1
|
Li Y, Ding Q, Wang H. Toxic Effects of Cobalt on Erythroid Progenitor Cells. Chem Res Toxicol 2025. [PMID: 39810741 DOI: 10.1021/acs.chemrestox.4c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cobalt is a crucial trace element that widely exists in natural environments and is necessary for normal physiological function. However, excessive cobalt exposure leads to various adverse health effects, especially hematological and endocrine dysfunctions. Here, we investigated the toxicity of cobalt on early erythropoiesis by using ex vivo cultured erythroid progenitor cells (EPCs). We exposed EPCs to cobalt chloride (CoCl2) and observed that their proliferation was significantly reduced after treatment with 50 μM CoCl2 for 3 days and 10 μM CoCl2 for 4 days. Furthermore, CoCl2 exposure reduced the proportion of S phase cells and induced apoptosis of EPCs in a dose-dependent manner (20-100 μM). Notably, further studies revealed that CoCl2 exposure inhibited the expression and phosphorylation of the erythroid proliferation master gene c-Kit. During EPC differentiation, treatment with CoCl2 hindered the enucleation of erythrocytes. Consistent with these findings, the RNA-seq results revealed that CoCl2 treatment inhibited the expression of several genes related to both proliferation and differentiation. The gene responsible for nucleoprotein export during enucleation, Xpo7, was also downregulated. Gene ontology analysis revealed that CoCl2 treatment inhibited a variety of biological processes, including DNA replication and ribosome synthesis. In summary, we demonstrated that sustained excessive CoCl2 exposure impaired the function of the EPCs.
Collapse
Affiliation(s)
- Yao Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Qingjiang Ding
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
2
|
Montague SJ, Price J, Pennycott K, Pavey NJ, Martin EM, Thirlwell I, Kemble S, Monteiro C, Redmond-Motteram L, Lawson N, Reynolds K, Fratter C, Bignell P, Groenheide A, Huskens D, de Laat B, Pike JA, Poulter NS, Thomas SG, Lowe GC, Lancashire J, Harrison P, Morgan NV. Comprehensive functional characterization of a novel ANO6 variant in a new patient with Scott syndrome. J Thromb Haemost 2024; 22:2281-2293. [PMID: 38492852 DOI: 10.1016/j.jtha.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/09/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Scott syndrome is a mild platelet-type bleeding disorder, first described in 1979, with only 3 unrelated families identified through defective phosphatidylserine (PS) exposure and confirmed by sequencing. The syndrome is distinguished by impaired surface exposure of procoagulant PS on platelets after stimulation. To date, platelet function and thrombin generation in this condition have not been extensively characterized. OBJECTIVES Genetic and functional studies were undertaken in a consanguineous family with a history of excessive bleeding of unknown cause. METHODS A targeted gene panel of known bleeding and platelet genes was used to identify possible genetic variants. Platelet phenotyping, flow adhesion, flow cytometry, whole blood and platelet-rich plasma thrombin generation, and specialized extracellular vesicle measurements were performed. RESULTS We detected a novel homozygous frameshift variant, c.1943del (p.Arg648Hisfs∗23), in ANO6 encoding Anoctamin 6, in a patient with a bleeding history but interestingly with normal ANO6 expression. Phenotyping of the patient's platelets confirmed the absence of PS expression and procoagulant activity but also revealed other defects including reduced platelet δ granules, reduced ristocetin-mediated aggregation and secretion, and reduced P-selectin expression after stimulation. PS was absent on spread platelets, and thrombi formed over collagen at 1500/s. Reduced thrombin generation was observed in platelet-rich plasma and confirmed in whole blood using a new thrombin generation assay. CONCLUSION We present a comprehensive report of a patient with Scott syndrome with a novel frameshift variant in AN06, which is associated with no platelet PS exposure and markedly reduced thrombin generation in whole blood, explaining the significant bleeding phenotype observed.
Collapse
Affiliation(s)
- Samantha J Montague
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Joshua Price
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katherine Pennycott
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natasha J Pavey
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Isaac Thirlwell
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Samuel Kemble
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Catarina Monteiro
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lily Redmond-Motteram
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natalie Lawson
- Haemophilia Unit, Birmingham Children's Hospital, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Katherine Reynolds
- Haemophilia Unit, Birmingham Children's Hospital, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Carl Fratter
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Patricia Bignell
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | | | - Dana Huskens
- Synapse Research Institute, Maastricht, the Netherlands
| | - Bas de Laat
- Synapse Research Institute, Maastricht, the Netherlands
| | - Jeremy A Pike
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, the Midlands, United Kingdom
| | - Natalie S Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, the Midlands, United Kingdom
| | - Steven G Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, the Midlands, United Kingdom
| | - Gillian C Lowe
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Comprehensive Care Haemophilia Centre, University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Jonathan Lancashire
- Haemophilia Unit, Birmingham Children's Hospital, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Paul Harrison
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
3
|
Valenzuela C, Saucedo S, Llano M. Schlafen14 Impairs HIV-1 Expression in a Codon Usage-Dependent Manner. Viruses 2024; 16:502. [PMID: 38675845 PMCID: PMC11054720 DOI: 10.3390/v16040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Schlafen (SLFN) is a family of proteins upregulated by type I interferons with a regulatory role in translation. Intriguingly, SLFN14 associates with the ribosome and can degrade rRNA, tRNA, and mRNA in vitro, but a role in translation is still unknown. Ribosomes are important regulatory hubs during translation elongation of mRNAs rich in rare codons. Therefore, we evaluated the potential role of SLFN14 in the expression of mRNAs enriched in rare codons, using HIV-1 genes as a model. We found that, in a variety of cell types, including primary immune cells, SLFN14 regulates the expression of HIV-1 and non-viral genes based on their codon adaptation index, a measurement of the synonymous codon usage bias; consequently, SLFN14 inhibits the replication of HIV-1. The potent inhibitory effect of SLFN14 on the expression of the rare codon-rich transcript HIV-1 Gag was minimized by codon optimization. Mechanistically, we found that the endoribonuclease activity of SLFN14 is required, and that ribosomal RNA degradation is involved. Therefore, we propose that SLFN14 impairs the expression of HIV-1 transcripts rich in rare codons, in a catalytic-dependent manner.
Collapse
Affiliation(s)
- Carlos Valenzuela
- Biological Sciences Department, The University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Sergio Saucedo
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA;
| | - Manuel Llano
- Biological Sciences Department, The University of Texas at El Paso, El Paso, TX 79968, USA;
| |
Collapse
|
4
|
Ver Donck F, Ramaekers K, Thys C, Van Laer C, Peerlinck K, Van Geet C, Eto K, Labarque V, Freson K. Ribosome dysfunction underlies SLFN14-related thrombocytopenia. Blood 2023; 141:2261-2274. [PMID: 36790527 PMCID: PMC10646786 DOI: 10.1182/blood.2022017712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/16/2023] Open
Abstract
Pathogenic missense variants in SLFN14, which encode an RNA endoribonuclease protein that regulates ribosomal RNA (rRNA) degradation, are known to cause inherited thrombocytopenia (TP) with impaired platelet aggregation and adenosine triphosphate secretion. Despite mild laboratory defects, the patients displayed an obvious bleeding phenotype. However, the function of SLFN14 in megakaryocyte (MK) and platelet biology remains unknown. This study aimed to model the disease in an immortalized MK cell line (imMKCL) and to characterize the platelet transcriptome in patients with the SLFN14 K219N variant. MK derived from heterozygous and homozygous SLFN14 K219N imMKCL and stem cells of blood from patients mainly presented with a defect in proplatelet formation and mitochondrial organization. SLFN14-defective platelets and mature MK showed signs of rRNA degradation; however, this was absent in undifferentiated imMKCL cells and granulocytes. Total platelet RNA was sequenced in 2 patients and 19 healthy controls. Differential gene expression analysis yielded 2999 and 2888 significantly (|log2 fold change| >1, false discovery rate <0.05) up- and downregulated genes, respectively. Remarkably, these downregulated genes were not enriched in any biological pathway, whereas upregulated genes were enriched in pathways involved in (mitochondrial) translation and transcription, with a significant upregulation of 134 ribosomal protein genes (RPGs). The upregulation of mitochondrial RPGs through increased mammalian target of rapamycin complex 1 (mTORC1) signaling in SLFN14 K219N MK seems to be a compensatory response to rRNA degradation. mTORC1 inhibition with rapamycin resulted in further enhanced rRNA degradation in SLFN14 K219N MK. Taken together, our study indicates dysregulation of mTORC1 coordinated ribosomal biogenesis is the disease mechanism for SLFN14-related TP.
Collapse
Affiliation(s)
- Fabienne Ver Donck
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Kato Ramaekers
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Chantal Thys
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Christine Van Laer
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
- Clinical Department of Laboratory Medicine, Leuven University Hospitals, Leuven, Belgium
| | - Kathelijne Peerlinck
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
- Vascular Medicine and Hemostasis, Leuven University Hospitals, Leuven, Belgium
| | - Chris Van Geet
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
- Paediatric Hemato-Oncology, Leuven University Hospitals, Leuven, Belgium
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Veerle Labarque
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
- Paediatric Hemato-Oncology, Leuven University Hospitals, Leuven, Belgium
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Polokhov D, Fedorova D, Ignatova A, Ponomarenko E, Rashevskaya E, Martyanov A, Podoplelova N, Aleksenko M, Mersiyanova I, Seregina E, Poletaev A, Truchina E, Raykina E, Plyasunova S, Novichkova G, Zharkov P, Panteleev M. Novel SLFN14 mutation associated with macrothrombocytopenia in a patient with severe haemorrhagic syndrome. Orphanet J Rare Dis 2023; 18:74. [PMID: 37041648 PMCID: PMC10091655 DOI: 10.1186/s13023-023-02675-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/11/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Platelet-type bleeding disorder 20 (BDPLT20), as known as SLFN14-related thrombocytopenia, is a rare inherited thrombocytopenia (IT). Previously, only 5 heterozygous missense mutations in the SLFN14 gene have been reported. METHODS A comprehensive clinical and laboratory examination of a 17-year-old female patient with macrothrombocytopenia and severe mucocutaneous bleeding was performed. Examination was carried out using standardized questionnaires to assess bleeding, high-throughput sequencing (Next Generation Sequencing), optical and fluorescence microscopy, flow cytometry with activation and analysis of intracellular calcium signaling of platelets, light transmission aggregometry and thrombus growth in the flow chamber. RESULTS Analysis of the patient's genotype revealed a previously undescribed c.655 A > G (p.K219E) variant in the hotspot of the SLFN14 gene. Immunofluorescence and brightfield examination of platelets in the smear showed heterogeneity in cells size, including giant forms over 10 μm (normal size 1-5) in diameter, with vacuolization and diffuse distribution of β1-tubulin and CD63. Activated platelets showed impaired contraction and shedding/internalization of GPIb. GP IIb/IIIa clustering was increased at rest and attenuated upon activation. Intracellular signalling study revealed impaired calcium mobilization upon TRAP 35.97 nM (reference range 180 ± 44) and CRP-XL 10.08 nM (56 ± 30) stimulation. Aggregation with ADP, collagen, TRAP, arachidonic acid and epinephrine was impaired in light transmission aggregometry; agglutination with ristocetin persisted. In the flow chamber with a shear rate of 400 s-1 platelet adhesion to collagen and clot growth were impaired. CONCLUSION The revealed disorders of phenotype, cytoskeleton and intracellular signaling explain the nature of SLFN14 platelet dysfunction and the patient's severe hemorrhagic syndrome.
Collapse
Affiliation(s)
- Dmitrii Polokhov
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation.
| | - Daria Fedorova
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Anastasiya Ignatova
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Evgeniya Ponomarenko
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Elena Rashevskaya
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Alexey Martyanov
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Nadezhda Podoplelova
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Maxim Aleksenko
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Irina Mersiyanova
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Elena Seregina
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Aleksandr Poletaev
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Ekaterina Truchina
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Elena Raykina
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Svetlana Plyasunova
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Galina Novichkova
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Pavel Zharkov
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Mikhail Panteleev
- Dmitriy Rogachev National Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
- Faculty of Physics, Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Schlafens Can Put Viruses to Sleep. Viruses 2022; 14:v14020442. [PMID: 35216035 PMCID: PMC8875196 DOI: 10.3390/v14020442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022] Open
Abstract
The Schlafen gene family encodes for proteins involved in various biological tasks, including cell proliferation, differentiation, and T cell development. Schlafens were initially discovered in mice, and have been studied in the context of cancer biology, as well as their role in protecting cells during viral infection. This protein family provides antiviral barriers via direct and indirect effects on virus infection. Schlafens can inhibit the replication of viruses with both RNA and DNA genomes. In this review, we summarize the cellular functions and the emerging relationship between Schlafens and innate immunity. We also discuss the functions and distinctions of this emerging family of proteins as host restriction factors against viral infection. Further research into Schlafen protein function will provide insight into their mechanisms that contribute to intrinsic and innate host immunity.
Collapse
|