1
|
Utsumi T, Tsumura M, Yashiro M, Kato Z, Noma K, Sakura F, Kagawa R, Mizoguchi Y, Karakawa S, Ohnishi H, Cunningham-Rundles C, Arkwright PD, Kobayashi M, Kanegane H, Bogunovic D, Boisson B, Casanova JL, Asano T, Okada S. Exclusive Characteristics of the p.E555K Dominant-Negative Variant in Autosomal Dominant E47 Deficiency. J Clin Immunol 2024; 44:167. [PMID: 39073655 PMCID: PMC11286708 DOI: 10.1007/s10875-024-01758-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Transcription factor 3 (TCF3) encodes 2 transcription factors generated by alternative splicing, E12 and E47, which contribute to early lymphocyte differentiation. In humans, autosomal dominant (AD) E47 transcription factor deficiency is an inborn error of immunity characterized by B-cell deficiency and agammaglobulinemia. Only the recurrent de novo p.E555K pathogenic variant has been associated with this disease and acts via a dominant-negative (DN) mechanism. In this study, we describe the first Asian patient with agammaglobulinemia caused by the TCF3 p.E555K variant and provide insights into the structure and function of this variant. METHODS TCF3 variant was identified by inborn errors of immunity-related gene panel sequencing. The variant E555K was characterized by alanine scanning of the E47 basic region and comprehensive mutational analysis focused on position 555. RESULTS The patient was a 25-year-old male with B-cell deficiency, agammaglobulinemia, and mild facial dysmorphic features. We confirmed the diagnosis of AD E47 transcription factor deficiency by identifying a heterozygous missense variant, c.1663 G>A; p.E555K, in TCF3. Alanine scanning of the E47 basic region revealed the structural importance of position 555. Comprehensive mutational analysis focused on position 555 showed that only the glutamate-to-lysine substitution had a strong DN effect. 3D modeling demonstrated that this variant not only abolished hydrogen bonds involved in protein‒DNA interactions, but also inverted the charge on the surface of the E47 protein. CONCLUSIONS Our study reveals the causative mutation hotspot in the TCF3 DN variant and highlights the weak negative selection associated with the TCF3 gene.
Collapse
Affiliation(s)
- Takanori Utsumi
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masato Yashiro
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Zenichiro Kato
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
- Structural Medicine, United Graduate School of Drug Discovery and Medical Information Science, Gifu University, Gifu, Japan
| | - Kosuke Noma
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Fumiaki Sakura
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Reiko Kagawa
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Charlotte Cunningham-Rundles
- Division of Allergy and Clinical Immunology, Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Masao Kobayashi
- Japanese Red Cross Chugoku-Shikoku Block Blood Center, Hiroshima, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute (HHMI), New York, NY, USA
| | - Takaki Asano
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
2
|
Escherich CS, Chen W, Li Y, Yang W, Nishii R, Li Z, Raetz EA, Devidas M, Wu G, Nichols KE, Inaba H, Pui CH, Jeha S, Camitta BM, Larsen E, Hunger SP, Loh ML, Yang JJ. Germ line genetic NBN variation and predisposition to B-cell acute lymphoblastic leukemia in children. Blood 2024; 143:2270-2283. [PMID: 38446568 PMCID: PMC11443573 DOI: 10.1182/blood.2023023336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
ABSTRACT Biallelic mutation in the DNA-damage repair gene NBN is the genetic cause of Nijmegen breakage syndrome, which is associated with predisposition to lymphoid malignancies. Heterozygous carriers of germ line NBN variants may also be at risk for leukemia development, although this is much less characterized. By sequencing 4325 pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL), we systematically examined the frequency of germ line NBN variants and identified 25 unique, putatively damaging NBN coding variants in 50 patients. Compared with the frequency of NBN variants in gnomAD noncancer controls (189 unique, putatively damaging NBN coding variants in 472 of 118 479 individuals), we found significant overrepresentation in pediatric B-ALL (P = .004; odds ratio, 1.8). Most B-ALL-risk variants were missense and cluster within the NBN N-terminal domains. Using 2 functional assays, we verified 14 of 25 variants with severe loss-of-function phenotypes and thus classified these as nonfunctional or partially functional. Finally, we found that germ line NBN variant carriers, all of whom were identified as heterozygous genotypes, showed similar survival outcomes relative to those with wild type status. Taken together, our findings provide novel insights into the genetic predisposition to B-ALL, and the impact of NBN variants on protein function and suggest that heterozygous NBN variant carriers may safely receive B-ALL therapy. These trials were registered at www.clinicaltrials.gov as #NCT01225874, NCT00075725, NCT00103285, NCI-T93-0101D, and NCT00137111.
Collapse
Affiliation(s)
- Carolin S. Escherich
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
- Department for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Wenan Chen
- Department of Pathology, Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yizhen Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Rina Nishii
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Zhenhua Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Elizabeth A. Raetz
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Health, New York, NY
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN
| | - Gang Wu
- Department of Pathology, Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sima Jeha
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Bruce M. Camitta
- Department of Pediatrics, Midwest Center for Cancer and Blood Disorders, Medical College of Wisconsin, Milwaukee, WI
| | - Eric Larsen
- Department of Pediatrics, Maine Children's Cancer Program, Scarborough, ME
| | - Stephen P. Hunger
- Department of Pediatrics and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mignon L. Loh
- Department of Pediatrics and the Ben Towne Center for Childhood Cancer Research, Seattle Children’s Hospital, University of Washington, Seattle, WA
| | - Jun J. Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
3
|
Antić Ž, Lentes J, Bergmann AK. Cytogenetics and genomics in pediatric acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2023; 36:101511. [PMID: 38092485 DOI: 10.1016/j.beha.2023.101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 12/18/2023]
Abstract
The last five decades have witnessed significant improvement in diagnostics, treatment and management of children with acute lymphoblastic leukaemia (ALL). These advancements have become possible through progress in our understanding of the genetic and biological background of ALL, resulting in the introduction of risk-adapted treatment and novel therapeutic targets, e.g., tyrosine kinase inhibitors for BCR::ABL1-positive ALL. Further advances in the taxonomy of ALL and the discovery of new genetic biomarkers and therapeutic targets, as well as the introduction of targeted and immunotherapies into the frontline treatment protocols, may improve management and outcome of children with ALL. In this review we describe the current developments in the (cyto)genetic diagnostics and management of children with ALL, and provide an overview of the most important advances in the genetic classification of ALL. Furthermore, we discuss perspectives resulting from the development of new techniques, including artificial intelligence (AI).
Collapse
Affiliation(s)
- Željko Antić
- Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Jana Lentes
- Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Anke K Bergmann
- Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
4
|
Boast B, Goel S, González-Granado LI, Niemela J, Stoddard J, Edwards ESJ, Seneviratne S, Spensberger D, Quesada-Espinosa JF, Allende LM, McDonnell J, Haseley A, Lesmana H, Walkiewicz MA, Muhammad E, Bosco JJ, Fleisher TA, Cohen S, Holland SM, van Zelm MC, Enders A, Kuehn HS, Rosenzweig SD. TCF3 haploinsufficiency defined by immune, clinical, gene-dosage, and murine studies. J Allergy Clin Immunol 2023; 152:736-747. [PMID: 37277074 PMCID: PMC10527523 DOI: 10.1016/j.jaci.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND TCF3 is a transcription factor contributing to early lymphocyte differentiation. Germline monoallelic dominant negative and biallelic loss-of-function (LOF) null TCF3 mutations cause a fully penetrant severe immunodeficiency. We identified 8 individuals from 7 unrelated families with monoallelic LOF TCF3 variants presenting with immunodeficiency with incomplete clinical penetrance. OBJECTIVE We sought to define TCF3 haploinsufficiency (HI) biology and its association with immunodeficiency. METHODS Patient clinical data and blood samples were analyzed. Flow cytometry, Western blot analysis, plasmablast differentiation, immunoglobulin secretion, and transcriptional activity studies were conducted on individuals carrying TCF3 variants. Mice with a heterozygous Tcf3 deletion were analyzed for lymphocyte development and phenotyping. RESULTS Individuals carrying monoallelic LOF TCF3 variants showed B-cell defects (eg, reduced total, class-switched memory, and/or plasmablasts) and reduced serum immunoglobulin levels; most but not all presented with recurrent but nonsevere infections. These TCF3 LOF variants were either not transcribed or translated, resulting in reduced wild-type TCF3 protein expression, strongly suggesting HI pathophysiology for the disease. Targeted RNA sequencing analysis of T-cell blasts from TCF3-null, dominant negative, or HI individuals clustered away from healthy donors, implying that 2 WT copies of TCF3 are needed to sustain a tightly regulated TCF3 gene-dosage effect. Murine TCF3 HI resulted in a reduction of circulating B cells but overall normal humoral immune responses. CONCLUSION Monoallelic LOF TCF3 mutations cause a gene-dosage-dependent reduction in wild-type protein expression, B-cell defects, and a dysregulated transcriptome, resulting in immunodeficiency. Tcf3+/- mice partially recapitulate the human phenotype, underscoring the differences between TCF3 in humans and mice.
Collapse
Affiliation(s)
- Brigette Boast
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Shubham Goel
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Luis I González-Granado
- Department of Pediatrics, Hospital 12 de Octubre, Research Institute Hospital 12 de Octubre (i+12), School of Medicine, Complutense University, Madrid, Spain
| | - Julie Niemela
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Emily S J Edwards
- Department of Immunology, Monash University, and The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, Australia
| | - Sandali Seneviratne
- Centre for Personalised Immunology and Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Dominik Spensberger
- ANU Gene Targeting Facility, Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | - Luis M Allende
- Department of Immunology, Hospital 12 de Octubre, Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - John McDonnell
- Department of Pediatric Allergy and Immunology, Cleveland Clinic, Cleveland, Ohio
| | - Alexandria Haseley
- Center for Personalized Genetic Healthcare, Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Harry Lesmana
- Center for Personalized Genetic Healthcare, Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio; Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Cleveland Clinic, Cleveland, Ohio
| | - Magdalena A Walkiewicz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Emad Muhammad
- Hematology Laboratory, Carmel Medical Center, Haifa, Spain
| | - Julian J Bosco
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, Australia
| | - Thomas A Fleisher
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Shai Cohen
- Allergy and Clinical Immunology Service, Department of Internal Medicine B, Lin and Carmel Medical Center, The Technion, Israel Institute of Technology, Haifa, Israel
| | - Steven M Holland
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Menno C van Zelm
- Department of Immunology, Monash University, and The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, Australia; Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, Australia
| | - Anselm Enders
- Centre for Personalised Immunology and Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md.
| |
Collapse
|
5
|
Escherich C, Chen W, Li Y, Yang W, Nishii R, Li Z, Raetz EA, Devidas M, Wu G, Nichols KE, Inaba H, Pui CH, Jeha S, Camitta BM, Larsen E, Hunger SP, Loh ML, Yang JJ. Germline Genetic NBN Variation and Predisposition to B-cell Acute Lymphoblastic Leukemia in Children. RESEARCH SQUARE 2023:rs.3.rs-3171814. [PMID: 37503171 PMCID: PMC10371123 DOI: 10.21203/rs.3.rs-3171814/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Biallelic mutation in the DNA-damage repair gene NBN is the genetic cause of Nijmegen Breakage Syndrome, which is associated with predisposition to lymphoid malignancies. Heterozygous carriers of germline NBN variants may also be at risk for leukemia development, although this is much less characterized. We systematically examined the frequency of germline NBN variants in pediatric B-ALL and identified 25 putatively damaging NBN coding variants in 50 of 4,183 B-ALL patients. Compared with the frequency of NBN variants in 118,479 gnomAD non-cancer controls we found significant overrepresentation in pediatric B-ALL (p=0.004, OR=1.77). Most B-ALL-risk variants were missense and cluster within the NBN N-terminal domains. Using two functional assays, we verified 14 of 25 variants with severe loss-of-function phenotypes and thus classified these as pathogenic or likely pathogenic. Finally, we found that heterozygous germline NBN variant carriers showed similar survival outcomes relative to those with WT status. Taken together, our findings provide novel insights into the genetic predisposition to B-ALL, the impact of NBN variants on protein function and suggest that heterozygous NBN variant carriers may safely receive B-ALL therapy.
Collapse
Affiliation(s)
- Carolin Escherich
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Department for Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yizhen Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Rina Nishii
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Zhenhua Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Elizabeth A. Raetz
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sima Jeha
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Bruce M. Camitta
- Department of Pediatrics, Midwest Center for Cancer and Blood Disorders, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eric Larsen
- Department of Pediatrics, Maine Children’s Cancer Program, Scarborough, ME, USA
| | - Stephen P. Hunger
- Department of Pediatrics and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mignon L. Loh
- Seattle Children’s Hospital, the Ben Towne Center for Childhood Cancer Research, University of Washington, Seattle, WA, USA
| | - Jun J. Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
6
|
Miyamoto S, Urayama KY, Arakawa Y, Koh K, Yuza Y, Hasegawa D, Taneyama Y, Noguchi Y, Yanagimachi M, Inukai T, Ota S, Takahashi H, Keino D, Toyama D, Takita J, Tomizawa D, Morio T, Koike K, Moriwaki K, Sato Y, Fujimura J, Morita D, Sekinaka Y, Nakamura K, Sakashita K, Goto H, Manabe A, Takagi M. Rare TCF3 variants associated with pediatric B cell acute lymphoblastic leukemia. Pediatr Hematol Oncol 2023; 41:81-87. [PMID: 37129918 DOI: 10.1080/08880018.2023.2201302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Germline genetic variants influence development of pediatric B cell acute lymphoblastic leukemia (B-ALL). Genome-wide association studies (GWAS) have identified several pediatric B-ALL susceptibility loci. IKZF1 and PAX5, transcription factors involved in B cell development, have been reported as susceptibility genes for B-ALL development. Therefore, we hypothesized that rare variants of genes involved in B cell development would be candidate susceptibility loci for pediatric B-ALL. Thus, we sequenced TCF3, a key transcription factor gene involving in B cell development. Saliva DNA from 527 pediatric patients with pediatric B-ALL in remission who were registered with the Tokyo Children's Cancer Study Group (TCCSG) were examined. As a TCF3 gene-based evaluation, the numbers of rare deleterious germline TCF3 sequence variants in patients with pediatric B-ALL were compared with those in cancer-free individuals using data in public databases. As a TCF3 single-variant evaluation, the frequencies of rare deleterious germline TCF3 sequence variants in patients with pediatric B-ALL were also compared with those in control data. TCF3 gene-based analysis revealed significant associations between rare deleterious variants and pediatric B-ALL development. In addition, TCF3 variant-based analysis showed particularly strong association between variant rs372168347 (three in 521 TCCSG and three in the 15780 gnomAD whole genome analysis cohort, p = 0.0006) and pediatric B-ALL development. TCF3 variants are known to influence B cell maturation and may increase the risk of preleukemic clone emergence.
Collapse
Affiliation(s)
- Satoshi Miyamoto
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kevin Y Urayama
- Graduate School of Public Health, St. Luke's International University, Tokyo, Japan
| | - Yuki Arakawa
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Yuki Yuza
- Department of Hematology/Oncology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Yuichi Taneyama
- Department of Hematology/Oncology, Chiba Children's Hospital, Chiba, Japan
| | - Yasushi Noguchi
- Department of Pediatrics, Japanese Red Cross Narita Hospital, Chiba, Japan
| | - Masakatsu Yanagimachi
- Department of Pediatrics, Yokohama City University Hospital, Kanagawa, Japan
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Takeshi Inukai
- Department of Pediatrics, University of Yamanashi, Yamanashi, Japan
| | - Setsuo Ota
- Department of Pediatrics, Teikyo University Chiba Medical Center, Chiba, Japan
| | | | - Dai Keino
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
- Department of Pediatrics, St. Marianna University, Kanagawa, Japan
| | - Daisuke Toyama
- Division of Pediatrics, Showa University Fujigaoka Hospital, Yokohama, Japan
- Department of Pediatrics, Tokai University, Kanagawa, Japan
| | - Junko Takita
- Department of Pediatrics, The University of Tokyo, Tokyo, Japan
- Department of Pediatrics, Kyoto University, Kyoto, Japan
| | - Daisuke Tomizawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazutoshi Koike
- Division of Pediatric Hematology and Oncology, Ibaraki Children's Hospital, Mito, Japan
| | - Koichi Moriwaki
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Yuya Sato
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan
| | - Junya Fujimura
- Department of Pediatrics and Adolescent Medicine, Juntendo University, School of Medicine, Tokyo, Japan
| | - Daisuke Morita
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yujin Sekinaka
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Kozue Nakamura
- Department of Pediatrics, Teikyo University Hospital, Tokyo, Japan
| | - Kazuo Sakashita
- Department of Hematology/Oncology, Nagano Children's Hospital, Nagano, Japan
| | - Hiroaki Goto
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Atsushi Manabe
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
- Department of Pediatrics, Hokkaido University, Hokkaido, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|