1
|
Yang Y, Zong S, Hua Y. Nomogram for prognosis prediction in metastatic pancreatic cancer patients undergoing intra-arterial infusion chemotherapy: incorporating immune-inflammation scores and coagulation indicators. BMC Cancer 2025; 25:107. [PMID: 39833690 DOI: 10.1186/s12885-025-13523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most malignant tumors with an inferior prognosis. This study aims to determine the prognostic significance of immune-inflammatory scores and coagulation indices in patients with metastatic pancreatic cancer(MPC) and develop a predictive nomogram. METHODS This study retrospectively analyzed the clinical data of 384 patients with MPC who underwent intra-arterial infusion chemotherapy (IAIC). Patients were randomly divided into training and validation cohorts. Firstly, the optimal cutoff values for continuous variables were obtained in the training cohort. Then, survival analysis was performed to evaluate the impact of immune-inflammatory scores neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic immune-inflammation index (SII), and coagulation indicators prothrombin time (PT), fibrinogen (FIB), and D-dimer on the overall survival (OS) of patients. Next, univariate analysis was utilized to identify prognostic factors, and a stepwise regression method was employed for variable selection to construct a nomogram based on the Cox proportional hazards model. Additionally, the predictive performance of the nomogram was assessed by the concordance index (C-index), the area under the ROC curve (AUC), and calibration curves. Finally, patients were stratified into risk groups based on the total score of the nomogram. RESULTS The Kaplan-Meier survival curves indicated that immune-inflammatory scores NLR, PLR, SII, and coagulation indicators PT, FIB, and D-dimer were associated with OS. Through Cox regression analysis, a nomogram was ultimately constructed incorporating NLR, PLR, PT, alkaline phosphatase (ALP), carbohydrate antigen 125 (CA125), age, and ablation. The model demonstrated good discriminative ability, with a C-index of 0.722, and the AUC values at 6- and 12-month OS predictions were 0.828 and 0.851 in the training cohort, while in the validation cohort, the corresponding AUC values were 0.754 and 0.791, respectively. The calibration curves showed a good fit, confirming the stability of the model. A cutoff value of 353.3 was identified as optimal for risk stratification, with a statistically significant difference in OS between the high- and low-risk groups. CONCLUSION The nomogram based on immune-inflammatory scores, coagulation indicators, and other clinicopathological factors can effectively predict the OS of patients with MPC.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shaoqi Zong
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yongqiang Hua
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Ghosh A, Bhoumick A, Paul S, Chatterjee A, Mandal S, Basu A, Mukhopadhyay S, Das K, Sen P. FVIIa-PAR2 signaling facilitates immune escape by reducing phagocytic potential of macrophages in breast cancer. J Thromb Haemost 2024:S1538-7836(24)00717-7. [PMID: 39667690 DOI: 10.1016/j.jtha.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Treatment of breast cancers with immunotherapy has so far achieved limited success. Traditional immunotherapies focusing on cytotoxic T cells have attained modest success, while the approval of phagocytic checkpoint blockers is still pending. Coagulation proteases are crucial to cancer growth and proliferation, but their relevance in altering the immunologic topography in tumors remains largely unknown. OBJECTIVES In this study, we aimed to examine whether factor VIIa (FVIIa)-driven protease-activated receptor 2 (PAR2) activation and its subsequent signaling pathways assist cancer cells in evading phagocytic macrophages. METHODS Peripheral blood mononuclear cell- or THP-1-derived macrophages were cocultured with MDA-MB-468 cells that were pretreated with or without FVIIa. The phagocytic activity of macrophages was assessed through flow cytometry and immunofluorescence. Additionally, an allograft model using wild-type and PAR2-deleted 4T1 cells was employed to investigate the impact of PAR2 activation on immune escape from macrophages in vivo. RESULTS We found evidence that FVIIa-induced PAR2 cleavage activates downstream signaling cascades and augments cellular levels of microRNA221, which transcriptionally activates both CD47 and stanniocalcein 1 expression, thereby assisting the escape from phagocytosis by macrophages. Stanniocalcein 1 decreases the surface expression of calreticulin, a dominant prophagocytic signal, thereby tilting it in favor of phagocytic evasion. Mouse models using PAR2-depleted cells displayed smaller tumor volumes and corresponding greater phagocytic events when combined with anti-CD47/anti-PD-L1 antibodies. CONCLUSION PAR2 signaling initiates an intrinsic mechanism of immune escape by diminishing phagocytosis of cancer cells.
Collapse
Affiliation(s)
- Arnab Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Avinandan Bhoumick
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Akash Chatterjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Subhasis Mandal
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | | | | | - Kaushik Das
- Biotechnology Research and Innovation Council, National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India.
| |
Collapse
|
3
|
Yu A, Wang Y, Qin J, Lei J, Bao W, Dong Z. Hypoxia-responsive gene F3 Promotes GBM Cell Proliferation and Migration through Activating NF-κB/p65 Signaling Pathway. J Cancer 2024; 15:4477-4489. [PMID: 39006069 PMCID: PMC11242329 DOI: 10.7150/jca.97357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/19/2024] [Indexed: 07/16/2024] Open
Abstract
Background: Glioblastoma multiforme (GBM) is the most common malignant form of glioma, but the molecular mechanisms underlying the progression of GBM in hypoxic microenvironment remain elusive. This study aims to explore the pathological functions of hypoxia-responsive genes on GBM progression and its downstream signaling pathways. Methods: RNA-seq was performed in normoxic and hypoxic U87 cells to identify the differentially expressed genes (DEGs) under hypoxia. The mRNA expression levels of hypoxia-responsive gene F3 in glioma clinical samples were analyzed according to the transcriptional information from CGGA, TCGA and Rembrandt databases. EdU, transwell and wound-healing assays were conducted to evaluate the pathological functions of F3 on GBM proliferation and migration under hypoxia. RNA-seq and gene set enrichment analysis were conducted to analyze the enriched pathways in LN229 cells overexpressed F3 compared to controls. GBM cells were treated with NF-κB inhibitor PDTC, and cell experiments were performed to evaluate the effects of PDTC on OE-F3-LN229 and OE-F3-U87 cells. Western blot was performed to validate the downstream pathways. Results: F3 was identified as a hypoxia responsive gene in GBM cells. The mRNA expression level of F3 was negatively correlated with the overall survival of glioma patients, and significantly increased in grade IV and GBM than lower grade or other histology of glioma. Overexpression of F3 enhanced the proliferation and migration of hypoxic U87 and LN229 cells, while knockdown inhibited them. In OE-F3-LN229 cells, the NF-κB pathway was activated, with an increased level of phosphorylated p65. PDTC treatment effectively rescued the enhanced proliferation and migration of OE-F3-LN229 cells under hypoxia, indicating that the effect of F3 on GBM progression is probably dependent on the NF-κB pathway. Conclusion: Hypoxia-induced F3 activates NF-κB pathway through upregulation of the phosphorylated p65, thus promoting the proliferation and migration of GBM cells under hypoxia, which might be a potential therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Aixin Yu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430000, China
| | - Yiqi Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430000, China
- Hubei Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 430000, China
| | - Jun Qin
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 430000, China
| | - Junrong Lei
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 430000, China
| | - Wendai Bao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430000, China
| | - Zhiqiang Dong
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430000, China
- Hubei Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 430000, China
- Central Laboratory, Hubei Cancer Hospital, Wuhan, Hubei 430000, China
| |
Collapse
|
4
|
Martinelli N, Moruzzi S, Udali S, Castagna A, Di Santo L, Ambrosani F, Baroni M, Pattini P, Pizzolo F, Ruzzenente A, Conci S, Grusse M, Campagnaro T, Van Dreden P, Guglielmi A, Bernardi F, Olivieri O, Friso S. Tissue factor pathway-related biomarkers in liver cancer: activated factor VII-antithrombin complex and tissue factor mRNA levels are associated with mortality. Res Pract Thromb Haemost 2024; 8:102310. [PMID: 38282902 PMCID: PMC10818084 DOI: 10.1016/j.rpth.2023.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024] Open
Abstract
Background Tissue factor (TF), the main initiator of the coagulation cascade, plays a role in cancer progression and prognosis. Activated factor VII-antithrombin complex (FVIIa-AT) is considered an indirect marker of TF exposure by reflecting TF-FVIIa interaction. Objectives To assess the link between FVIIa-AT plasma levels, TF messenger RNA (mRNA) expression, and survival in cancer. Methods TF pathway-related coagulation biomarkers were assessed in 136 patients with cancer (52 with hepatocellular carcinoma, 41 with cholangiocarcinoma, and 43 with colon cancer) undergoing surgical intervention with curative intent. TF mRNA expression analysis in neoplastic vs nonneoplastic liver tissues was evaluated in a subgroup of 91 patients with primary liver cancer. Results FVIIa-AT levels were higher in patients with cancer than in 136 sex- and age-matched cancer-free controls. In patients with cancer, high levels of FVIIa-AT and total TF pathway inhibitor were associated with an increased mortality risk after adjustment for confounders, but only FVIIa-AT remained a predictor of mortality by including both FVIIa-AT and total TF pathway inhibitor in Cox regression (hazard ratio, 2.80; 95% CI, 1.23-6.39; the highest vs the lowest quartile). This association remained significant even after adjustment for extracellular vesicle-associated TF-dependent procoagulant activity. In the subgroup of patients with primary liver cancer, patients with high TF mRNA levels had an increased mortality risk compared with that for those with low TF mRNA levels (hazard ratio, 1.92; 95% CI, 1.03-3.57), and there was a consistent correlation among high FVIIa-AT levels, high TF mRNA levels, and increased risk of mortality. Conclusion High FVIIa-AT levels may allow the identification of patients with cancer involving high TF expression and predict a higher mortality risk in liver cancer.
Collapse
Affiliation(s)
| | - Sara Moruzzi
- Department of Medicine, University of Verona, Verona, Italy
| | - Silvia Udali
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Laura Di Santo
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Marcello Baroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | | | | - Simone Conci
- Department of Surgery, University of Verona, Verona, Italy
| | - Matthieu Grusse
- Clinical Research Department, Diagnostica Stago, Gennevilliers, France
| | | | | | | | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | |
Collapse
|
5
|
Paul S, Das K, Ghosh A, Chatterjee A, Bhoumick A, Basu A, Sen P. Coagulation factor VIIa enhances programmed death-ligand 1 expression and its stability in breast cancer cells to promote breast cancer immune evasion. J Thromb Haemost 2023; 21:3522-3538. [PMID: 37579880 DOI: 10.1016/j.jtha.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Immunotherapy for breast cancer has not gained significant success. Coagulation factor VIIa (FVIIa)-tissue factor (TF) mediated activation of protease-activated receptor 2 (PAR2) is shown to promote metastasis and secretion of the immune-modulatory cytokines but the role of FVIIa in cancer immunology is still not well understood. OBJECTIVES Here, we aim to investigate whether FVIIa protects breast cancer cells from CD8 T-cell-mediated killing. METHODS Peripheral blood mononuclear cell-derived CD8 T cells were cocultured with vehicle or FVIIa pretreated MDAMB468 cells. The proliferation and activity of CD8 T cells were measured by flow cytometry and ELISA. An allograft model, using wild-type or TF/PAR2-deleted 4T1 cells, was employed to determine the effect of FVIIa on breast cancer immune evasion in vivo. RESULTS Here, we demonstrate that TF-FVIIa induces programmed death-ligand 1 (PD-L1) in breast cancer cells by activating PAR2. PAR2 activation triggers large tumor suppressor kinase 1 (LATS1) inactivation leading to loss of yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) phosphorylation and subsequent nuclear localization of YAP/TAZ. YAP/TAZ inhibition reduces PD-L1 expression and increases CD8 T-cell activity. We further demonstrate that, apart from transcriptional induction of PD-L1, PAR2 activation also increases PD-L1 stability by enhancing its glycosylation through N-glycosyltransferases STT3A and STT3B. CONCLUSION In a mouse model of breast cancer, tumor cell-specific PAR2 depletion leads to PD-L1 downregulation and increases anti-PD-1 immunotherapy efficacy. In conclusion, we showed that FVIIa-mediated signaling cascade in cancer cells serves as a tumor intrinsic mechanism of immunosuppression to promote cancer immune evasion.
Collapse
Affiliation(s)
- Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Arnab Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Akash Chatterjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Avinandan Bhoumick
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Abhimanyu Basu
- Department of General Surgery, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| |
Collapse
|