1
|
Dimitrov M, Merkle S, Cao Q, Tryon RK, Vercellotti GM, Holtan SG, Kao RL, Srikanthan M, Terezakis SA, Tolar J, Ebens CL. Allogeneic Hematopoietic Cell Transplant For Bone Marrow Failure or Myelodysplastic Syndrome in Dyskeratosis Congenita/Telomere Biology Disorders: Single-Center, Single-Arm, Open-Label Trial of Reduced-Intensity Conditioning Without Radiation. Transplant Cell Ther 2024; 30:1005.e1-1005.e17. [PMID: 39002862 DOI: 10.1016/j.jtct.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Dyskeratosis congenita/telomere biology disorders (DC/TBD) often manifest as bone marrow failure (BMF) or myelodysplastic syndrome (MDS). Allogeneic hematopoietic cell transplant (alloHCT) rescues hematologic complications, but radiation and alkylator-based conditioning regimens cause diffuse whole-body toxicity and may expedite DC/TBD-specific non-hematopoietic complications. Optimization of conditioning intensity in DC/TBD to allow for donor hematopoietic cell engraftment with the least amount of toxicity remains a critical goal of the alloHCT field. OBJECTIVES/STUDY DESIGN We report prospectively collected standard alloHCT outcomes from a single-center, single-arm, open-label clinical trial of bone marrow or peripheral blood stem cell alloHCT for DC/TBD-associated BMF or MDS. Conditioning was reduced intensity (RIC), including alemtuzumab 1 mg/kg, fludarabine 200 mg/m2, and cyclophosphamide 50 mg/kg. A previous single-arm, open-label phase II clinical trial for the same patient population conducted at the same center, differing only by inclusion of 200 cGy of total body irradiation (TBI), served as a control cohort. RESULTS The non-TBI cohort included 10 patients (ages 1.7-65.9 years, median follow-up of 3.9 years) compared with the control TBI cohort, which included 12 patients (ages 2.2-52.2 years, median follow-up of 10.5 years). Baseline characteristics differed only in total CD34+ cells received, with a median of 5.6 (non-TBI) compared with 2.6 (TBI) x 106/kg (P = .02; no difference in total nucleated cells). The cumulative incidence of day +100 grade II-IV acute and 4-year chronic graft-versus-host disease (GvHD) were low at 0% and 10% (non-TBI) and 8% and 17% (TBI), respectively (acute, P = .36; chronic, P = .72). Primary graft failure was absent. Secondary non-neutropenic graft failure occurred in one (non-TBI cohort). The non-TBI cohort demonstrated delayed achievement of full donor chimerism but superior lymphocyte recovery. There was no difference in 4-year overall survival at 80% (non-TBI) and 75% (TBI; P = .78). MDS as an indication for alloHCT was uncommon but overall associated with poor outcomes. There were 3 MDS patients in the non-TBI cohort: 1 relapsed and died at day +387; 1 relapsed at day +500 and is alive 5.5 years later following salvage with a second alloHCT; 1 relapsed at day +1093 and is alive at day +100 after a second alloHCT. There was 1 MDS patient in the TBI cohort who achieved 100% donor myeloid engraftment without relapse but died at day +827 from a bacterial infection in the setting of immune-mediated cytopenia. CONCLUSION Elimination of TBI from the RIC regimen for DC/TBD was not associated with significant changes in rates of graft failure, GvHD, and overall survival but was associated with delayed achievement of full donor chimerism and improved lymphocyte reconstitution. For DC/TBD-associated BMF, TBI appears to be dispensable. Optimal approaches to DC/TBD-associated MDS remain unclear. Larger cohorts are needed to better assess the unique contribution of TBI and donor CD34+ cell dose. Longer follow-up is required to assess differences in DC/TBD complications and late effects.
Collapse
Affiliation(s)
- Marketa Dimitrov
- Division of Pediatric Hematology/Oncology, University of Minnesota, Minneapolis, Minnesota
| | - Svatava Merkle
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Qing Cao
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Rebecca K Tryon
- Department of Genetics, University of Minnesota, Minneapolis, Minnesota
| | - Gregory M Vercellotti
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Shernan G Holtan
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Roy L Kao
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Meera Srikanthan
- Division of Pediatric Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | | | - Jakub Tolar
- Division of Pediatric Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Christen L Ebens
- Division of Pediatric Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
2
|
Bonfim C, Nichele S, Loth G, Funke VAM, Nabhan SK, Pillonetto DV, Lima ACM, Pasquini R. Transplantation for Fanconi anaemia: lessons learned from Brazil. THE LANCET HAEMATOLOGY 2022; 9:e228-e236. [DOI: 10.1016/s2352-3026(22)00032-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022]
|
3
|
Noy-Lotan S, Krasnov T, Dgany O, Jeison M, Yanir AD, Gilad O, Toledano H, Barzilai-Birenboim S, Yacobovich J, Izraeli S, Tamary H, Steinberg-Shemer O. Incorporation of somatic panels for the detection of haematopoietic transformation in children and young adults with leukaemia predisposition syndromes and with acquired cytopenias. Br J Haematol 2020; 193:570-580. [PMID: 33368157 DOI: 10.1111/bjh.17285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022]
Abstract
Detection of somatic mutations may help verify the diagnosis of myelodysplastic syndrome (MDS) in patients with persistent cytopenias or with MDS-predisposition syndromes, prior to the development of overt leukemia. However, the spectrum and consequences of acquired changes in paediatric patients have not been fully evaluated, and especially not in the context of an underlying syndrome. We incorporated a targeted next-generation-sequencing panel of 54 genes for the detection of somatic mutations in paediatric and young adult patients with inherited or acquired cytopenias. Sixty-five patients were included in this study, of whom 17 (26%) had somatic mutations. We detected somatic mutations in 20% of individuals with inherited MDS-predisposition syndromes, including in patients with severe congenital neutropenia and Fanconi anaemia, and with germline mutations in SAMD9L. Thirty-eight per cent of children with acquired cytopenias and suspected MDS had somatic changes, most commonly in genes related to signal transduction and transcription. Molecularly abnormal clones often preceded cytogenetic changes. Thus, routine performance of somatic panels can establish the diagnosis of MDS and determine the optimal timing of haematopoietic stem cell transplantation, prior to the development of leukaemia. In addition, performing somatic panels in patients with inherited MDS-predisposition syndromes may reveal their unique spectrum of acquired mutations.
Collapse
Affiliation(s)
- Sharon Noy-Lotan
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Tanya Krasnov
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Orly Dgany
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Marta Jeison
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Asaf D Yanir
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Oded Gilad
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Helen Toledano
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Barzilai-Birenboim
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joanne Yacobovich
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shai Izraeli
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hannah Tamary
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel.,Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Steinberg-Shemer
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel.,Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Bonfim C. Special pre- and posttransplant considerations in inherited bone marrow failure and hematopoietic malignancy predisposition syndromes. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:107-114. [PMID: 33275667 PMCID: PMC7727534 DOI: 10.1182/hematology.2020000095] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Advances in the diagnosis and treatment of inherited bone marrow failure syndromes (IBMFS) have provided insight into the complexity of these diseases. The diseases are heterogeneous and characterized by developmental abnormalities, progressive marrow failure, and predisposition to cancer. A correct diagnosis allows for appropriate treatment, genetic counseling, and cancer surveillance. The common IBMFSs are Fanconi anemia, dyskeratosis congenita, and Diamond-Blackfan anemia. Hematopoietic cell transplantation (HCT) offers curative treatment of the hematologic complications of IBMFS. Because of the systemic nature of these diseases, transplant strategies are modified to decrease immediate and late toxicities. HCT from HLA-matched related or unrelated donors offers excellent survival for young patients in aplasia. Challenges include the treatment of adults with marrow aplasia, presentation with myeloid malignancy regardless of age, and early detection or treatment of cancer. In this article, I will describe our approach and evaluation of patients transplanted with IBMFS and review most frequent complications before and after transplant.
Collapse
Affiliation(s)
- Carmem Bonfim
- Division of Bone Marrow Transplantation, General Hospital of the Federal University of Parana, Curitiba, Brazil
| |
Collapse
|