1
|
De Masson A, Lazaridou I, Moins-Teisserenc H, Ram-Wolff C, Giustiniani J, Bagot M, Battistella M, Bensussan A. Pathophysiology of cutaneous T-cell lymphomas: Perspective from a French referral centre. Immunol Lett 2024; 268:106871. [PMID: 38801999 DOI: 10.1016/j.imlet.2024.106871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Cutaneous T-cell lymphomas (CTCL) are a diverse group of malignant blood disorders characterized by initial skin infiltration, and sometimes, tumor spreading to lymph nodes, blood, and viscera. Mycosis fungoides is the most common form. Sézary syndrome is a distinctive form of CTCL marked by a significant presence of circulating tumor cells in peripheral blood. These diseases are characterized by the plasticity and heterogeneity of the tumor cells in the different tissue compartments, and a difficulty in identifying these tumor cells for diagnostic purposes and therapeutic monitoring. Progress has been made in the understanding of the pathophysiology of these diseases in recent years, and we provide here a review of these advancements.
Collapse
Affiliation(s)
- Adèle De Masson
- Service de Dermatologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Centre coordinateur national du réseau de cancers rares INCa Lymphomes Cutanés, France; INSERM U976, Institut de Recherche Saint-Louis, Paris, France; Université Paris Cité, Paris, France.
| | | | - Hélène Moins-Teisserenc
- Université Paris Cité, Paris, France; INSERM U1160, Institut de Recherche Saint-Louis, Paris, France; Laboratoire d'Hématologie Biologique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, France
| | - Caroline Ram-Wolff
- Service de Dermatologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Centre coordinateur national du réseau de cancers rares INCa Lymphomes Cutanés, France
| | | | - Martine Bagot
- Service de Dermatologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Centre coordinateur national du réseau de cancers rares INCa Lymphomes Cutanés, France; INSERM U976, Institut de Recherche Saint-Louis, Paris, France; Université Paris Cité, Paris, France
| | - Maxime Battistella
- INSERM U976, Institut de Recherche Saint-Louis, Paris, France; Université Paris Cité, Paris, France; Laboratoire de Pathologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, France
| | - Armand Bensussan
- INSERM U976, Institut de Recherche Saint-Louis, Paris, France; Université Paris Cité, Paris, France; Mohammed VI Polytechnic University, Benguerir, Morocco
| |
Collapse
|
2
|
Liu L, Rangan L, Vanalken N, Kong Q, Schlenner S, De Jonghe S, Schols D, Van Loy T. Development of a cellular model to study CCR8 signaling in tumor-infiltrating regulatory T cells. Cancer Immunol Immunother 2024; 73:11. [PMID: 38231448 PMCID: PMC10794316 DOI: 10.1007/s00262-023-03607-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
The human CC chemokine receptor 8 (CCR8) is specifically expressed on tumor-infiltrating regulatory T cells (TITRs) and is a promising drug target for cancer immunotherapy. However, the role of CCR8 signaling in TITR biology and the effectiveness of CCR8 small molecule antagonists as TITR-targeting immunotherapy remain subjects of ongoing debate. In this work, we generated a novel cellular model of TITRs by culturing peripheral blood mononuclear cell-derived regulatory T cells in medium containing tumor cell-conditioned medium, CD3/CD28 activator, interleukin-2 and 1α,25-dihydroxyvitamin D3. This cellular model (named TITR mimics) highly and stably expressed a series of TITR signature molecules, including CCR8, FOXP3, CD30, CD39, CD134, CD137, TIGIT and Tim-3. Moreover, TITR mimics displayed robust in vitro immunosuppressive activity. To unravel the functional role of CCR8 in TITR mimics, a chemotaxis assay was performed showing strong and CCR8-specific migration toward CCL1, the natural chemokine agonist of CCR8. However, either stimulation (with CCL1) or blocking (with the small molecule antagonist NS-15) of CCR8 signaling did not affect the immunosuppressive activity, proliferation and survival of TITR mimics. Collectively, our work provides a method for the generation of TITR mimics in vitro, which can be used to study TITR biology and to evaluate drug candidates targeting TITRs. Furthermore, our findings suggest that CCR8 signaling primarily regulates migration of these cells.
Collapse
Affiliation(s)
- Libao Liu
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, B-3000, Leuven, Belgium
| | - Laurie Rangan
- Laboratory of Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, B-3000, Leuven, Belgium
| | - Nathan Vanalken
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, B-3000, Leuven, Belgium
| | - Qianqian Kong
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, B-3000, Leuven, Belgium
| | - Susan Schlenner
- Laboratory of Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, B-3000, Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, B-3000, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, B-3000, Leuven, Belgium
| | - Tom Van Loy
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
3
|
Kim N, Kim MH, Pyo J, Lee SM, Jang JS, Lee DW, Kim KW. CCR8 as a Therapeutic Novel Target: Omics-Integrated Comprehensive Analysis for Systematically Prioritizing Indications. Biomedicines 2023; 11:2910. [PMID: 38001911 PMCID: PMC10669377 DOI: 10.3390/biomedicines11112910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Target identification is a crucial process in drug development, aiming to identify key proteins, genes, and signal pathways involved in disease progression and their relevance in potential therapeutic interventions. While C-C chemokine receptor 8 (CCR8) has been investigated as a candidate anti-cancer target, comprehensive multi-omics analyzes across various indications are limited. In this study, we conducted an extensive bioinformatics analysis integrating genomics, proteomics, and transcriptomics data to establish CCR8 as a promising anti-cancer drug target. Our approach encompassed data collection from diverse knowledge resources, gene function analysis, differential gene expression profiling, immune cell infiltration assessment, and strategic prioritization of target indications. Our findings revealed strong correlations between CCR8 and specific cancers, notably Breast Invasive Carcinoma (BRCA), Colon Adenocarcinoma (COAD), Head and Neck Squamous Cell Carcinoma (HNSC), Rectum adenocarcinoma (READ), Stomach adenocarcinoma (STAD), and Thyroid carcinoma (THCA). This research advances our understanding of CCR8 as a potential target for anti-cancer drug development, bridging the gap between molecular insights and creating opportunities for personalized treatment of solid tumors.
Collapse
Affiliation(s)
- Nari Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Mi-Hyun Kim
- Research Institute, Trial Informatics Inc., Seoul 05544, Republic of Korea;
| | - Junhee Pyo
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Soo-Min Lee
- Samjin Pharmaceutical Co., Ltd., Seoul 04054, Republic of Korea;
| | - Ji-Sung Jang
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea;
| | - Do-Wan Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Kyung Won Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
- Research Institute, Trial Informatics Inc., Seoul 05544, Republic of Korea;
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| |
Collapse
|
4
|
Mycosis Fungoides and Sézary Syndrome: Microenvironment and Cancer Progression. Cancers (Basel) 2023; 15:cancers15030746. [PMID: 36765704 PMCID: PMC9913729 DOI: 10.3390/cancers15030746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Mycosis fungoides and Sézary syndrome are epidermotropic cutaneous lymphomas, and both of them are rare diseases. Mycosis fungoides is the most frequent primary cutaneous lymphoma. In about 25% of patients with mycosis fungoides, the disease may progress to higher stages. The pathogenesis and risk factors of progression in mycosis fungoides and Sézary syndrome are not yet fully understood. Previous works have investigated inter- and intrapatient tumor cell heterogeneity. Here, we overview the role of the tumor microenvironment of mycosis fungoides and Sézary syndrome by describing its key components and functions. Emphasis is put on the role of the microenvironment in promoting tumor growth or antitumor immune response, as well as possible therapeutic targets. We focus on recent advances in the field and point out treatment-related alterations of the microenvironment. Deciphering the tumor microenvironment may help to develop strategies that lead to long-term disease control and cure.
Collapse
|