1
|
Chen X, Zheng M, Lin S, Huang M, Chen S, Chen S. The application of CRISPR/Cas9-based genome-wide screening to disease research. Mol Cell Probes 2024; 79:102004. [PMID: 39709065 DOI: 10.1016/j.mcp.2024.102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
High-throughput genetic screening serves as an indispensable approach for deciphering gene functions and the intricate relationships between phenotypes and genotypes. The CRISPR/Cas9 system, with its ability to precisely edit genomes on a large scale, has revolutionized the field by enabling the construction of comprehensive genomic libraries. This technology has become a cornerstone for genome-wide screenings in disease research. This review offers a comprehensive examination of how CRISPR/Cas9-based genetic screening has been leveraged to uncover genes that play a role in disease mechanisms, focusing on areas such as cancer development and viral replication processes. The insights presented in this review hold promise for the development of novel therapeutic strategies and precision medicine approaches.
Collapse
Affiliation(s)
- Xiuqin Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Min Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Su Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Meiqing Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Shilong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China.
| |
Collapse
|
2
|
Iyer P, Jasdanwala SS, Wang Y, Bhatia K, Bhatt S. Decoding Acute Myeloid Leukemia: A Clinician's Guide to Functional Profiling. Diagnostics (Basel) 2024; 14:2560. [PMID: 39594226 PMCID: PMC11593197 DOI: 10.3390/diagnostics14222560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a complex clonal disorder characterized by clinical, genetic, metabolomic, and epigenetic heterogeneity resulting in the uncontrolled proliferation of aberrant blood-forming precursor cells. Despite advancements in the understanding of the genetic, metabolic, and epigenetic landscape of AML, it remains a significant therapeutic challenge. Functional profiling techniques, such as BH3 profiling (BP), gene expression profiling (GEP), proteomics, metabolomics, drug sensitivity/resistance testing (DSRT), CRISPR/Cas9, and RNAi screens offer valuable insights into the functional behavior of leukemia cells. BP evaluates the mitochondrial response to pro-apoptotic BH3 peptides, determining a cell's apoptotic threshold and its reliance on specific anti-apoptotic proteins. This knowledge can pinpoint vulnerabilities in the mitochondria-mediated apoptotic pathway in leukemia cells, potentially informing treatment strategies and predicting therapeutic responses. GEP, particularly RNA sequencing, evaluates the transcriptomic landscape and identifies gene expression alterations specific to AML subtypes. Proteomics and metabolomics, utilizing mass spectrometry and nuclear magnetic resonance (NMR), provide a detailed view of the active proteins and metabolic pathways in leukemia cells. DSRT involves exposing leukemia cells to a panel of chemotherapeutic and targeted agents to assess their sensitivity or resistance profiles and potentially guide personalized treatment strategies. CRISPR/Cas9 and RNAi screens enable systematic disruption of genes to ascertain their roles in leukemia cell survival and proliferation. These techniques facilitate precise disease subtyping, uncover novel biomarkers and therapeutic targets, and provide a deeper understanding of drug-resistance mechanisms. Recent studies utilizing functional profiling have identified specific mutations and gene signatures associated with aggressive AML subtypes, aberrant signaling pathways, and potential opportunities for drug repurposing. The integration of multi-omics approaches, advances in single-cell sequencing, and artificial intelligence is expected to refine the precision of functional profiling and ultimately improve patient outcomes in AML. This review highlights the diverse landscape of functional profiling methods and emphasizes their respective advantages and limitations. It highlights select successes in how these methods have further advanced our understanding of AML biology, identifies druggable targets that have improved outcomes, delineates challenges associated with these techniques, and provides a prospective view of the future where these techniques are likely to be increasingly incorporated into the routine care of patients with AML.
Collapse
Affiliation(s)
- Prasad Iyer
- Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Shaista Shabbir Jasdanwala
- Department of Pharmacy, National University of Singapore, Singapore 119077, Singapore; (S.S.J.); (Y.W.); (S.B.)
| | - Yuhan Wang
- Department of Pharmacy, National University of Singapore, Singapore 119077, Singapore; (S.S.J.); (Y.W.); (S.B.)
| | - Karanpreet Bhatia
- Department of Hematology and Medical Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA;
| | - Shruti Bhatt
- Department of Pharmacy, National University of Singapore, Singapore 119077, Singapore; (S.S.J.); (Y.W.); (S.B.)
| |
Collapse
|
3
|
Jankovic M, Poon WWL, Gonzales-Losada C, Vazquez GG, Sharif-Askari B, Ding Y, Craplet-Desombre C, Ilie A, Shi J, Wang Y, Jayavelu AK, Orthwein A, Mercier FÉ. The E3 ubiquitin ligase Herc1 modulates the response to nucleoside analogs in acute myeloid leukemia. Blood Adv 2024; 8:5315-5329. [PMID: 39093953 PMCID: PMC11497402 DOI: 10.1182/bloodadvances.2023011540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024] Open
Abstract
ABSTRACT For several decades, induction therapy with nucleoside analogs, in particular cytarabine (Ara-C) and, to a lesser extent, fludarabine, has been the standard of care for patients diagnosed with acute myeloid leukemia (AML). However, the antitumor efficacy of nucleoside analogs is often limited by intrinsic and acquired drug resistance, thereby leading to poor therapeutic response and suboptimal clinical outcomes. In this study, we used genome-wide CRISPR-based pharmacogenomic screening to map the genetic factors that modulate the response to nucleoside analogs in AML and identified the E3 ubiquitin ligase, Herc1, as a key modulator of Ara-C response in mouse AML models driven by the KMT2A/MLLT3 fusion or by the constitutive coexpression of Hoxa9 and Meis1, both in vitro and in vivo. Loss of HERC1 enhanced nucleoside analog-induced cell death in both murine and human AML cell lines by compromising cell cycle progression. In-depth proteomic analysis and subsequent validation identified deoxycytidine kinase as a novel target of Herc1 in both mouse AML models. We observed that HERC1 is overexpressed in AML when compared with other cancer types and that higher HERC1 expression was associated with shorter overall survival in patients with AML in the The Cancer Gene Atlas program (TCGA) and BEAT-AML cohorts. Collectively, this study highlights the importance of HERC1 in the response of AML cells to nucleoside analogs, thereby establishing this E3 ubiquitin ligase as a novel predictive biomarker and potential therapeutic target for the treatment of AML.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Cytarabine/pharmacology
- Cytarabine/therapeutic use
- Disease Models, Animal
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Nucleosides/pharmacology
- Nucleosides/therapeutic use
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
Collapse
Affiliation(s)
- Maja Jankovic
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Canada
| | - William W. L. Poon
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Canada
| | - Cristobal Gonzales-Losada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Canada
| | | | - Bahram Sharif-Askari
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
| | - Yi Ding
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China
| | | | - Alexandru Ilie
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
| | - Jiantao Shi
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China
| | - Yongjie Wang
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Hopp Children’s Cancer Center, University of Heidelberg, Heidelberg, Germany
| | - Ashok Kumar Jayavelu
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Hopp Children’s Cancer Center, University of Heidelberg, Heidelberg, Germany
| | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Canada
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - François Émile Mercier
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Canada
- Division of Hematology, Department of Medicine, McGill University, Montréal, Canada
| |
Collapse
|
4
|
Alayoubi AM, Khawaji ZY, Mohammed MA, Mercier FE. CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia. Ann Hematol 2024; 103:1805-1817. [PMID: 37736806 DOI: 10.1007/s00277-023-05457-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Gene therapy represents a significant potential to revolutionize the field of hematology with applications in correcting genetic mutations, generating cell lines and animal models, and improving the feasibility and efficacy of cancer immunotherapy. Compared to different genetic engineering tools, clustered regularly interspaced short palindromic repeats (CRISPR) CRISPR-associated protein 9 (Cas9) emerged as an effective and versatile genetic editor with the ability to precisely modify the genome. The applications of genetic engineering in various hematological disorders have shown encouraging results. Monogenic hematological disorders can conceivably be corrected with single gene modification. Through the use of CRISPR-CAS9, restoration of functional red blood cells and hemostasis factors were successfully attained in sickle cell anemia, beta-thalassemia, and hemophilia disorders. Our understanding of hemato-oncology has been advanced via CRIPSR-CAS9 technology. CRISPR-CAS9 aided to build a platform of mutated genes responsible for cell survival and proliferation in leukemia. Therapeutic application of CRISPR-CAS9 when combined with chimeric antigen receptor (CAR) T cell therapy in multiple myeloma and acute lymphoblastic leukemia was feasible with attenuation of CAR T cell therapy pitfalls. Our review outlines the latest literature on the utilization of CRISPR-Cas9 in the treatment of beta-hemoglobinopathies and hemophilia disorders. We present the strategies that were employed and the findings of preclinical and clinical trials. Also, the review will discuss gene engineering in the field of hemato-oncology as a proper tool to facilitate and overcome the drawbacks of chimeric antigen receptor T cell therapy (CAR-T).
Collapse
Affiliation(s)
- Abdulfatah M Alayoubi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | | | | | - François E Mercier
- Divisions of Experimental Medicine & Hematology, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Chen Y, Wen J, Li Q, Peng D, Liao C, Ma X, Wang M, Niu J, Wang D, Li Y, Zhang X, Zhou H, Zou J, Li L, Liu L. RAB27B-regulated exosomes mediate LSC maintenance via resistance to senescence and crosstalk with the microenvironment. Leukemia 2024; 38:266-280. [PMID: 38036630 DOI: 10.1038/s41375-023-02097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
The fate of leukaemia stem cells (LSCs) is determined by both their inherent mechanisms and crosstalk with their niches. Although LSCs were confirmed to be eradicated by restarting senescence, the specific key regulators of LSC resistance to senescence and remodelling of the niche to obtain a microenvironment suitable for stemness remain unknown. Here, we found that RAB27B, a gene regulating exosome secretion, was overexpressed in LSCs and associated with the poor prognosis of acute myeloid leukaemia (AML) patients. The increased RAB27B in LSCs prevented their senescence and maintained their stemness in vitro and in vivo. Mechanically, the increased RAB27B expression in LSCs selectively promoted the loading and release of exosomes rich in senescence-inducing proteins by direct combination. Furthermore, RAB27B-regulated LSC-derived exosomes remodelled the niche and induced senescence of mesenchymal stem cells (MSCs) with increased RAB27B expression ex vivo and in vivo. The increased RAB27B in the senescent MSCs conversely promoted LSC maintenance ex vivo and in vivo via selective excretion of exosomes rich in stemness-promoting proteins. Therefore, we identified the specifically increased RAB27B in LSCs and their educated senescent MSCs as a hub molecule for LSC resistance to senescence and maintenance through crosstalk with its niche via selective exosome excretion.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jin Wen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Danyue Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chenxi Liao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Ma
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengyuan Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jialan Niu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Di Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yingnan Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaolan Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Ogana HA, Hurwitz S, Wei N, Lee E, Morris K, Parikh K, Kim YM. Targeting integrins in drug-resistant acute myeloid leukaemia. Br J Pharmacol 2024; 181:295-316. [PMID: 37258706 DOI: 10.1111/bph.16149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Abstract
Acute myeloid leukaemia (AML) continues to have a poor prognosis, warranting new therapeutic strategies. The bone marrow (BM) microenvironment consists of niches that interact with not only normal haematopoietic stem cells (HSC) but also leukaemia cells like AML. There are many adhesion molecules in the BM microenvironment; therein, integrins have been of central interest. AML cells express integrins that bind to ligands in the microenvironment, enabling adhesion of leukaemia cells in the microenvironment, thereby initiating intracellular signalling pathways that are associated with cell migration, cell proliferation, survival, and drug resistance that has been described to mediate cell adhesion-mediated drug resistance (CAM-DR). Identifying and targeting integrins in AML to interrupt interactions with the microenvironment have been pursued as a strategy to overcome CAM-DR. Here, we focus on the BM microenvironment and review the role of integrins in CAM-DR of AML and discuss integrin-targeting strategies. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Heather A Ogana
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Samantha Hurwitz
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Nathan Wei
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Eliana Lee
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kayla Morris
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Karina Parikh
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yong-Mi Kim
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
7
|
Tian Z, Octaviani S, Huang J. Unraveling therapeutic targets in acute myeloid leukemia through multiplexed genome editing CRISPR screening. Expert Opin Ther Targets 2023; 27:1173-1176. [PMID: 38069633 PMCID: PMC11619811 DOI: 10.1080/14728222.2023.2293751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 12/31/2023]
Abstract
Acute Myeloid Leukemia (AML) is a complex condition driven by genetic changes that disrupt the normal functioning of myeloid cells. Despite progress in treatments, AML prognosis remains challenging, emphasizing the need for innovative therapeutic approaches. CRISPR gene editing, known for its simplicity, efficiency, and cost-effectiveness, surpasses other techniques. The advent of multiplexed CRISPR screens presents intriguing possibilities for exploring AML genetics, unraveling drug resistance mechanisms, and identifying new potential treatment targets.
Collapse
Affiliation(s)
- Zhen Tian
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Stacia Octaviani
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Jian Huang
- Coriell Institute for Medical Research, Camden, NJ, United States
- Temple University Lewis Katz School of Medicine, Center for Metabolic Disease Research, Philadelphia, PA, United States
- Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
8
|
Lehner KM, Gopalakrishnapillai A, Kolb EA, Barwe SP. Bone Marrow Microenvironment-Induced Chemoprotection in KMT2A Rearranged Pediatric AML Is Overcome by Azacitidine-Panobinostat Combination. Cancers (Basel) 2023; 15:3112. [PMID: 37370721 DOI: 10.3390/cancers15123112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Advances in therapies of pediatric acute myeloid leukemia (AML) have been minimal in recent decades. Although 82% of patients will have an initial remission after intensive therapy, approximately 40% will relapse. KMT2A is the most common chromosomal translocation in AML and has a poor prognosis resulting in high relapse rates and low chemotherapy efficacy. Novel targeted approaches are needed to increase sensitivity to chemotherapy. Recent studies have shown how interactions within the bone marrow (BM) microenvironment help AML cells evade chemotherapy and contribute to relapse by promoting leukemic blast survival. This study investigates how DNA hypomethylating agent azacitidine and histone deacetylase inhibitor panobinostat synergistically overcome BM niche-induced chemoprotection modulated by stromal, endothelial, and mesenchymal stem cells and the extracellular matrix (ECM). We show that direct contact between AML cells and BM components mediates chemoprotection. We demonstrate that azacitidine and panobinostat synergistically sensitize MV4;11 cells and KMT2A rearranged pediatric patient-derived xenograft lines to cytarabine in multicell coculture. Treatment with the epigenetic drug combination reduced leukemic cell association with multicell monolayer and ECM in vitro and increased mobilization of leukemic cells from the BM in vivo. Finally, we show that pretreatment with the epigenetic drug combination improves the efficacy of chemotherapy in vivo.
Collapse
Affiliation(s)
- Kara M Lehner
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children's Hospital, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Anilkumar Gopalakrishnapillai
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children's Hospital, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Edward Anders Kolb
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children's Hospital, Wilmington, DE 19803, USA
| | - Sonali P Barwe
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children's Hospital, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
9
|
Fooks K, Galicia-Vazquez G, Gife V, Schcolnik-Cabrera A, Nouhi Z, Poon WWL, Luo V, Rys RN, Aloyz R, Orthwein A, Johnson NA, Hulea L, Mercier FE. EIF4A inhibition targets bioenergetic homeostasis in AML MOLM-14 cells in vitro and in vivo and synergizes with cytarabine and venetoclax. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:340. [PMID: 36482393 PMCID: PMC9733142 DOI: 10.1186/s13046-022-02542-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is an aggressive hematological cancer resulting from uncontrolled proliferation of differentiation-blocked myeloid cells. Seventy percent of AML patients are currently not cured with available treatments, highlighting the need of novel therapeutic strategies. A promising target in AML is the mammalian target of rapamycin complex 1 (mTORC1). Clinical inhibition of mTORC1 is limited by its reactivation through compensatory and regulatory feedback loops. Here, we explored a strategy to curtail these drawbacks through inhibition of an important effector of the mTORC1signaling pathway, the eukaryotic initiation factor 4A (eIF4A). METHODS We tested the anti-leukemic effect of a potent and specific eIF4A inhibitor (eIF4Ai), CR-1-31-B, in combination with cytosine arabinoside (araC) or the BCL2 inhibitor venetoclax. We utilized the MOLM-14 human AML cell line to model chemoresistant disease both in vitro and in vivo. In eIF4Ai-treated cells, we assessed for changes in survival, apoptotic priming, de novo protein synthesis, targeted intracellular metabolite content, bioenergetic profile, mitochondrial reactive oxygen species (mtROS) and mitochondrial membrane potential (MMP). RESULTS eIF4Ai exhibits anti-leukemia activity in vivo while sparing non-malignant myeloid cells. In vitro, eIF4Ai synergizes with two therapeutic agents in AML, araC and venetoclax. EIF4Ai reduces mitochondrial membrane potential (MMP) and the rate of ATP synthesis from mitochondrial respiration and glycolysis. Furthermore, eIF4i enhanced apoptotic priming while reducing the expression levels of the antiapoptotic factors BCL2, BCL-XL and MCL1. Concomitantly, eIF4Ai decreases intracellular levels of specific metabolic intermediates of the tricarboxylic acid cycle (TCA cycle) and glucose metabolism, while enhancing mtROS. In vitro redox stress contributes to eIF4Ai cytotoxicity, as treatment with a ROS scavenger partially rescued the viability of eIF4A inhibition. CONCLUSIONS We discovered that chemoresistant MOLM-14 cells rely on eIF4A-dependent cap translation for survival in vitro and in vivo. EIF4A drives an intrinsic metabolic program sustaining bioenergetic and redox homeostasis and regulates the expression of anti-apoptotic proteins. Overall, our work suggests that eIF4A-dependent cap translation contributes to adaptive processes involved in resistance to relevant therapeutic agents in AML.
Collapse
Affiliation(s)
- Katie Fooks
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada
| | | | - Victor Gife
- grid.414216.40000 0001 0742 1666Maisonneuve-Rosemont Hospital Research Centre, Montreal, Canada ,grid.14848.310000 0001 2292 3357Present Address: Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, Canada
| | | | - Zaynab Nouhi
- grid.414216.40000 0001 0742 1666Maisonneuve-Rosemont Hospital Research Centre, Montreal, Canada
| | - William W. L. Poon
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada
| | - Vincent Luo
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada
| | - Ryan N. Rys
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, Canada
| | - Raquel Aloyz
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Alexandre Orthwein
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada ,grid.189967.80000 0001 0941 6502Present Address: Department of Radiation Oncology, Emory School of Medicine, Atlanta, USA
| | - Nathalie A. Johnson
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Laura Hulea
- grid.414216.40000 0001 0742 1666Maisonneuve-Rosemont Hospital Research Centre, Montreal, Canada ,grid.14848.310000 0001 2292 3357Present Address: Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, Canada ,grid.14848.310000 0001 2292 3357Département de Médecine, Université de Montréal, Montreal, Canada
| | - Francois E. Mercier
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada
| |
Collapse
|