1
|
Liu Y, Dong M, Chu Y, Zhou L, You Y, Pang X, Yang S, Zhang L, Chen L, Zhu L, Xiao J, Wang W, Qin C, Tian D. Dawn of CAR-T cell therapy in autoimmune diseases. Chin Med J (Engl) 2024; 137:1140-1150. [PMID: 38613216 PMCID: PMC11101238 DOI: 10.1097/cm9.0000000000003111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 04/14/2024] Open
Abstract
ABSTRACT Chimeric antigen receptor (CAR)-T cell therapy has achieved remarkable success in the treatment of hematological malignancies. Based on the immunomodulatory capability of CAR-T cells, efforts have turned toward exploring their potential in treating autoimmune diseases. Bibliometric analysis of 210 records from 128 academic journals published by 372 institutions in 40 countries/regions indicates a growing number of publications on CAR-T therapy for autoimmune diseases, covering a range of subtypes such as systemic lupus erythematosus, multiple sclerosis, among others. CAR-T therapy holds promise in mitigating several shortcomings, including the indiscriminate suppression of the immune system by traditional immunosuppressants, and non-sustaining therapeutic levels of monoclonal antibodies due to inherent pharmacokinetic constraints. By persisting and proliferating in vivo , CAR-T cells can offer a tailored and precise therapeutics. This paper reviewed preclinical experiments and clinical trials involving CAR-T and CAR-related therapies in various autoimmune diseases, incorporating innovations well-studied in the field of hematological tumors, aiming to explore a safe and effective therapeutic option for relapsed/refractory autoimmune diseases.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Minghao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yunhui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Luoqi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yunfan You
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaowei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Luyang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lifang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Daishi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
2
|
Wang J, Alkrekshi A, Dasari S, Lin HTC, Elantably D, Armashi ARA. CD19-targeted chimeric antigen receptor T-cell therapy in patients with concurrent B-cell Non-Hodgkin lymphoma and rheumatic autoimmune diseases: a propensity score matching study. Bone Marrow Transplant 2023; 58:1223-1228. [PMID: 37604871 DOI: 10.1038/s41409-023-02086-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Rheumatic autoimmune diseases not only involve the production of autoantibodies but also demonstrate T-cell dysfunction. In patients with concurrent B-cell non-Hodgkin lymphoma (NHL) and rheumatic autoimmune diseases, the safety and efficacy of CD19-targeted chimeric antigen receptor (CAR) T-cell therapy are unknown. Using an aggregated electronic health record database, patients with rheumatic autoimmune diseases (auto group) were compared to propensity score-matched patients without rheumatic autoimmune diseases (non-auto group). From 1/2019 to 1/2023, 58 (4.3%) of 1,363 patients who received CD19-targeted CAR T-cell therapy had concurrent rheumatic autoimmune diseases. Both groups had similar incidence, severity, and management of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Moreover, the two groups had similar time-to-next treatment or death (hazard ratio [HR] 0.97, 95% confidence interval [CI] 0.60 to 1.59, log-rank p = 0.91) and overall survival (HR 0.90, 95%CI 0.46 to 1.78, p = 0.76). Following CAR T-cell infusion, patients with rheumatic autoimmune diseases achieved decreased inflammatory markers, seronegative conversion of autoantibodies, as well as reduced use of steroids and disease-modifying anti-rheumatic drugs. In conclusion, the safety and efficacy of CAR T-cell therapy were not affected in patients with rheumatic autoimmune diseases. Moreover, they achieved better biochemical control of underlying rheumatic diseases.
Collapse
Affiliation(s)
- Jiasheng Wang
- Department of Hematology and Oncology, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| | - Akram Alkrekshi
- Department of Internal Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Srilatha Dasari
- Department of Internal Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Hsin-Ti Cindy Lin
- Department of Internal Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Dina Elantably
- Department of Internal Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Abdul Rahman Al Armashi
- Department of Hematology and Oncology, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
3
|
Duan H, Jiang Z, Chen L, Bai X, Cai H, Yang X, Huang H. TSHR-based chimeric antigen receptor T cell specifically deplete auto-reactive B lymphocytes for treatment of autoimmune thyroid disease. Int Immunopharmacol 2023; 124:110873. [PMID: 37690235 DOI: 10.1016/j.intimp.2023.110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/13/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
Graves' disease (GD) is a prominent antibody-mediated autoimmune disorder characterized by stimulating antibodies (TRAb) that target the thyroid-stimulating hormone receptor (TSHR). Targeting and eliminating TRAb-producing B lymphocytes hold substantial therapeutic potential for GD. In this study, we engineered a novel chimeric antigen receptor T cell (CAR-T) therapy termed TSHR-CAR-T. This CAR-T construct incorporates the extracellular domain of the TSH receptor fused with the CD8 transmembrane and intracellular signal domain (4-1BB). TSHR-CAR-T cells demonstrated the ability to recognize and effectively eliminate TRAb-producing B lymphocytes both in vitro and in vivo. Leveraging this autoantigen-based chimeric receptor, our findings suggest that TSHR-CAR-T cells offer a promising and innovative immunotherapeutic approach for the treatment of antibody-mediated autoimmune diseases, including GD.
Collapse
Affiliation(s)
- Honghong Duan
- Department of obstetrics and gynecology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Zhengrong Jiang
- Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Lijun Chen
- Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Xuefeng Bai
- Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Huiyao Cai
- Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Xinna Yang
- Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Huibin Huang
- Department of Endocrinology, The Second affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China.
| |
Collapse
|
4
|
Yuen CA, Hsu JM, Van Besien K, Reshef R, Iwamoto FM, Haggiagi A, Liechty B, Zhang C, Wesley SF, Magge R. Axicabtagene Ciloleucel in Patients Ineligible for ZUMA-1 Because of CNS Involvement and/or HIV: A Multicenter Experience. J Immunother 2022; 45:254-262. [PMID: 35404315 DOI: 10.1097/cji.0000000000000416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
Secondary central nervous system lymphoma (SCNSL) is associated with poor prognosis and new therapeutic approaches are needed. The pivotal trial that led to US Food and Drug Administration (FDA) approval of axicabtagene ciloleucel excluded patients with SCNSL and human immunodeficiency virus. In this multi-institutional retrospective study, 14 SCNSL patients treated with axicabtagene ciloleucel, 3 of whom had human immunodeficiency virus, experienced rates of severe neurotoxicity and complete response of 32% and 58%, respectively. This is similar to rates observed in the pivotal ZUMA-1 trial that led to the approval of axi-cel at median follow-up of 5.9 months. Chimeric antigen receptor T-cell therapy is potentially a life-saving therapy for SCNSL patients and should not be withheld.
Collapse
Affiliation(s)
- Carlen A Yuen
- Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons
| | | | | | - Ran Reshef
- Department of Hematology Oncology, Columbia University Vagelos College of Physicians and Surgeons
| | - Fabio M Iwamoto
- Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons
| | - Aya Haggiagi
- Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons
| | | | | | - Sarah F Wesley
- Division of Neuroimmunology, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY
| | - Rajiv Magge
- Department of Neurology, Weill Cornell Brain Tumor Center
| |
Collapse
|
5
|
El-Kadiry AEH, Rafei M, Shammaa R. Cell Therapy: Types, Regulation, and Clinical Benefits. Front Med (Lausanne) 2021; 8:756029. [PMID: 34881261 PMCID: PMC8645794 DOI: 10.3389/fmed.2021.756029] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Cell therapy practices date back to the 19th century and continue to expand on investigational and investment grounds. Cell therapy includes stem cell- and non-stem cell-based, unicellular and multicellular therapies, with different immunophenotypic profiles, isolation techniques, mechanisms of action, and regulatory levels. Following the steps of their predecessor cell therapies that have become established or commercialized, investigational and premarket approval-exempt cell therapies continue to provide patients with promising therapeutic benefits in different disease areas. In this review article, we delineate the vast types of cell therapy, including stem cell-based and non-stem cell-based cell therapies, and create the first-in-literature compilation of the different "multicellular" therapies used in clinical settings. Besides providing the nuts and bolts of FDA policies regulating their use, we discuss the benefits of cell therapies reported in 3 therapeutic areas-regenerative medicine, immune diseases, and cancer. Finally, we contemplate the recent attention shift toward combined therapy approaches, highlighting the factors that render multicellular therapies a more attractive option than their unicellular counterparts.
Collapse
Affiliation(s)
- Abed El-Hakim El-Kadiry
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Center, Montreal, QC, Canada
- Department of Biomedical Sciences, Université de Montréal, Montreal, QC, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
- Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Riam Shammaa
- Canadian Centre for Regenerative Therapy, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Karschnia P, Blobner J, Teske N, Schöberl F, Fitzinger E, Dreyling M, Tonn JC, Thon N, Subklewe M, von Baumgarten L. CAR T-Cells for CNS Lymphoma: Driving into New Terrain? Cancers (Basel) 2021; 13:cancers13102503. [PMID: 34065471 PMCID: PMC8161128 DOI: 10.3390/cancers13102503] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Primary CNS lymphomas (PCNSL) represent a group of extranodal non-Hodgkin lymphomas and secondary CNS lymphomas refer to secondary involvement of the neuroaxis by systemic disease. CNS lymphomas are associated with limited prognosis even after aggressive multimodal therapy. Chimeric antigen receptor (CAR) T-cells have proven as a promising therapeutic avenue in hematological B-cell malignancies including diffuse large B-cell lymphoma, B-cell acute lymphoblastic leukemia, and mantle-cell lymphoma. CARs endow an autologous T-cell population with MHC-unrestricted effectivity against tumor target antigens such as the pan B-cell marker CD19. In PCNSL, compelling and long-lasting anti-tumor effects of such therapy have been shown in murine immunocompromised models. In clinical studies on CAR T-cells for CNS lymphoma, only limited data are available and often include both patients with PCNSL but also patients with secondary CNS lymphoma. Several clinical trials on CAR T-cell therapy for primary and secondary CNS lymphoma are currently ongoing. Extrapolated from the available preliminary data, an overall acceptable safety profile with considerable anti-tumor effects might be expected. Whether these beneficial anti-tumor effects are as long-lasting as in animal models is currently in doubt; and the immunosuppressive tumor microenvironment of the brain may be among the most pivotal factors limiting efficacy of CAR T-cell therapy in CNS lymphoma. Based on an increasing understanding of CAR T-cell interactions with the tumor cells as well as the cerebral tissue, modifications of CAR design or the combination of CAR T-cell therapy with other therapeutic approaches may aid to release the full therapeutic efficiency of CAR T-cells. CAR T-cells may therefore emerge as a novel treatment strategy in primary and secondary CNS lymphoma.
Collapse
Affiliation(s)
- Philipp Karschnia
- Department of Neurosurgery, Division of Neuro-Oncology, Ludwig Maximilians University School of Medicine, Marchioninistrasse, 1581377 Munich, Germany; (J.B.); (N.T.); (E.F.); (J.-C.T.); (N.T.)
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany;
- Correspondence: (P.K.); (L.v.B.); Tel.: +49-(0)89-4400-711365 (P.K.); +49-(0)89-4400-712363 (L.v.B.)
| | - Jens Blobner
- Department of Neurosurgery, Division of Neuro-Oncology, Ludwig Maximilians University School of Medicine, Marchioninistrasse, 1581377 Munich, Germany; (J.B.); (N.T.); (E.F.); (J.-C.T.); (N.T.)
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany;
| | - Nico Teske
- Department of Neurosurgery, Division of Neuro-Oncology, Ludwig Maximilians University School of Medicine, Marchioninistrasse, 1581377 Munich, Germany; (J.B.); (N.T.); (E.F.); (J.-C.T.); (N.T.)
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany;
| | - Florian Schöberl
- Department of Neurology, Ludwig-Maximilians-University School of Medicine, 81377 Munich, Germany;
| | - Esther Fitzinger
- Department of Neurosurgery, Division of Neuro-Oncology, Ludwig Maximilians University School of Medicine, Marchioninistrasse, 1581377 Munich, Germany; (J.B.); (N.T.); (E.F.); (J.-C.T.); (N.T.)
| | - Martin Dreyling
- Department of Medicine, Hematology & Oncology Division and Cellular Immunotherapy Program, Ludwig-Maximilians-University School of Medicine, 81377 Munich, Germany;
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Division of Neuro-Oncology, Ludwig Maximilians University School of Medicine, Marchioninistrasse, 1581377 Munich, Germany; (J.B.); (N.T.); (E.F.); (J.-C.T.); (N.T.)
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany;
| | - Niklas Thon
- Department of Neurosurgery, Division of Neuro-Oncology, Ludwig Maximilians University School of Medicine, Marchioninistrasse, 1581377 Munich, Germany; (J.B.); (N.T.); (E.F.); (J.-C.T.); (N.T.)
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany;
| | - Marion Subklewe
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany;
- Department of Medicine, Hematology & Oncology Division and Cellular Immunotherapy Program, Ludwig-Maximilians-University School of Medicine, 81377 Munich, Germany;
- Gene Center of the LMU Munich, Laboratory for Translational Cancer Immunology, 81377 Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, Division of Neuro-Oncology, Ludwig Maximilians University School of Medicine, Marchioninistrasse, 1581377 Munich, Germany; (J.B.); (N.T.); (E.F.); (J.-C.T.); (N.T.)
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany;
- Department of Neurology, Ludwig-Maximilians-University School of Medicine, 81377 Munich, Germany;
- Correspondence: (P.K.); (L.v.B.); Tel.: +49-(0)89-4400-711365 (P.K.); +49-(0)89-4400-712363 (L.v.B.)
| |
Collapse
|