1
|
Hagen MW, Setiawan NJ, Woodruff KA, Termini CM. Syndecans in hematopoietic cells and their niches. Am J Physiol Cell Physiol 2024; 327:C372-C378. [PMID: 38912739 PMCID: PMC11427021 DOI: 10.1152/ajpcell.00326.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
Heparan sulfate proteoglycans are a family of glycoproteins that modulate cell signaling by binding growth factors and changing their bioavailability. Syndecans are a specific family of transmembrane heparan sulfate proteoglycans that regulate cell adhesion, migration, and signaling. In this review, we will summarize emerging evidence for the functions of syndecans in the normal and malignant blood systems and their microenvironments. More specifically, we detail the known functions of syndecans within normal hematopoietic stem cells. Furthermore, we discuss the functions of syndecans in hematological malignancies, including myeloid malignancies, lymphomas, and bleeding disorders. As normal and malignant hematopoietic cells require cues from their microenvironments to function, we also summarize the roles of syndecans in cells of the stromal, endothelial, and osteolineage compartments. Syndecan biology is a rapidly evolving field; a comprehensive understanding of these molecules and their place in the hematopoietic system promises to improve our grasp on disease processes and better predict the efficacies of growth factor-targeting therapies.
Collapse
Affiliation(s)
- Matthew W Hagen
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
| | - Nicollette J Setiawan
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
| | - Kelsey A Woodruff
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
| | - Christina M Termini
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States
| |
Collapse
|
2
|
Kuric M, Beck S, Schneider D, Rindt W, Evers M, Meißner-Weigl J, Zeck S, Krug M, Herrmann M, Hartmann TN, Leich E, Rudert M, Docheva D, Seckinger A, Hose D, Jundt F, Ebert R. Modeling Myeloma Dissemination In Vitro with hMSC-interacting Subpopulations of INA-6 Cells and Their Aggregation/Detachment Dynamics. CANCER RESEARCH COMMUNICATIONS 2024; 4:1150-1164. [PMID: 38598843 PMCID: PMC11057410 DOI: 10.1158/2767-9764.crc-23-0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/08/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024]
Abstract
Multiple myeloma involves early dissemination of malignant plasma cells across the bone marrow; however, the initial steps of dissemination remain unclear. Human bone marrow-derived mesenchymal stromal cells (hMSC) stimulate myeloma cell expansion (e.g., IL6) and simultaneously retain myeloma cells via chemokines (e.g., CXCL12) and adhesion factors. Hence, we hypothesized that the imbalance between cell division and retention drives dissemination. We present an in vitro model using primary hMSCs cocultured with INA-6 myeloma cells. Time-lapse microscopy revealed proliferation and attachment/detachment dynamics. Separation techniques (V-well adhesion assay and well plate sandwich centrifugation) were established to isolate MSC-interacting myeloma subpopulations that were characterized by RNA sequencing, cell viability, and apoptosis. Results were correlated with gene expression data (n = 837) and survival of patients with myeloma (n = 536). On dispersed hMSCs, INA-6 saturate hMSC surface before proliferating into large homotypic aggregates, from which single cells detached completely. On confluent hMSCs, aggregates were replaced by strong heterotypic hMSC-INA-6 interactions, which modulated apoptosis time dependently. Only INA-6 daughter cells (nMA-INA6) detached from hMSCs by cell division but sustained adherence to hMSC-adhering mother cells (MA-INA6). Isolated nMA-INA6 indicated hMSC autonomy through superior viability after IL6 withdrawal and upregulation of proliferation-related genes. MA-INA6 upregulated adhesion and retention factors (CXCL12), that, intriguingly, were highly expressed in myeloma samples from patients with longer overall and progression-free survival, but their expression decreased in relapsed myeloma samples. Altogether, in vitro dissemination of INA-6 is driven by detaching daughter cells after a cycle of hMSC-(re)attachment and proliferation, involving adhesion factors that represent a bone marrow-retentive phenotype with potential clinical relevance. SIGNIFICANCE Novel methods describe in vitro dissemination of myeloma cells as detachment of daughter cells after cell division. Myeloma adhesion genes were identified that counteract in vitro detachment with potential clinical relevance.
Collapse
Affiliation(s)
- Martin Kuric
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Susanne Beck
- University Hospital Heidelberg, Institute of Pathology, Heidelberg, Germany
| | - Doris Schneider
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Wyonna Rindt
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Marietheres Evers
- University of Würzburg, Institute of Pathology, Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Jutta Meißner-Weigl
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Sabine Zeck
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Melanie Krug
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Marietta Herrmann
- University Hospital Würzburg, IZKF Research Group Tissue Regeneration in Musculoskeletal Diseases, Würzburg, Germany
| | - Tanja Nicole Hartmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Ellen Leich
- University of Würzburg, Institute of Pathology, Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Maximilian Rudert
- Orthopedic Department, Clinic König-Ludwig-Haus, University of Würzburg, Würzburg, Germany
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Anja Seckinger
- Department of Hematology and Immunology, Vrije Universiteit Brussel, Jette, Belgium
| | - Dirk Hose
- Department of Hematology and Immunology, Vrije Universiteit Brussel, Jette, Belgium
| | - Franziska Jundt
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Brownlie RJ, Kennedy R, Wilson EB, Milanovic M, Taylor CF, Wang D, Davies JR, Owston H, Adams EJ, Stephenson S, Caeser R, Gewurz BE, Giannoudis PV, Scuoppo C, McGonagle D, Hodson DJ, Tooze RM, Doody GM, Cook G, Westhead DR, Klein U. Cytokine receptor IL27RA is an NF-κB-responsive gene involved in CD38 upregulation in multiple myeloma. Blood Adv 2023; 7:3874-3890. [PMID: 36867577 PMCID: PMC10405202 DOI: 10.1182/bloodadvances.2022009044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Multiple myeloma (MM) shows constitutive activation of canonical and noncanonical nuclear factor κB (NF-κB) signaling via genetic mutations or tumor microenvironment (TME) stimulations. A subset of MM cell lines showed dependency for cell growth and survival on the canonical NF-κB transcription factor RELA alone, suggesting a critical role for a RELA-mediated biological program in MM pathogenesis. Here, we determined the RELA-dependent transcriptional program in MM cell lines and found the expression of the cell surface molecules interleukin-27 receptor-α (IL-27Rα) and the adhesion molecule JAM2 to be responsive to RELA at the messenger RNA and protein levels. IL-27Rα and JAM2 were expressed on primary MM cells at higher levels than on healthy long-lived plasma cells (PCs) in the bone marrow. IL-27 activated STAT1, and to a lesser extent STAT3, in MM cell lines and in PCs generated from memory B cells in an IL-21-dependent in vitro PC differentiation assay. Concomitant activity of IL-21 and IL-27 enhanced differentiation into PCs and increased the cell-surface expression of the known STAT target gene CD38. In accordance, a subset of MM cell lines and primary MM cells cultured with IL-27 upregulated CD38 cell-surface expression, a finding with potential implications for enhancing the efficacy of CD38-directed monoclonal antibody therapies by increasing CD38 expression on tumor cells. The elevated expression of IL-27Rα and JAM2 on MM cells compared with that on healthy PCs may be exploited for the development of targeted therapeutic strategies that modulate the interaction of MM cells with the TME.
Collapse
Affiliation(s)
- Rebecca J. Brownlie
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s Hospital, University of Leeds, Leeds, United Kingdom
| | - Ruth Kennedy
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s Hospital, University of Leeds, Leeds, United Kingdom
| | - Erica B. Wilson
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s Hospital, University of Leeds, Leeds, United Kingdom
| | - Maja Milanovic
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
| | - Claire F. Taylor
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s Hospital, University of Leeds, Leeds, United Kingdom
| | - Dapeng Wang
- Leeds Omics, University of Leeds, Leeds, United Kingdom
| | - John R. Davies
- Bioinformatics Group, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Heather Owston
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
- National Institute for Health Research, Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Emma J. Adams
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s Hospital, University of Leeds, Leeds, United Kingdom
| | - Sophie Stephenson
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s Hospital, University of Leeds, Leeds, United Kingdom
| | - Rebecca Caeser
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Peter V. Giannoudis
- Leeds Orthopaedic & Trauma Sciences, Leeds General Infirmary, and Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Claudio Scuoppo
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
- National Institute for Health Research, Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Daniel J. Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Reuben M. Tooze
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s Hospital, University of Leeds, Leeds, United Kingdom
| | - Gina M. Doody
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s Hospital, University of Leeds, Leeds, United Kingdom
| | - Gordon Cook
- CRUK Clinical Trials Unit, Leeds Institute of Clinical Trial Research, University of Leeds, Leeds, United Kingdom
| | - David R. Westhead
- Bioinformatics Group, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Ulf Klein
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s Hospital, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
4
|
Yamaguchi M, Hirai S, Idogawa M, Sumi T, Uchida H, Fujitani N, Takahashi M, Sakuma Y. Junctional adhesion molecule 3 is a potential therapeutic target for small cell lung carcinoma. Exp Cell Res 2023; 426:113570. [PMID: 36990421 DOI: 10.1016/j.yexcr.2023.113570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
There are few effective therapies for small cell lung carcinoma (SCLC); thus, we need to develop novel and efficacious treatments. We hypothesized that an antibody-drug conjugate (ADC) could be a promising option for SCLC. Several publicly available databases were used to demonstrate the extent to which junctional adhesion molecule 3 (JAM3) mRNA was expressed in SCLC and lung adenocarcinoma cell lines and tissues. Three SCLC cell lines, Lu-135, SBC-5, and Lu-134 A, were selected and examined for JAM3 protein expression by flow cytometry. Finally, we examined the response of the three SCLC cell lines to a conjugate between an anti-JAM3 monoclonal antibody HSL156 (developed in-house) and the recombinant protein DT3C, which consists of diphtheria toxin lacking the receptor-binding domain but containing the C1, C2, and C3 domains of streptococcal protein G. In silico analyses revealed that JAM3 mRNA was expressed higher in SCLC cell lines and tissues than in those of lung adenocarcinoma. As expected, all the three SCLC cell lines examined were positive for JAM3 at the mRNA and protein levels. Consequently, control SCLC cells, but not JAM3-silenced ones, were highly sensitive to HSL156-DT3C conjugates, resulting in dose- and time-dependent decreased viability. Finally, silencing JAM3 alone suppressed the growth of all SCLC cell lines examined. Taken together, these findings suggest that an ADC targeting JAM3 could represent a new approach to treating SCLC patients.
Collapse
|
5
|
Mueller JPJ, Dobosz M, O’Brien N, Abdoush N, Giusti AM, Lechmann M, Osl F, Wolf AK, Arellano-Viera E, Shaikh H, Sauer M, Rosenwald A, Herting F, Umaña P, Colombetti S, Pöschinger T, Beilhack A. ROCKETS - a novel one-for-all toolbox for light sheet microscopy in drug discovery. Front Immunol 2023; 14:1034032. [PMID: 36845124 PMCID: PMC9945347 DOI: 10.3389/fimmu.2023.1034032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/06/2023] [Indexed: 02/10/2023] Open
Abstract
Advancing novel immunotherapy strategies requires refined tools in preclinical research to thoroughly assess drug targets, biodistribution, safety, and efficacy. Light sheet fluorescence microscopy (LSFM) offers unprecedented fast volumetric ex vivo imaging of large tissue samples in high resolution. Yet, to date laborious and unstandardized tissue processing procedures have limited throughput and broader applications in immunological research. Therefore, we developed a simple and harmonized protocol for processing, clearing and imaging of all mouse organs and even entire mouse bodies. Applying this Rapid Optical Clearing Kit for Enhanced Tissue Scanning (ROCKETS) in combination with LSFM allowed us to comprehensively study the in vivo biodistribution of an antibody targeting Epithelial Cell Adhesion Molecule (EpCAM) in 3D. Quantitative high-resolution scans of whole organs did not only reveal known EpCAM expression patterns but, importantly, uncovered several new EpCAM-binding sites. We identified gustatory papillae of the tongue, choroid plexi in the brain and duodenal papillae as previously unanticipated locations of high EpCAM expression. Subsequently, we confirmed high EpCAM expression also in human tongue and duodenal specimens. Choroid plexi and duodenal papillae may be considered as particularly sensitive sites due to their importance for liquor production or as critical junctions draining bile and digestive pancreatic enzymes into the small bowel, respectively. These newly gained insights appear highly relevant for clinical translation of EpCAM-addressing immunotherapies. Thus, ROCKETS in combination with LSFM may help to set new standards for preclinical evaluation of immunotherapeutic strategies. In conclusion, we propose ROCKETS as an ideal platform for a broader application of LSFM in immunological research optimally suited for quantitative co-localization studies of immunotherapeutic drugs and defined cell populations in the microanatomical context of organs or even whole mice.
Collapse
Affiliation(s)
- Joerg P. J. Mueller
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Michael Dobosz
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Nils O’Brien
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Nassri Abdoush
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Anna Maria Giusti
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Martin Lechmann
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Franz Osl
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Ann-Katrin Wolf
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Estibaliz Arellano-Viera
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| | - Haroon Shaikh
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Frank Herting
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Pablo Umaña
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Sara Colombetti
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Thomas Pöschinger
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| |
Collapse
|
6
|
Solimando AG, Desantis V, Da Vià MC. Visualizing the Interactions Shaping the Imaging of the Microenvironment in Human Cancers. Methods Mol Biol 2023; 2572:67-79. [PMID: 36161408 DOI: 10.1007/978-1-0716-2703-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The Visium Spatial Gene Expression Solution (Visium 10×) allows for the mRNA analysis using high throughput sequencing and maps a transcriptional expression pattern in tissue sections using high-resolution microscope imaging in ex-vivo human and mice samples. The workflow surveys spatial global gene expression in tissue sections, exploiting the whole transcriptome profiling and defining the set of transcripts via targeted gene panels. An automated cell type annotation allows a comparison with control tissue samples. This technique delineates cancerous or diseased tissue boundaries and details gene expression gradients in the tissue surrounding the tumor or pathologic nests. Remarkably, the Visium 10× allows for whole transcriptome and targeted analysis without the loss of spatial information. This approach provides gene expression data within the context of tissue architecture, tissue microenvironments, and cell groups. It can be used in association with therapy, anti-angiogenic therapy, and immunotherapy to improve treatment response.
Collapse
Affiliation(s)
- Antonio G Solimando
- Department of Biomedical Sciences and Human Oncology (DIMO), Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy.
| | - Vanessa Desantis
- Department of Biomedical Sciences and Human Oncology (DIMO), Pharmacology Section, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Matteo Claudio Da Vià
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Solimando AG, Malerba E, Leone P, Prete M, Terragna C, Cavo M, Racanelli V. Drug resistance in multiple myeloma: Soldiers and weapons in the bone marrow niche. Front Oncol 2022; 12:973836. [PMID: 36212502 PMCID: PMC9533079 DOI: 10.3389/fonc.2022.973836] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is still an incurable disease, despite considerable improvements in treatment strategies, as resistance to most currently available agents is not uncommon. In this study, data on drug resistance in MM were analyzed and led to the following conclusions: resistance occurs via intrinsic and extrinsic mechanisms, including intraclonal heterogeneity, drug efflux pumps, alterations of drug targets, the inhibition of apoptosis, increased DNA repair and interactions with the bone marrow (BM) microenvironment, cell adhesion, and the release of soluble factors. Since MM involves the BM, interactions in the MM-BM microenvironment were examined as well, with a focus on the cross-talk between BM stromal cells (BMSCs), adipocytes, osteoclasts, osteoblasts, endothelial cells, and immune cells. Given the complex mechanisms that drive MM, next-generation treatment strategies that avoid drug resistance must target both the neoplastic clone and its non-malignant environment. Possible approaches based on recent evidence include: (i) proteasome and histone deacetylases inhibitors that not only target MM but also act on BMSCs and osteoclasts; (ii) novel peptide drug conjugates that target both the MM malignant clone and angiogenesis to unleash an effective anti-MM immune response. Finally, the role of cancer stem cells in MM is unknown but given their roles in the development of solid and hematological malignancies, cancer relapse, and drug resistance, their identification and description are of paramount importance for MM management.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
- Istituto di ricovero e cura a carattere scientifico (IRCCS) Istituto Tumori ‘Giovanni Paolo II’ of Bari, Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| | - Marcella Prete
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| | - Carolina Terragna
- ’Seràgnoli’ Institute of Hematology, Bologna University School of Medicine, Bologna, Italy
| | - Michele Cavo
- ’Seràgnoli’ Institute of Hematology, Bologna University School of Medicine, Bologna, Italy
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
- *Correspondence: Vito Racanelli,
| |
Collapse
|
8
|
Solimando AG, Da Vià MC, Bolli N, Steinbrunn T. The Route of the Malignant Plasma Cell in Its Survival Niche: Exploring “Multiple Myelomas”. Cancers (Basel) 2022; 14:cancers14133271. [PMID: 35805041 PMCID: PMC9265748 DOI: 10.3390/cancers14133271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Growing evidence points to multiple myeloma (MM) and its stromal microenvironment using several mechanisms to subvert effective immune and anti-tumor responses. Recent advances have uncovered the tumor-stromal cell influence in regulating the immune-microenvironment and have envisioned targeting these suppressive pathways to improve therapeutic outcomes. Nevertheless, some subgroups of patients include those with particularly unfavorable prognoses. Biological stratification can be used to categorize patient-, disease- or therapy-related factors, or alternatively, these biological determinants can be included in a dynamic model that customizes a given treatment to a specific patient. Genetic heterogeneity and current knowledge enforce a systematic and comprehensive bench-to-bedside approach. Given the increasing role of cancer stem cells (CSCs) in better characterizing the pathogenesis of solid and hematological malignancies, disease relapse, and drug resistance, identifying and describing CSCs is of paramount importance in the management of MM. Even though the function of CSCs is well-known in other cancer types, their role in MM remains elusive. With this review, we aim to provide an update on MM homing and resilience in the bone marrow micro milieu. These data are particularly interesting for clinicians facing unmet medical needs while designing novel treatment approaches for MM.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy
- Department of Medicine II, University Hospital of Würzburg, 97080 Würzburg, Germany
- Correspondence: (A.G.S.); (T.S.); Tel.: +39-3395626475 (A.G.S.)
| | - Matteo Claudio Da Vià
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.C.D.V.); (N.B.)
| | - Niccolò Bolli
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.C.D.V.); (N.B.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Torsten Steinbrunn
- Department of Medicine II, University Hospital of Würzburg, 97080 Würzburg, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Correspondence: (A.G.S.); (T.S.); Tel.: +39-3395626475 (A.G.S.)
| |
Collapse
|
9
|
Lebel E, Nachmias B, Pick M, Gross Even-Zohar N, Gatt ME. Understanding the Bioactivity and Prognostic Implication of Commonly Used Surface Antigens in Multiple Myeloma. J Clin Med 2022; 11:jcm11071809. [PMID: 35407416 PMCID: PMC9000075 DOI: 10.3390/jcm11071809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) progression is dependent on its interaction with the bone marrow microenvironment and the immune system and is mediated by key surface antigens. Some antigens promote adhesion to the bone marrow matrix and stromal cells, while others are involved in intercellular interactions that result in differentiation of B-cells to plasma cells (PC). These interactions are also involved in malignant transformation of the normal PC to MM PC as well as disease progression. Here, we review selected surface antigens that are commonly used in the flow cytometry analysis of MM for identification of plasma cells (PC) and the discrimination between normal and malignant PC as well as prognostication. These include the markers: CD38, CD138, CD45, CD19, CD117, CD56, CD81, CD27, and CD28. Furthermore, we will discuss the novel marker CD24 and its involvement in MM. The bioactivity of each antigen is reviewed, as well as its expression on normal vs. malignant PC, prognostic implications, and therapeutic utility. Understanding the role of these specific surface antigens, as well as complex co-expressions of combinations of antigens, may allow for a more personalized prognostic monitoring and treatment of MM patients.
Collapse
|