of reactive oxygen species (ROS), and (3) aberrant expression of B-cell lymphoma 2 (Bcl-2) with sustained mitophagy. Furthermore, these peculiarities may represent attractive new “hot spots” for mitochondrial-targeted therapy. Finally, we remark the potential of the LCS metabolic effectors to be exploited as novel therapeutic targets.
Collapse
Affiliation(s)
- Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
- Correspondence: (C.P.); (D.C.)
| | - Aleksandar Jovanovski
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Lucrezia Pironi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Serena Stanga
- Department of Neuroscience Rita Levi Montalcini, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano, Italy
| | - Carmen Fava
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
- Correspondence: (C.P.); (D.C.)
| |
Collapse
|