Liu W, Zhu X, Xiao Y. Neurological involvement in hematopoietic stem cell transplantation-associated thrombotic microangiopathy.
Ann Hematol 2024;
103:3303-3313. [PMID:
38763940 PMCID:
PMC11358180 DOI:
10.1007/s00277-024-05798-6]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/08/2024] [Indexed: 05/21/2024]
Abstract
Transplantation-associated thrombotic microangiopathy (TA-TMA) is a well-recognized serious complication of hematopoietic stem cell transplantation (HSCT). The understanding of TA-TMA pathophysiology has expanded in recent years. Dysregulation of the complement system is thought to cause endothelial injury and, consequently, microvascular thrombosis and tissue damage. TA-TMA can affect multiple organs, and each organ exhibits specific features of injury. Central nervous system (CNS) manifestations of TA-TMA include posterior reversible encephalopathy syndrome, seizures, and encephalopathy. The development of neurological dysfunction is associated with a significantly lower overall survival in patients with TA-TMA. However, there are currently no established histopathological or radiological criteria for the diagnosis of CNS TMA. Patients who receive total body irradiation (TBI), calcineurin inhibitors (CNI), and severe acute and chronic graft-versus-host disease (GVHD) are at a high risk of experiencing neurological complications related to TA-TMA and should be considered for directed TA-TMA therapy. However, the incidence and clinical manifestations of TA-TMA neurotoxicity remain unclear. Studies specifically examining the involvement of CNS in TMA syndromes are limited. In this review, we discuss clinical manifestations and imaging abnormalities in patients with nervous system involvement in TA-TMA. We summarize the mechanisms underlying TA-TMA and its neurological complications, including endothelial injury, evidence of complement activation, and treatment options for TA-TMA.
Collapse