1
|
Kannan S, Li Y, Baran N, Yang X, Ghotbaldini S, Zhang Tatarata Q, Yoshimura S, Li Z, Hsiao Y, Balachander S, Andersen CL, Cidado J, Yu J, Jain N, Yang JJ, Konopleva M. Antileukemia efficacy of the dual BCL2/BCL-XL inhibitor AZD0466 in acute lymphoblastic leukemia preclinical models. Blood Adv 2025; 9:473-487. [PMID: 39561378 PMCID: PMC11808622 DOI: 10.1182/bloodadvances.2024013423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 11/21/2024] Open
Abstract
ABSTRACT The upregulation of B-cell lymphoma 2 (BCL2) and B-cell lymphoma-extra large (BCL-XL), 2 proteins in the BCL2 family of proteins, leads to a disproportional expression of prodeath and prosurvival proteins in favor of leukemia survival, tumorigenesis, and chemoresistance. In different subsets of acute lymphoblastic leukemia (ALL), the proportion of these 2 proteins varies, and their potential as therapeutic targets needs detailed characterization. Here, we investigated BCL2 and BCL-XL, the genes that encode BCL2 and BCL-XL, and their expression differences between B-cell acute lymphoblastic leukemia (B-ALL) and T-cell ALL (T-ALL). We also evaluated the therapeutic potential of targeting these proteins with AZD0466, a novel drug-dendrimer conjugate of the BCL2/BCL-XL inhibitor AZD4320, and with BCL2 inhibitor venetoclax (ABT-199). Gene expression and activity analyses supported by the protein expression patterns in ALL cell lines and primary samples demonstrated increased levels of BCL2 expression in B-ALL, with high sensitivity to venetoclax or AZD4320. In contrast, strong BCL-XL expression and sensitivity to dual BCL2/BCL-XL inhibition was observed specifically in T-ALL samples. This observation was confirmed by BH3 profiling, demonstrating BCL2/BCL-XL codependence in T-ALL and BCL2 dependence in B-ALL. In a mouse model of T-ALL, AZD0466 but not venetoclax reduced leukemic burden and prolonged survival without significant toxicities. Our findings therefore suggest that the novel dual BCL2/BCL-XL inhibitor AZD0466 outperforms single BCL2 inhibition by venetoclax in T-ALL. These findings facilitate the translation of dual BCL2/BCL-XL inhibitors into ALL clinical trials, either alone or in combination with standard-of-care chemotherapy and immune therapies.
Collapse
Affiliation(s)
- Sankaranarayanan Kannan
- Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yizhen Li
- Department of Hematology, Children’s Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xu Yang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sanaz Ghotbaldini
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Qi Zhang Tatarata
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Satoshi Yoshimura
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Zhenhua Li
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - YuChih Hsiao
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | | | | | | | - Jiyang Yu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jun J. Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
2
|
Wang L, Chen Y, Zhang M, Liu J, Li H, Liu M, Wu S, Zhang Y, Li W, Wang B. Chemical dissection of selective myeloid leukemia-1 inhibitors: How they were found and evolved. Eur J Med Chem 2025; 283:117168. [PMID: 39708769 DOI: 10.1016/j.ejmech.2024.117168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Myeloid cell leukemia-1 (MCL-1), a key anti-apoptotic protein within the BCL-2 family, is essential in regulating cell survival, particularly in cancer, where its overexpression is often linked to therapeutic resistance. This review begins with an overview of BCL-2-mediated apoptosis, highlighting the pivotal role of MCL-1 in cellular homeostasis. We then focus on the structure and function of MCL-1, elucidating how its unique structural features contribute to its function and interaction with pro-apoptotic proteins. The core of this review is a detailed structural analysis of selective MCL-1 inhibitors, tracing their development from initial discovery to stepwise optimization. We explore various classes of inhibitors, including those with distinct core structures, covalent inhibitors that reversibly/irreversibly bind to MCL-1, and innovative approaches such as metal-based inhibitors and proteolysis-targeting chimeras (PROTACs). The structural evolution of these inhibitors is discussed, with particular emphasis on the modifications that have enhanced their selectivity, potency, and pharmacokinetic profiles. Additionally, we summarize the synergistic potential of MCL-1 inhibitors when used in combination with other therapeutic agents, emphasizing their role in overcoming drug resistance. The review concludes with a discussion of current challenges in MCL-1 modulation and future perspectives, proposing alternative strategies for targeting this critical protein for cancer therapy.
Collapse
Affiliation(s)
- Luyao Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuxiang Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Maoqian Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin Liu
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing 211162, China
| | - Haozhe Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Menghui Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuyun Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yongmin Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China; Fuyang Institute & School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311422, Zhejiang, China.
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Bo Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
3
|
Quijada-Álamo M, Freed G, Wagenblast E. LIPA-frogging blast phase chronic myeloid leukemia: hopping over resistance with lysosomal targeting. Haematologica 2025; 110:13-15. [PMID: 39219462 PMCID: PMC11694097 DOI: 10.3324/haematol.2024.286140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Miguel Quijada-Álamo
- Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Mindich Child Health and Development Institute and Department of Pediatrics, Division of Pediatric Hematology-Oncology, Icahn School of Medicine at Mount Sinai
| | - Grace Freed
- Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Mindich Child Health and Development Institute and Department of Pediatrics, Division of Pediatric Hematology-Oncology, Icahn School of Medicine at Mount Sinai
| | - Elvin Wagenblast
- Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Mindich Child Health and Development Institute and Department of Pediatrics, Division of Pediatric Hematology-Oncology, Icahn School of Medicine at Mount Sinai.
| |
Collapse
|
4
|
Desai P, Lonial S, Cashen A, Kamdar M, Flinn I, O’Brien S, Garcia JS, Korde N, Moslehi J, Wey M, Cheung P, Sharma S, Olabode D, Chen H, Ali Syed F, Liu M, Saeh J, Andrade-Campos M, Kadia TM, Blachly JS. A Phase 1 First-in-Human Study of the MCL-1 Inhibitor AZD5991 in Patients with Relapsed/Refractory Hematologic Malignancies. Clin Cancer Res 2024; 30:4844-4855. [PMID: 39167622 PMCID: PMC11528199 DOI: 10.1158/1078-0432.ccr-24-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE AZD5991, a human MCL-1 inhibitor, was assessed for safety, tolerability, pharmacokinetics, and antitumor activity as monotherapy and in combination with venetoclax in patients with relapsed or refractory hematologic malignancies. PATIENTS AND METHODS In the monotherapy cohort (n = 61), patients with hematologic malignancies received AZD5991 intravenously in escalating doses either once or twice weekly, following intrapatient dose escalation, during a 3-week cycle. In the combination cohort (n = 17), patients with acute myeloid leukemia and myelodysplastic syndrome received escalating doses of AZD5991 and venetoclax during either a 3- or 4-week cycle. Primary objectives were safety and maximum tolerated dose; secondary objectives included plasma pharmacokinetics and antitumor activity. RESULTS The most common (≥30%) adverse events were diarrhea (59.0%), nausea (55.1%), and vomiting (47.4%). Four deaths occurred because of adverse events: cardiac arrest, sepsis, tumor lysis syndrome, and acute respiratory failure; only tumor lysis syndrome was related to AZD5991. Dose-limiting toxicities occurred in five patients. Three patients with myelodysplastic syndrome achieved an objective response: one marrow complete remission without hematologic improvement, one partial remission with AZD5991 monotherapy, and one marrow complete remission with AZD5991 + venetoclax. Asymptomatic elevations of troponin I or T were observed in eight (10.3%) patients. Post hoc retrospective analysis revealed elevated troponin T in 14/31 patients before any AZD5991 dose and in 54/65 patients after any AZD5991 dose at or after Cycle 1. No associations were found between elevated troponin and cardiovascular risk factors. CONCLUSIONS Treatment with AZD5991 was associated with high incidence of laboratory troponin elevation and a low overall response rate.
Collapse
Affiliation(s)
| | - Sagar Lonial
- Emory Winship Cancer Institute, Atlanta, Georgia
| | - Amanda Cashen
- Washington University School of Medicine, St. Louis, Missouri
| | | | - Ian Flinn
- Tennessee Oncology, Nashville, Tennessee
| | | | | | - Neha Korde
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Javid Moslehi
- University of California San Francisco, San Francisco, California
| | | | | | | | | | - Hong Chen
- AstraZeneca, Cambridge, United Kingdom
| | | | - Mary Liu
- AstraZeneca, Cambridge, United Kingdom
| | | | | | | | - James S. Blachly
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
5
|
Rinella SP, Bell HC, Hess NJ, Hoang NM, Nguyen TT, Turicek DP, Shi L, Rui L, LaBelle JL, Capitini CM. Combination fedratinib and venetoclax has activity against human B-ALL with high FLT3 expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.07.544058. [PMID: 37333339 PMCID: PMC10274796 DOI: 10.1101/2023.06.07.544058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Treatment of relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL) remains a challenge, particularly in patients who do not respond to traditional chemotherapy or immunotherapy. The objective of this study was to assess the efficacy of fedratinib, a semi selective JAK2 inhibitor and venetoclax, a selective BCL-2 inhibitor, on human B-ALL using both single-agent and combinatorial treatments. The combination treatment of fedratinib and venetoclax improved killing of the human B-ALL cell lines RS4;11 and SUPB-15 in vitro over single-agent treatments. This combinatorial effect was not detected in the human B-ALL cell line NALM-6, which was less responsive to fedratinib due to the absence of Flt3 expression. The combination treatment induces a unique gene expression profile relative to single-agent treatment and with an enrichment in apoptotic pathways. Finally, the combination treatment was superior to single agent treatment in an in vivo xenograft model of human B-ALL, with a two-week treatment regimen significantly improving overall survival while inducing CD19 expression. Overall, our data demonstrates the efficacy of a combinatorial treatment strategy of fedratinib and venetoclax against human B-ALL expressing high levels of Flt3.
Collapse
Affiliation(s)
- Sean P Rinella
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Haley C Bell
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Nicholas J Hess
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Nguyet-Minh Hoang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Thao Trang Nguyen
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - David P Turicek
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Lei Shi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Lixin Rui
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - James L LaBelle
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| |
Collapse
|
6
|
Samia S, Sandeep Chary P, Khan O, Kumar Mehra N. Recent trends and advances in novel formulations as an armament in Bcl-2/Bax targeted breast cancer. Int J Pharm 2024; 653:123889. [PMID: 38346605 DOI: 10.1016/j.ijpharm.2024.123889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Breast cancer (BC) remains a significant health burden worldwide, necessitating the development of innovative therapeutic strategies. The B-cell lymphoma 2 (Bcl-2) family proteins, Bcl-2 and Bax, play a crucial role in regulating apoptosis and thus are promising targets for BC therapy. We focus on the recent advancements in novel formulations that specifically target Bcl-2/Bax pathway to combat BC. It provides an overview on biological functions of Bcl-2/Bax in apoptosis regulation, emphasizing their significance in pathogenesis and progression of the disease while covering the numerous therapeutic approaches aimed at modulating the Bcl-2/Bax pathway, including small-molecule inhibitors, peptides, gene-based therapies and other repurposed drugs harboured onto cutting-edge technologies and nanocarrier systems employed to enhance the targeted delivery of Bcl-2/Bax inhibitors tumor cells. These advanced formulations aim to improve therapeutic efficacy, minimize off-target effects, and overcome drug resistance, offering promising prospects in its treatment. In conclusion, it illuminates the diverse and evolving landscape of novel formulations as an essential armament in targeting these proteins while bridging and unravelling the obscurity of Bcl-2/Bax pathway-targeted drug delivery systems which are presently in their nascent stages of exploration for BC therapy which can benefit researchers, clinicians, and pharmaceutical scientists.
Collapse
Affiliation(s)
- Shaikh Samia
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Omar Khan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
7
|
De Sa H, Leonard J. Novel Biomarkers and Molecular Targets in ALL. Curr Hematol Malig Rep 2024; 19:18-34. [PMID: 38048037 DOI: 10.1007/s11899-023-00718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE OF REVIEW Acute lymphoblastic leukemia (ALL) is a widely heterogeneous disease in terms of genomic alterations, treatment options, and prognosis. While ALL is considered largely curable in children, adults tend to have higher risk disease subtypes and do not respond as favorably to conventional chemotherapy. Identifying genomic drivers of leukemogenesis and applying targeted therapies in an effort to improve disease outcomes is an exciting focus of current ALL research. Here, we review recent updates in ALL targeted therapy and present promising opportunities for future research. RECENT FINDINGS With the utilization of next-generation sequencing techniques, the genomic landscape of ALL has greatly expanded to encompass novel subtypes characterized by recurrent chromosomal rearrangements, gene fusions, sequence mutations, and distinct gene expression profiles. The evolution of small molecule inhibitors and immunotherapies, and the exploration of unique therapy combinations are some examples of recent advancements in the field. Targeted therapies are becoming increasingly important in the treatment landscape of ALL to improve outcomes and minimize toxicity. Significant recent advancements have been made in the detection of susceptible genomic drivers and the use of novel therapies to target them.
Collapse
Affiliation(s)
- Hong De Sa
- OHSU Center for Health and Healing, Oregon Health & Science University, 3485 S Bond Ave, Mail Code OC14HO, Portland, OR, 97239, USA
| | - Jessica Leonard
- OHSU Center for Health and Healing, Oregon Health & Science University, 3485 S Bond Ave, Mail Code OC14HO, Portland, OR, 97239, USA.
| |
Collapse
|
8
|
Arnett E, Pahari S, Leopold Wager CM, Hernandez E, Bonifacio JR, Lumbreras M, Renshaw C, Montoya MJ, Opferman JT, Schlesinger LS. Combination of MCL-1 and BCL-2 inhibitors is a promising approach for a host-directed therapy for tuberculosis. Biomed Pharmacother 2023; 168:115738. [PMID: 37864894 PMCID: PMC10841846 DOI: 10.1016/j.biopha.2023.115738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/04/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023] Open
Abstract
Tuberculosis (TB) accounts for 1.6 million deaths annually and over 25% of deaths due to antimicrobial resistance. Mycobacterium tuberculosis (M.tb) drives MCL-1 expression (family member of anti-apoptotic BCL-2 proteins) to limit apoptosis and grow intracellularly in human macrophages. The feasibility of re-purposing specific MCL-1 and BCL-2 inhibitors to limit M.tb growth, using inhibitors that are in clinical trials and FDA-approved for cancer treatment has not be tested previously. We show that specifically inhibiting MCL-1 and BCL-2 induces apoptosis of M.tb-infected macrophages, and markedly reduces M.tb growth in human and murine macrophages, and in a pre-clinical model of human granulomas. MCL-1 and BCL-2 inhibitors limit growth of drug resistant and susceptible M.tb in macrophages and act in additive fashion with the antibiotics isoniazid and rifampicin. This exciting work uncovers targeting the intrinsic apoptosis pathway as a promising approach for TB host-directed therapy. Since safety and activity studies are underway in cancer clinics for MCL-1 and BCL-2 inhibitors, we expect that re-purposing them for TB treatment should translate more readily and rapidly to the clinic. Thus, the work supports further development of this host-directed therapy approach to augment current TB treatment.
Collapse
Affiliation(s)
- Eusondia Arnett
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| | - Susanta Pahari
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Chrissy M Leopold Wager
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Elizabeth Hernandez
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jordan R Bonifacio
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Miranda Lumbreras
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Charles Renshaw
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Maria J Montoya
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | | | - Larry S Schlesinger
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| |
Collapse
|
9
|
Oikonomou A, Valsecchi L, Quadri M, Watrin T, Scharov K, Procopio S, Tu JW, Vogt M, Savino AM, Silvestri D, Valsecchi MG, Biondi A, Borkhardt A, Bhatia S, Cazzaniga G, Fazio G, Bardini M, Palmi C. High-throughput screening as a drug repurposing strategy for poor outcome subgroups of pediatric B-cell precursor Acute Lymphoblastic Leukemia. Biochem Pharmacol 2023; 217:115809. [PMID: 37717691 DOI: 10.1016/j.bcp.2023.115809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Although a great cure rate has been achieved for pediatric BCP-ALL, approximately 15% of patients do not respond to conventional chemotherapy and experience disease relapse. A major effort to improve the cure rates by treatment intensification would result in an undesirable increase in treatment-related toxicity and mortality, raising the need to identify novel therapeutic approaches. High-throughput (HTP) drug screening enables the profiling of patients' responses in vitro and allows the repurposing of compounds currently used for other diseases, which can be immediately available for clinical application. The aim of this study was to apply HTP drug screening to identify potentially effective compounds for the treatment of pediatric BCP-ALL patients with poor prognosis, such as patients with Down Syndrome (DS) or carrying rearrangements involving PAX5 or KMT2A/MLL genes. Patient-derived Xenografts (PDX) samples from 34 BCP-ALL patients (9 DS CRLF2r, 15 PAX5r, 10 MLLr), 7 human BCP-ALL cell lines and 14 hematopoietic healthy donor samples were screened on a semi-automated HTP drug screening platform using a 174 compound library (FDA/EMA-approved or in preclinical studies). We identified 9 compounds active against BCP-ALL (ABT-199/venetoclax, AUY922/luminespib, dexamethasone, EC144, JQ1, NVP-HSP990, paclitaxel, PF-04929113 and vincristine), but sparing normal cells. Ex vivo validations confirmed that the BCL2 inhibitor venetoclax exerts an anti-leukemic effect against all three ALL subgroups at nanomolar concentrations. Overall, this study points out the benefit of HTP screening application for drug repurposing to allow the identification of effective and clinically translatable therapeutic agents for difficult-to-treat childhood BCP-ALL subgroups.
Collapse
Affiliation(s)
| | - Luigia Valsecchi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Manuel Quadri
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Titus Watrin
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Katerina Scharov
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Simona Procopio
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Jia-Wey Tu
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Melina Vogt
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Angela Maria Savino
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Daniela Silvestri
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Maria Grazia Valsecchi
- School of Medicine and Surgery, University of Milano-Bicocca, Italy; Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Andrea Biondi
- School of Medicine and Surgery, University of Milano-Bicocca, Italy; Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Arndt Borkhardt
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Italy.
| | - Grazia Fazio
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Michela Bardini
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Chiara Palmi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
10
|
Tsuzuki H, Kawase T, Nakazawa T, Mori M, Yoshida T. Anti-tumor effect of antibody drug conjugate ASP1235 targeting Fms-like tyrosine kinase 3 with venetoclax plus azacitidine in an acute myeloid leukemia xenograft mouse model. Oncotarget 2022; 13:1359-1368. [PMID: 36537913 PMCID: PMC9765856 DOI: 10.18632/oncotarget.28331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Antibody drug conjugates (ADC) are one of the attractive modalities for the treatment of acute myeloid leukemia (AML). Previously, we have developed ASP1235, a novel ADC targeting Fms-like tyrosine kinase 3 (FLT3) which is widely expressed on the leukemic blasts of AML patients. In this study, we sought to evaluate the therapeutic effect of ASP1235 in combination with venetoclax plus azacitidine, a novel standard-of-care treatment for elderly AML patients, in ASP1235 poor sensitive AML cells. To identify the suitable preclinical model, we first evaluated the growth inhibitory effect of ASP1235 on several leukemia cell lines expressing FLT3 and found that THP-1 cells were partially sensitive to ASP1235 in vitro. Furthermore, ASP1235 showed marginal anti-tumor activity in a THP-1 xenograft model. Compared to the leukemic blasts in most of the relapsed or refractory (R/R) AML patients tested, THP-1 cells expressed equivalent protein levels of Bcl-2, suggesting that ASP1235 in combination with venetoclax plus azacitidine is a rational treatment in the THP-1 model. In vitro, ASP1235 showed a cytotoxic effect on THP-1 cells in combination with venetoclax, and the combination effect was greater than the additive effect. Furthermore, ASP1235 also showed a combination effect with venetoclax plus azacitidine treatment. Similarly, the combination of ASP1235, venetoclax and azacitidine showed a superior anti-tumor effect in a THP-1 xenograft model without obvious body weight loss. These findings provide supportive evidence that the triple combination of ASP1235, venetoclax and azacitidine would improve the clinical outcome of ASP1235 monotherapy and venetoclax plus azacitidine regimen in AML patients.
Collapse
Affiliation(s)
- Hirofumi Tsuzuki
- 1Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan,Correspondence to:Hirofumi Tsuzuki, email:
| | - Tatsuya Kawase
- 1Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Taisuke Nakazawa
- 1Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Masamichi Mori
- 2Applied Research and Operations, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Taku Yoshida
- 1Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| |
Collapse
|
11
|
Parry N, Busch C, Aßmann V, Cassels J, Hair A, Helgason GV, Wheadon H, Copland M. BH3 mimetics in combination with nilotinib or ponatinib represent a promising therapeutic strategy in blast phase chronic myeloid leukemia. Cell Death Dis 2022; 8:457. [PMID: 36379918 PMCID: PMC9666353 DOI: 10.1038/s41420-022-01211-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Abstract
Dysregulation of the BCL-2 family is implicated in protecting chronic myeloid leukemia (CML) cells from intracellular damage and BCR::ABL1-inhibition with tyrosine kinase inhibitors (TKIs) and may be a viable therapeutic target in blast phase (BP-)CML, for which treatment options are limited. BH3 mimetics, a class of small molecule inhibitors with high-specificity against the prosurvival members of the BCL-2 family, have displayed clinical promise in the treatment of chronic lymphocytic and acute myeloid leukemia as single agents and in combination with standard-of-care therapies. Here we present the first comparison of inhibition of BCL-2 prosurvival proteins BCL-2, BCL-xL and MCL-1 in combination with a second or third generation TKI, crucially with comparisons drawn between myeloid and lymphoid BP-CML samples. Co-treatment of four BP-CML cell lines with the TKIs nilotinib or ponatinib and either BCL-2 (venetoclax), MCL-1 (S63845) or BCL-xL (A-1331852) inhibitors resulted in a synergistic reduction in cell viability and increase in phosphatidylserine (PS) presentation. Nilotinib with BH3 mimetic combinations in myeloid BP-CML patient samples triggered increased induction of apoptosis over nilotinib alone, and a reduction in colony-forming capacity and CD34+ fraction, while this was not the case for lymphoid BP-CML samples tested. While some heterogeneity in apoptotic response was observed between cell lines and BP-CML patient samples, the combination of BCL-xL and BCR::ABL1 inhibition was consistently effective in inducing substantial apoptosis. Further, while BH3 mimetics showed little efficacy as single agents, dual-inhibition of BCL-2 prosurvival proteins dramatically induced apoptosis in all cell lines tested and in myeloid BP-CML patient samples compared to healthy donor samples. Gene expression and protein level analysis suggests a protective upregulation of alternative BCL-2 prosurvival proteins in response to BH3 mimetic single-treatment in BP-CML. Our results suggest that BH3 mimetics represent an interesting avenue for further exploration in myeloid BP-CML, for which alternative treatment options are desperately sought.
Collapse
|
12
|
The Emerging Role of Venetoclax-Based Treatments in Acute Lymphoblastic Leukemia. Int J Mol Sci 2022; 23:ijms231810957. [PMID: 36142863 PMCID: PMC9504828 DOI: 10.3390/ijms231810957] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Venetoclax, a B-cell lymphoma (BCL-2) inhibitor, in combination with hypomethylating agents has become the new standard of care in elderly and unfit patients with acute myeloid leukemia, with significantly improved overall survival and quality of life. Studies of venetoclax combined with high-dose chemotherapy are emerging with evidence of higher rates of molecular remission. Recently, a growing number of publications bring forth the use of venetoclax in patients with acute lymphoblastic leukemia (ALL). In the current review, we present the biological rationale of BCL-2 inhibition in ALL, how the interplay of BH3 proteins modulate the response and the current clinical experience with various combinations.
Collapse
|
13
|
Uthale A, Anantram A, Sulkshane P, Degani M, Teni T. Identification of bicyclic compounds that act as dual inhibitors of Bcl-2 and Mcl-1. Mol Divers 2022:10.1007/s11030-022-10494-6. [PMID: 35909144 DOI: 10.1007/s11030-022-10494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/02/2022] [Indexed: 10/16/2022]
Abstract
Elevated expression of anti-apoptotic proteins, such as Bcl-2 and Mcl-1 contributes to poor prognosis and resistance to current treatment modalities in multiple cancers. Here, we report the design, synthesis and characterization of benzimidazole chalcone and flavonoid scaffold-derived bicyclic compounds targeting both Bcl-2 and Mcl-1 by optimizing the structural differences in the binding sites of both these proteins. Initial docking screen of Bcl-2 and Mcl-1 with pro-apoptotic protein Bim revealed possible hits with optimal binding energies. All the optimized bicyclic compounds were screened for their in vitro cytotoxic activity against two oral cancer cell lines (AW8507 and AW13516) which express high levels of Bcl-2 and Mcl-1. Compound 4d from the benzimidazole chalcone series and compound 6d from the flavonoid series exhibited significant cytotoxic activity (IC50 7.12 μM and 17.18 μM, respectively) against AW13516 cell line. Time Resolved-Fluorescence Resonance Energy Transfer (TR-FRET) analysis further demonstrated that compound 4d and compound 6d could effectively inhibit the Bcl-2 and Mcl-1 proteins by displacing their BH3 binding partners. Both compounds exhibited potent activation of canonical pathway of apoptosis evident from appearance of cleaved Caspase-3 and PARP. Further, treatment of oral cancer cells with the inhibitors induced dissociation of the BH3 only protein Bim from Mcl-1 and Bak from Bcl-2 but failed to release Bax from Bcl-xL thereby confirming the nature of compounds as BH3-mimetics selectively targeting Bcl-2 and Mcl-1. Our study thus identifies bicyclic compounds as promising candidates for anti-apoptotic Bcl-2/Mcl-1 dual inhibitors with a potential for further development.
Collapse
Affiliation(s)
- Abhay Uthale
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Aarti Anantram
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India
| | - Prasad Sulkshane
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Mariam Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Tanuja Teni
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210, India. .,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India.
| |
Collapse
|
14
|
Richter A, Lange S, Holz C, Brock L, Freitag T, Sekora A, Knuebel G, Krohn S, Schwarz R, Hinz B, Murua Escobar H, Junghanss C. Effective tumor cell abrogation via Venetoclax-mediated BCL-2 inhibition in KMT2A-rearranged acute B-lymphoblastic leukemia. Cell Death Dis 2022; 8:302. [PMID: 35778418 PMCID: PMC9249764 DOI: 10.1038/s41420-022-01093-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022]
Abstract
Dysregulation of the intrinsic BCL-2 pathway-mediated apoptosis cascade is a common feature of hematological malignancies including acute B-lymphoblastic leukemia (B-ALL). The KMT2A-rearranged high-risk cytogenetic subtype is characterized by high expression of antiapoptotic protein BCL-2, likely due to the direct activating binding of KMT2A fusion proteins to the BCL2 gene. The BCL-2 inhibitor venetoclax (VEN) has proven great clinical value in other blood cancers, however, data on B-ALL is sparse and past studies have not so far described the effects of VEN on gene and protein expression profiles. Using cell lines and patient-derived in vivo xenograft models, we show BCL-2 pathway-mediated apoptosis induction and decelerated tumor cell counts in KMT2A-rearranged B-ALL but not in other cytogenetic subtypes. VEN treatment of cell line- and patient-derived xenografts reduced blast frequencies in blood, bone marrow, and spleen, and tumor cell doubling times were increased. Growth rates are further correlated with VEN concentrations in blood. In vitro incubation with VEN resulted in BCL-2 dephosphorylation and targeted panel RNA sequencing revealed reduced gene expression of antiapoptotic pathway members BCL2, MCL1, and BCL2L1 (BCL-XL). Reinforced translocation of BAX proteins towards mitochondria induced caspase activation and cell death commitment. Prolonged VEN application led to upregulation of antiapoptotic proteins BCL-2, MCL-1, and BCL-XL. Interestingly, the extrinsic apoptosis pathway was strongly modulated in SEM cells in response to VEN. Gene expression of members of the tumor necrosis factor signaling cascade was increased, resulting in canonical NF-kB signaling. This possibly suggests a previously undescribed mechanism of BCL-2-independent and NF-kB-mediated upregulation of MCL-1 and BCL-XL. In summary, we herein prove that VEN is a potent option to suppress tumor cells in KMT2A-rearranged B-ALL in vitro and in vivo. Possible evasion mechanisms, however, must be considered in subsequent studies.
Collapse
Affiliation(s)
- Anna Richter
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.
| | - Sandra Lange
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Clemens Holz
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Luisa Brock
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Thomas Freitag
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Anett Sekora
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Gudrun Knuebel
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Saskia Krohn
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Rico Schwarz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| |
Collapse
|
15
|
Lejman M, Chałupnik A, Chilimoniuk Z, Dobosz M. Genetic Biomarkers and Their Clinical Implications in B-Cell Acute Lymphoblastic Leukemia in Children. Int J Mol Sci 2022; 23:2755. [PMID: 35269896 PMCID: PMC8911213 DOI: 10.3390/ijms23052755] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous group of hematologic malignancies characterized by abnormal proliferation of immature lymphoid cells. It is the most commonly diagnosed childhood cancer with an almost 80% cure rate. Despite favorable survival rates in the pediatric population, a significant number of patients develop resistance to therapy, resulting in poor prognosis. ALL is a heterogeneous disease at the genetic level, but the intensive development of sequencing in the last decade has made it possible to broaden the study of genomic changes. New technologies allow us to detect molecular changes such as point mutations or to characterize epigenetic or proteomic profiles. This process made it possible to identify new subtypes of this disease characterized by constellations of genetic alterations, including chromosome changes, sequence mutations, and DNA copy number alterations. These genetic abnormalities are used as diagnostic, prognostic and predictive biomarkers that play an important role in earlier disease detection, more accurate risk stratification, and treatment. Identification of new ALL biomarkers, and thus a greater understanding of their molecular basis, will lead to better monitoring of the course of the disease. In this article, we provide an overview of the latest information on genomic alterations found in childhood ALL and discuss their impact on patients' clinical outcomes.
Collapse
Affiliation(s)
- Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Chałupnik
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Zuzanna Chilimoniuk
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Maciej Dobosz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| |
Collapse
|
16
|
Potent, p53-independent induction of NOXA sensitizes MLL-rearranged B-cell acute lymphoblastic leukemia cells to venetoclax. Oncogene 2022; 41:1600-1609. [PMID: 35091682 PMCID: PMC8913358 DOI: 10.1038/s41388-022-02196-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 01/02/2022] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
The prognosis for B-cell precursor acute lymphoblastic leukemia patients with Mixed-Lineage Leukemia (MLL) gene rearrangements (MLLr BCP-ALL) is still extremely poor. Inhibition of anti-apoptotic protein BCL-2 with venetoclax emerged as a promising strategy for this subtype of BCP-ALL, however, lack of sufficient responses in preclinical models and the possibility of developing resistance exclude using venetoclax as monotherapy. Herein, we aimed to uncover potential mechanisms responsible for limited venetoclax activity in MLLr BCP-ALL and to identify drugs that could be used in combination therapy. Using RNA-seq, we observed that long-term exposure to venetoclax in vivo in a patient-derived xenograft model leads to downregulation of several tumor protein 53 (TP53)-related genes. Interestingly, auranofin, a thioredoxin reductase inhibitor, sensitized MLLr BCP-ALL to venetoclax in various in vitro and in vivo models, independently of the p53 pathway functionality. Synergistic activity of these drugs resulted from auranofin-mediated upregulation of NOXA pro-apoptotic protein and potent induction of apoptotic cell death. More specifically, we observed that auranofin orchestrates upregulation of the NOXA-encoding gene Phorbol-12-Myristate-13-Acetate-Induced Protein 1 (PMAIP1) associated with chromatin remodeling and increased transcriptional accessibility. Altogether, these results present an efficacious drug combination that could be considered for the treatment of MLLr BCP-ALL patients, including those with TP53 mutations.
Collapse
|
17
|
SFPQ-ABL1 and BCR-ABL1 utilize different signalling networks to drive B-cell acute lymphoblastic leukaemia. Blood Adv 2022; 6:2373-2387. [PMID: 35061886 PMCID: PMC9006296 DOI: 10.1182/bloodadvances.2021006076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
SFPQ-ABL1 is localized to the nuclear compartment and is a relatively weaker driver of cellular proliferation compared with BCR-ABL1. SFPQ-ABL1 and BCR-ABL1 activate distinct signaling networks, both of which converge on inhibiting apoptosis and driving proliferation.
Philadelphia-like (Ph-like) acute lymphoblastic leukemia (ALL) is a high-risk subtype of B-cell ALL characterized by a gene expression profile resembling Philadelphia chromosome–positive ALL (Ph+ ALL) in the absence of BCR-ABL1. Tyrosine kinase–activating fusions, some involving ABL1, are recurrent drivers of Ph-like ALL and are targetable with tyrosine kinase inhibitors (TKIs). We identified a rare instance of SFPQ-ABL1 in a child with Ph-like ALL. SFPQ-ABL1 expressed in cytokine-dependent cell lines was sufficient to transform cells and these cells were sensitive to ABL1-targeting TKIs. In contrast to BCR-ABL1, SFPQ-ABL1 localized to the nuclear compartment and was a weaker driver of cellular proliferation. Phosphoproteomics analysis showed upregulation of cell cycle, DNA replication, and spliceosome pathways, and downregulation of signal transduction pathways, including ErbB, NF-κB, vascular endothelial growth factor (VEGF), and MAPK signaling in SFPQ-ABL1–expressing cells compared with BCR-ABL1–expressing cells. SFPQ-ABL1 expression did not activate phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling and was associated with phosphorylation of G2/M cell cycle proteins. SFPQ-ABL1 was sensitive to navitoclax and S-63845 and promotes cell survival by maintaining expression of Mcl-1 and Bcl-xL. SFPQ-ABL1 has functionally distinct mechanisms by which it drives ALL, including subcellular localization, proliferative capacity, and activation of cellular pathways. These findings highlight the role that fusion partners have in mediating the function of ABL1 fusions.
Collapse
|
18
|
Seyfried F, Stirnweiß FU, Niedermayer A, Enzenmüller S, Hörl RL, Münch V, Köhrer S, Debatin KM, Meyer LH. Synergistic activity of combined inhibition of anti-apoptotic molecules in B-cell precursor ALL. Leukemia 2022; 36:901-912. [PMID: 35031695 PMCID: PMC8979822 DOI: 10.1038/s41375-021-01502-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023]
Abstract
Targeting BCL-2, a key regulator of survival in B-cell malignancies including precursor B-cell acute lymphoblastic leukemia, has become a promising treatment strategy. However, given the redundancy of anti-apoptotic BCL-2 family proteins (BCL-2, BCL-XL, MCL-1), single targeting may not be sufficient. When analyzing the effects of BH3-mimetics selectively targeting BCL-XL and MCL-1 alone or in combination with the BCL-2 inhibitor venetoclax, heterogeneous sensitivity to either of these inhibitors was found in ALL cell lines and in patient-derived xenografts. Interestingly, some venetoclax-resistant leukemias were sensitive to the MCL-1-selective antagonist S63845 and/or BCL-XL-selective A-1331852 suggesting functional mutual substitution. Consequently, co-inhibition of BCL-2 and MCL-1 or BCL-XL resulted in synergistic apoptosis induction. Functional analysis by BH3-profiling and analysis of protein complexes revealed that venetoclax-treated ALL cells are dependent on MCL-1 and BCL-XL, indicating that MCL-1 or BCL-XL provide an Achilles heel in BCL-2-inhibited cells. The effect of combining BCL-2 and MCL-1 inhibition by venetoclax and S63845 was evaluated in vivo and strongly enhanced anti-leukemia activity was found in a pre-clinical patient-derived xenograft model. Our study offers in-depth molecular analysis of mutual substitution of BCL-2 family proteins in acute lymphoblastic leukemia and provides targets for combination treatment in vivo and in ongoing clinical studies.
Collapse
Affiliation(s)
- Felix Seyfried
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Felix Uli Stirnweiß
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.,International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Alexandra Niedermayer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.,International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Stefanie Enzenmüller
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Rebecca Louise Hörl
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Vera Münch
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Stefan Köhrer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.,St. Anna Children's Hospital, Department of Pediatric Hematology and Oncology, Vienna, Austria
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Lüder Hinrich Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
19
|
Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer 2022; 22:45-64. [PMID: 34663943 DOI: 10.1038/s41568-021-00407-4] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Apoptosis is a form of programmed cell death that is regulated by the balance between prosurvival and proapoptotic BCL-2 protein family members. Evasion of apoptosis is a hallmark of cancer that arises when this balance is tipped in favour of survival. One form of anticancer therapeutic, termed 'BH3-mimetic drugs', has been developed to directly activate the apoptosis machinery in malignant cells. These drugs bind to and inhibit specific prosurvival BCL-2 family proteins, thereby mimicking their interaction with the BH3 domains of proapoptotic BCL-2 family proteins. The BCL-2-specific inhibitor venetoclax is approved by the US Food and Drug Administration and many regulatory authorities worldwide for the treatment of chronic lymphocytic leukaemia and acute myeloid leukaemia. BH3-mimetic drugs targeting other BCL-2 prosurvival proteins have been tested in preclinical models of cancer, and drugs targeting MCL-1 or BCL-XL have advanced into phase I clinical trials for certain cancers. As with all therapeutics, efficacy and tolerability need to be carefully balanced to achieve a therapeutic window whereby there is significant anticancer activity with an acceptable safety profile. In this Review, we outline the current state of BH3-mimetic drugs targeting various prosurvival BCL-2 family proteins and discuss emerging data regarding primary and acquired resistance to these agents and approaches that may overcome this. We highlight issues that need to be addressed to further advance the clinical application of BH3-mimetic drugs, both alone and in combination with additional anticancer agents (for example, standard chemotherapeutic drugs or inhibitors of oncogenic kinases), for improved responses in patients with cancer.
Collapse
Affiliation(s)
- Sarah T Diepstraten
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Mary Ann Anderson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
20
|
Tran TH, Tasian SK. Has Ph-like ALL Superseded Ph+ ALL as the Least Favorable Subtype? Best Pract Res Clin Haematol 2021; 34:101331. [PMID: 34865703 DOI: 10.1016/j.beha.2021.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a subset of high-risk B-ALL associated with high relapse risk and inferior clinical outcomes across the pediatric-to-adult age spectrum. Ph-like ALL is characterized by frequent IKZF1 alterations and a kinase-activated gene expression profile similar to that of Philadelphia chromosome-positive (Ph+) ALL, yet lacks the canonical BCR-ABL1 rearrangement. Advances in high-throughput sequencing technologies during the past decade have unraveled the genomic landscape of Ph-like ALL, revealing a diverse array of kinase-activating translocations and mutations that may be amenable to targeted therapies that have set a remarkable precision medicine paradigm for patients with Ph + ALL. Collaborative scientific efforts to identify and characterise Ph-like ALL during the past decade has directly informed current precision medicine trials investigating the therapeutic potential of tyrosine kinase inhibitor-based therapies for children, adolescents, and adults with Ph-like ALL, although the most optimal treatment paradigm for this high-risk group of patients has yet to be established. Herein, we describe the epidemiology, clinical features, and biology of Ph-like ALL, highlight challenges in implementing pragmatic and cost-effective diagnostic algorithms in the clinic, and describe the milieu of treatment strategies under active investigation that strive to decrease relapse risk and improve long-term survival for patients with Ph-like ALL as has been successfully achieved for those with Ph + ALL.
Collapse
Affiliation(s)
- Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montreal, QC, Canada; Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Inhibiting Casein Kinase 2 Sensitizes Acute Lymphoblastic Leukemia Cells to Venetoclax Via MCL1 Degradation. Blood Adv 2021; 5:5501-5506. [PMID: 34610112 PMCID: PMC8714730 DOI: 10.1182/bloodadvances.2021004513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
|
22
|
Ding YY, Kim H, Madden K, Loftus JP, Chen GM, Allen DH, Zhang R, Xu J, Chen CH, Hu Y, Tasian SK, Tan K. Network Analysis Reveals Synergistic Genetic Dependencies for Rational Combination Therapy in Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia. Clin Cancer Res 2021; 27:5109-5122. [PMID: 34210682 DOI: 10.1158/1078-0432.ccr-21-0553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/10/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Systems biology approaches can identify critical targets in complex cancer signaling networks to inform new therapy combinations that may overcome conventional treatment resistance. EXPERIMENTAL DESIGN We performed integrated analysis of 1,046 childhood B-ALL cases and developed a data-driven network controllability-based approach to identify synergistic key regulator targets in Philadelphia chromosome-like B-acute lymphoblastic leukemia (Ph-like B-ALL), a common high-risk leukemia subtype associated with hyperactive signal transduction and chemoresistance. RESULTS We identified 14 dysregulated network nodes in Ph-like ALL involved in aberrant JAK/STAT, Ras/MAPK, and apoptosis pathways and other critical processes. Genetic cotargeting of the synergistic key regulator pair STAT5B and BCL2-associated athanogene 1 (BAG1) significantly reduced leukemia cell viability in vitro. Pharmacologic inhibition with dual small molecule inhibitor therapy targeting this pair of key nodes further demonstrated enhanced antileukemia efficacy of combining the BCL-2 inhibitor venetoclax with the tyrosine kinase inhibitors ruxolitinib or dasatinib in vitro in human Ph-like ALL cell lines and in vivo in multiple childhood Ph-like ALL patient-derived xenograft models. Consistent with network controllability theory, co-inhibitor treatment also shifted the transcriptomic state of Ph-like ALL cells to become less like kinase-activated BCR-ABL1-rearranged (Ph+) B-ALL and more similar to prognostically favorable childhood B-ALL subtypes. CONCLUSIONS Our study represents a powerful conceptual framework for combinatorial drug discovery based on systematic interrogation of synergistic vulnerability pathways with pharmacologic inhibitor validation in preclinical human leukemia models.
Collapse
Affiliation(s)
- Yang-Yang Ding
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hannah Kim
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania
| | - Kellyn Madden
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joseph P Loftus
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Gregory M Chen
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Hottman Allen
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ruitao Zhang
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jason Xu
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chia-Hui Chen
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yuxuan Hu
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Sarah K Tasian
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. .,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kai Tan
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. .,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Basu A. The interplay between apoptosis and cellular senescence: Bcl-2 family proteins as targets for cancer therapy. Pharmacol Ther 2021; 230:107943. [PMID: 34182005 DOI: 10.1016/j.pharmthera.2021.107943] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Cell death by apoptosis and permanent cell cycle arrest by senescence serve as barriers to the development of cancer. Chemotherapeutic agents not only induce apoptosis, they can also induce senescence known as therapy-induced senescence (TIS). There are, however, controversies whether TIS improves or worsens therapeutic outcome. Unlike apoptosis, which permanently removes cancer cells, senescent cells are metabolically active, and can contribute to tumor progression and relapse. If senescent cells are not cleared by the immune system or if cancer cells escape senescence, they may acquire resistance to apoptotic stimuli and become highly aggressive. Thus, there have been significant efforts in developing senolytics, drugs that target these pro-survival molecules to eliminate senescent cells. The anti-apoptotic Bcl-2 family proteins not only protect against cell death by apoptosis, but they also allow senescent cells to survive. While combining senolytics with chemotherapeutic drugs is an attractive approach, there are also limitations. Moreover, members of the Bcl-2 family have distinct effects on apoptosis and senescence. The purpose of this review article is to discuss recent literatures on how members of the Bcl-2 family orchestrate the interplay between apoptosis and senescence, and the challenges and progress in targeting these Bcl-2 family proteins for cancer therapy.
Collapse
Affiliation(s)
- Alakananda Basu
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
24
|
Larkin KTM, Byrd JC. Inhibiting the Inhibitors of Apoptosis: When Two Targets Are Better Than One. Cancer Discov 2021; 11:1324-1326. [PMID: 34078661 DOI: 10.1158/2159-8290.cd-21-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this issue of Cancer Discovery, Pullarkat and colleagues present the results from a phase I clinical trial that is the first to combine small-molecule inhibitors for multiple antiapoptotic proteins, BCL2 as well as BCL-XL, with a traditional chemotherapy backbone for patients with relapsed/refractory acute lymphoblastic leukemia. This trial has demonstrated impressive response rates with acceptable toxicity while providing proof of concept that dual targeting-hitting BCL2 hard and BCL-XL soft-is both effective and tolerable in a heterogeneous patient population with prior existing cytopenias.See related article by Pullarkat et al., p. 1440.
Collapse
Affiliation(s)
| | - John C Byrd
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| |
Collapse
|
25
|
Tosi M, Spinelli O, Leoncin M, Cavagna R, Pavoni C, Lussana F, Intermesoli T, Frison L, Perali G, Carobolante F, Viero P, Skert C, Rambaldi A, Bassan R. MRD-Based Therapeutic Decisions in Genetically Defined Subsets of Adolescents and Young Adult Philadelphia-Negative ALL. Cancers (Basel) 2021; 13:cancers13092108. [PMID: 33925541 PMCID: PMC8123823 DOI: 10.3390/cancers13092108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/05/2022] Open
Abstract
Simple Summary In acute lymphoblastic leukemia (ALL), once a complete remission is achieved following induction chemotherapy, the study of submicroscopic minimal residual disease (MRD) represents a highly sensitive tool to assess the efficacy of early chemotherapy courses and predict outcome. Because of the significant therapeutic progress occurred in adolescent and young adult (AYA) ALL, the importance of MRD in this peculiar age setting has grown considerably, to refine individual prognostic scores within different genetic subsets and support specific risk and MRD-oriented programs. The evidence coming from the most recent MRD-based studies and the new therapeutic directions for AYA ALL are critically reviewed according to ALL subset and risk category. Abstract In many clinical studies published over the past 20 years, adolescents and young adults (AYA) with Philadelphia chromosome negative acute lymphoblastic leukemia (Ph− ALL) were considered as a rather homogeneous clinico-prognostic group of patients suitable to receive intensive pediatric-like regimens with an improved outcome compared with the use of traditional adult ALL protocols. The AYA group was defined in most studies by an age range of 18–40 years, with some exceptions (up to 45 years). The experience collected in pediatric ALL with the study of post-induction minimal residual disease (MRD) was rapidly duplicated in AYA ALL, making MRD a widely accepted key factor for risk stratification and risk-oriented therapy with or without allogeneic stem cell transplantation and experimental new drugs for patients with MRD detectable after highly intensive chemotherapy. This combined strategy has resulted in long-term survival rates of AYA patients of 60–80%. The present review examines the evidence for MRD-guided therapies in AYA’s Ph− ALL, provides a critical appraisal of current treatment pitfalls and illustrates the ways of achieving further therapeutic improvement according to the massive knowledge recently generated in the field of ALL biology and MRD/risk/subset-specific therapy
Collapse
Affiliation(s)
- Manuela Tosi
- Hematology Unit, Azienda Socio Sanitaria Territoriale (ASST), Ospedale Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.T.); (O.S.); (R.C.); (C.P.); (F.L.); (T.I.); (A.R.)
| | - Orietta Spinelli
- Hematology Unit, Azienda Socio Sanitaria Territoriale (ASST), Ospedale Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.T.); (O.S.); (R.C.); (C.P.); (F.L.); (T.I.); (A.R.)
| | - Matteo Leoncin
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell’Angelo, 30174 Venezia-Mestre, Italy; (M.L.); (L.F.); (G.P.); (F.C.); (P.V.); (C.S.)
| | - Roberta Cavagna
- Hematology Unit, Azienda Socio Sanitaria Territoriale (ASST), Ospedale Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.T.); (O.S.); (R.C.); (C.P.); (F.L.); (T.I.); (A.R.)
| | - Chiara Pavoni
- Hematology Unit, Azienda Socio Sanitaria Territoriale (ASST), Ospedale Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.T.); (O.S.); (R.C.); (C.P.); (F.L.); (T.I.); (A.R.)
| | - Federico Lussana
- Hematology Unit, Azienda Socio Sanitaria Territoriale (ASST), Ospedale Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.T.); (O.S.); (R.C.); (C.P.); (F.L.); (T.I.); (A.R.)
| | - Tamara Intermesoli
- Hematology Unit, Azienda Socio Sanitaria Territoriale (ASST), Ospedale Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.T.); (O.S.); (R.C.); (C.P.); (F.L.); (T.I.); (A.R.)
| | - Luca Frison
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell’Angelo, 30174 Venezia-Mestre, Italy; (M.L.); (L.F.); (G.P.); (F.C.); (P.V.); (C.S.)
| | - Giulia Perali
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell’Angelo, 30174 Venezia-Mestre, Italy; (M.L.); (L.F.); (G.P.); (F.C.); (P.V.); (C.S.)
| | - Francesca Carobolante
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell’Angelo, 30174 Venezia-Mestre, Italy; (M.L.); (L.F.); (G.P.); (F.C.); (P.V.); (C.S.)
| | - Piera Viero
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell’Angelo, 30174 Venezia-Mestre, Italy; (M.L.); (L.F.); (G.P.); (F.C.); (P.V.); (C.S.)
| | - Cristina Skert
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell’Angelo, 30174 Venezia-Mestre, Italy; (M.L.); (L.F.); (G.P.); (F.C.); (P.V.); (C.S.)
| | - Alessandro Rambaldi
- Hematology Unit, Azienda Socio Sanitaria Territoriale (ASST), Ospedale Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.T.); (O.S.); (R.C.); (C.P.); (F.L.); (T.I.); (A.R.)
- Department of Oncology-Hematology, University of Milan, 20122 Milan, Italy
| | - Renato Bassan
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell’Angelo, 30174 Venezia-Mestre, Italy; (M.L.); (L.F.); (G.P.); (F.C.); (P.V.); (C.S.)
- Correspondence: ; Tel.: +39-041-965-7362
| |
Collapse
|
26
|
Wang H, Guo M, Wei H, Chen Y. Targeting MCL-1 in cancer: current status and perspectives. J Hematol Oncol 2021; 14:67. [PMID: 33883020 PMCID: PMC8061042 DOI: 10.1186/s13045-021-01079-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Myeloid leukemia 1 (MCL-1) is an antiapoptotic protein of the BCL-2 family that prevents apoptosis by binding to the pro-apoptotic BCL-2 proteins. Overexpression of MCL-1 is frequently observed in many tumor types and is closely associated with tumorigenesis, poor prognosis and drug resistance. The central role of MCL-1 in regulating the mitochondrial apoptotic pathway makes it an attractive target for cancer therapy. Significant progress has been made with regard to MCL-1 inhibitors, some of which have entered clinical trials. Here, we discuss the mechanism by which MCL-1 regulates cancer cell apoptosis and review the progress related to MCL-1 small molecule inhibitors and their role in cancer therapy.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
27
|
Mongelli A, Atlante S, Barbi V, Bachetti T, Martelli F, Farsetti A, Gaetano C. Treating Senescence like Cancer: Novel Perspectives in Senotherapy of Chronic Diseases. Int J Mol Sci 2020; 21:ijms21217984. [PMID: 33121118 PMCID: PMC7663758 DOI: 10.3390/ijms21217984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
The WHO estimated around 41 million deaths worldwide each year for age-related non-communicable chronic diseases. Hence, developing strategies to control the accumulation of cell senescence in living organisms and the overall aging process is an urgently needed problem of social relevance. During aging, many biological processes are altered, which globally induce the dysfunction of the whole organism. Cell senescence is one of the causes of this modification. Nowadays, several drugs approved for anticancer therapy have been repurposed to treat senescence, and others are under scrutiny in vitro and in vivo to establish their senomorphic or senolytic properties. In some cases, this research led to a significant increase in cell survival or to a prolonged lifespan in animal models, at least. Senomorphics can act to interfere with a specific pathway in order to restore the appropriate cellular function, preserve viability, and to prolong the lifespan. On the other hand, senolytics induce apoptosis in senescent cells allowing the remaining non–senescent population to preserve or restore tissue function. A large number of research articles and reviews recently addressed this topic. Herein, we would like to focus attention on those chemical agents with senomorphic or senolytic properties that perspectively, according to literature, suggest a potential application as senotherapeutics for chronic diseases.
Collapse
Affiliation(s)
- Alessia Mongelli
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy; (A.M.); (S.A.); (V.B.)
| | - Sandra Atlante
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy; (A.M.); (S.A.); (V.B.)
| | - Veronica Barbi
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy; (A.M.); (S.A.); (V.B.)
| | - Tiziana Bachetti
- Direzione Scientifica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy;
| | - Fabio Martelli
- Laboratorio di Cardiologia Molecolare, Policlinico San Donato IRCCS, San Donato Milanese, 20097 Milano; Italy,
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science “A. Ruberti” (IASI), National Research Council (CNR), 00185 Rome, Italy
- Correspondence: (A.F.); (C.G.)
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy; (A.M.); (S.A.); (V.B.)
- Correspondence: (A.F.); (C.G.)
| |
Collapse
|