1
|
Zhen J, Lee J, Wang Y, McLaughlin L, Yang F, Li Z, Wang J. Characterization of N-Terminal Asparagine Deamidation and Clipping of a Monoclonal Antibody. Antibodies (Basel) 2023; 12:59. [PMID: 37753973 PMCID: PMC10525203 DOI: 10.3390/antib12030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
This study presents a novel degradation pathway of a human immunoglobulin G (IgG) molecule featuring a light chain N-terminal asparagine. We thoroughly characterize this pathway and investigate its charge profiles using cation exchange chromatography (CEX) and capillary isoelectric focusing (cIEF). Beyond the well-documented asparagine deamidation into isoaspartic acid, aspartic acid, and succinimide intermediate, a previously unreported clipping degradation pathway is uncovered. This newly identified clipped N-terminal IgG variant exhibits a delayed elution in CEX, categorized as a "basic variant", while retaining the same main peak isoelectric point (pI) in cIEF. The influence of temperature and pH on N-terminal asparagine stability is assessed across various stressed conditions. A notable correlation between deamidation percentage and clipped products is established, suggesting a potential hydrolytic chemical reaction underlying the clipping process. Furthermore, the impact of N-terminal asparagine modifications on potency is evaluated through ELISA binding assays, revealing minimal effects on binding affinity. Sequence alignment reveals homology to a human IgG with the germline gene from Immunoglobulin Lambda Variable 6-57 (IGLV6-57), which has implications for amyloid light-chain (AL) amyloidosis. This discovery of the N-terminal clipping degradation pathway contributes to our understanding of immunoglobulin light chain misfolding and amyloid fibril deposition under physiological conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jihong Wang
- Department of Analytical Sciences, U.S. Technical & Biologics Development, Horizon Therapeutics, Rockville, MD 20850, USA
| |
Collapse
|
2
|
Del Pozo-Yauner L, Herrera GA, Perez Carreon JI, Turbat-Herrera EA, Rodriguez-Alvarez FJ, Ruiz Zamora RA. Role of the mechanisms for antibody repertoire diversification in monoclonal light chain deposition disorders: when a friend becomes foe. Front Immunol 2023; 14:1203425. [PMID: 37520549 PMCID: PMC10374031 DOI: 10.3389/fimmu.2023.1203425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
The adaptive immune system of jawed vertebrates generates a highly diverse repertoire of antibodies to meet the antigenic challenges of a constantly evolving biological ecosystem. Most of the diversity is generated by two mechanisms: V(D)J gene recombination and somatic hypermutation (SHM). SHM introduces changes in the variable domain of antibodies, mostly in the regions that form the paratope, yielding antibodies with higher antigen binding affinity. However, antigen recognition is only possible if the antibody folds into a stable functional conformation. Therefore, a key force determining the survival of B cell clones undergoing somatic hypermutation is the ability of the mutated heavy and light chains to efficiently fold and assemble into a functional antibody. The antibody is the structural context where the selection of the somatic mutations occurs, and where both the heavy and light chains benefit from protective mechanisms that counteract the potentially deleterious impact of the changes. However, in patients with monoclonal gammopathies, the proliferating plasma cell clone may overproduce the light chain, which is then secreted into the bloodstream. This places the light chain out of the protective context provided by the quaternary structure of the antibody, increasing the risk of misfolding and aggregation due to destabilizing somatic mutations. Light chain-derived (AL) amyloidosis, light chain deposition disease (LCDD), Fanconi syndrome, and myeloma (cast) nephropathy are a diverse group of diseases derived from the pathologic aggregation of light chains, in which somatic mutations are recognized to play a role. In this review, we address the mechanisms by which somatic mutations promote the misfolding and pathological aggregation of the light chains, with an emphasis on AL amyloidosis. We also analyze the contribution of the variable domain (VL) gene segments and somatic mutations on light chain cytotoxicity, organ tropism, and structure of the AL fibrils. Finally, we analyze the most recent advances in the development of computational algorithms to predict the role of somatic mutations in the cardiotoxicity of amyloidogenic light chains and discuss the challenges and perspectives that this approach faces.
Collapse
Affiliation(s)
- Luis Del Pozo-Yauner
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
| | - Guillermo A. Herrera
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
| | | | - Elba A. Turbat-Herrera
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
- Mitchell Cancer Institute, University of South Alabama-College of Medicine, Mobile, AL, United States
| | | | | |
Collapse
|
3
|
Berghaus N, Schreiner S, Granzow M, Müller-Tidow C, Hegenbart U, Schönland SO, Huhn S. Analysis of the complete lambda light chain germline usage in patients with AL amyloidosis and dominant heart or kidney involvement. PLoS One 2022; 17:e0264407. [PMID: 35213605 PMCID: PMC8880859 DOI: 10.1371/journal.pone.0264407] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/10/2022] [Indexed: 12/20/2022] Open
Abstract
Light chain amyloidosis is one of the most common forms of systemic amyloidosis. The disease is caused by the misfolding and aggregation of immunoglobulin light chains to insoluble fibrils. These fibrils can deposit in different tissues and organs such as heart and kidney and cause organ impairments that define the clinical presentation. In this study, we present an overview of IGLV-IGLJ and IGLC germline utilization in 85 patients classified in three clinically important subgroups with dominant cardiac, renal as well as cardiac and renal involvement. We found that IGLV3 was the most frequently detected IGLV-family in patients with dominant cardiac involvement, whereas in renal patients IGLV1 were most frequently identified. For patients with dominant heart and kidney involvement IGLV6 was the most frequently detected IGLV-family. In more detailed analysis IGLV3-21 was observed as the most dominant IGLV-subfamily for patients with dominant heart involvement and IGLV1-44 as the most frequent IGLV-subfamily in the group of patients with dominant kidney involvement. For patients with dominant heart and kidney involvement IGLV6-57 was the most frequently detected IGLV-subfamily. Additionally, we were able to show an exclusive linkage between IGLJ1 and IGLC1 as well as between IGLJ2 and IGLC2 in the fully assembled IGL mRNA.
Collapse
Affiliation(s)
- Natalie Berghaus
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Sarah Schreiner
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Granzow
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Medical Department V, Heidelberg University Hospital, Heidelberg, Germany
- National Centre for Tumor Diseases (NCT), Heidelberg, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan O. Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefanie Huhn
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
4
|
Rognoni P, Mazzini G, Caminito S, Palladini G, Lavatelli F. Dissecting the Molecular Features of Systemic Light Chain (AL) Amyloidosis: Contributions from Proteomics. ACTA ACUST UNITED AC 2021; 57:medicina57090916. [PMID: 34577839 PMCID: PMC8471912 DOI: 10.3390/medicina57090916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023]
Abstract
Amyloidoses are characterized by aggregation of proteins into highly ordered amyloid fibrils, which deposit in the extracellular space of tissues, leading to organ dysfunction. In AL (amyloid light chain) amyloidosis, the most common form in Western countries, the amyloidogenic precursor is a misfolding-prone immunoglobulin light chain (LC), which, in the systemic form, is produced in excess by a plasma cell clone and transported to target organs though blood. Due to the primary role that proteins play in the pathogenesis of amyloidoses, mass spectrometry (MS)-based proteomic studies have gained an established position in the clinical management and research of these diseases. In AL amyloidosis, in particular, proteomics has provided important contributions for characterizing the precursor light chain, the composition of the amyloid deposits and the mechanisms of proteotoxicity in target organ cells and experimental models of disease. This review will provide an overview of the major achievements of proteomic studies in AL amyloidosis, with a presentation of the most recent acquisitions and a critical discussion of open issues and ongoing trends.
Collapse
Affiliation(s)
- Paola Rognoni
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, V.le Golgi 19, 27100 Pavia, Italy; (G.M.); (S.C.); (G.P.)
- Correspondence: (P.R.); (F.L.); Tel.: +39-0382502984 (P.R.); +39-0382502994 (F.L.)
| | - Giulia Mazzini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, V.le Golgi 19, 27100 Pavia, Italy; (G.M.); (S.C.); (G.P.)
| | - Serena Caminito
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, V.le Golgi 19, 27100 Pavia, Italy; (G.M.); (S.C.); (G.P.)
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, V.le Golgi 19, 27100 Pavia, Italy; (G.M.); (S.C.); (G.P.)
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | - Francesca Lavatelli
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, V.le Golgi 19, 27100 Pavia, Italy; (G.M.); (S.C.); (G.P.)
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Correspondence: (P.R.); (F.L.); Tel.: +39-0382502984 (P.R.); +39-0382502994 (F.L.)
| |
Collapse
|
5
|
Xu L, Su Y. Genetic pathogenesis of immunoglobulin light chain amyloidosis: basic characteristics and clinical applications. Exp Hematol Oncol 2021; 10:43. [PMID: 34284823 PMCID: PMC8290569 DOI: 10.1186/s40164-021-00236-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/11/2021] [Indexed: 02/05/2023] Open
Abstract
Immunoglobulin light chain amyloidosis (AL) is an indolent plasma cell disorder characterized by free immunoglobulin light chain (FLC) misfolding and amyloid fibril deposition. The cytogenetic pattern of AL shows profound similarity with that of other plasma cell disorders but harbors distinct features. AL can be classified into two primary subtypes: non-hyperdiploidy and hyperdiploidy. Non-hyperdiploidy usually involves immunoglobulin heavy chain translocations, and t(11;14) is the hallmark of this disease. T(11;14) is associated with low plasma cell count but high FLC level and displays distinct response outcomes to different treatment modalities. Hyperdiploidy is associated with plasmacytosis and subclone formation, and it generally confers a neutral or inferior prognostic outcome. Other chromosome abnormalities and driver gene mutations are considered as secondary cytogenetic aberrations that occur during disease evolution. These genetic aberrations contribute to the proliferation of plasma cells, which secrete excess FLC for amyloid deposition. Other genetic factors, such as specific usage of immunoglobulin light chain germline genes and light chain somatic mutations, also play an essential role in amyloid fibril deposition in AL. This paper will propose a framework of AL classification based on genetic aberrations and discuss the amyloid formation of AL from a genetic aspect.
Collapse
Affiliation(s)
- Linchun Xu
- Shantou University Medical College, Shantou, 515031, Guangdong, China
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yongzhong Su
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|