1
|
Yu J, Bland E, Schuler T, Cordaro T, Braunstein E. Real-World Use of Ruxolitinib in Patients with Myelofibrosis and Anemia or Thrombocytopenia at Diagnosis. Acta Haematol 2024:1-11. [PMID: 39433041 DOI: 10.1159/000541549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/14/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION Ruxolitinib is approved for treatment of myelofibrosis. We evaluated ruxolitinib in patients with anemia (hemoglobin <10 g/dL) or thrombocytopenia (platelet count ≤100 × 109/L) at diagnosis. METHODS This was a retrospective, secondary analysis of a Cardinal Health Oncology Provider Extended Network medical chart review of adults with myelofibrosis diagnosed between 2012 and 2016 who received first-line ruxolitinib. RESULTS 176 patients received first-line ruxolitinib and were included in this analysis. At diagnosis, 120 patients had hemoglobin concentrations <10 g/dL and 59 had a platelet count ≤100 × 109/L. Most patients (95%) with thrombocytopenia also had anemia. Median time of observation after diagnosis was 21.4 months. Among patients with anemia or thrombocytopenia, ruxolitinib dose at end of study was ≥10 mg twice daily (bid) in 88.3% and 83.1%, respectively. Ruxolitinib treatment was ongoing in 76.1% of patients overall and was rarely discontinued for anemia or thrombocytopenia (n = 2 total, 1.1%). Per the treating physician, 79.7% of patients had improved symptoms and 62.7% improved spleen size. CONCLUSION Most patients with myelofibrosis and anemia or thrombocytopenia at diagnosis tolerated and maintained a ruxolitinib dose ≥10 mg bid for nearly 2 years, resulting in clinical benefit. This real-world evidence supports observations from prospective clinical trials of ruxolitinib in myelofibrosis.
Collapse
Affiliation(s)
- Jingbo Yu
- Incyte Corporation, Wilmington, Delaware, USA
| | | | | | | | | |
Collapse
|
2
|
Ranalli P, Natale A, Guardalupi F, Santarone S, Cantò C, La Barba G, Di Ianni M. Myelofibrosis and allogeneic transplantation: critical points and challenges. Front Oncol 2024; 14:1396435. [PMID: 38966064 PMCID: PMC11222377 DOI: 10.3389/fonc.2024.1396435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 07/06/2024] Open
Abstract
New available drugs allow better control of systemic symptoms associated with myelofibrosis (MF) and splenomegaly but they do not modify the natural history of progressive and poor prognosis disease. Thus, hematopoietic stem cell transplantation (HSCT) is still considered the only available curative treatment for patients with MF. Despite the increasing number of procedures worldwide in recent years, HSCT for MF patients remains challenging. An increasingly complex network of the patient, disease, and transplant-related factors should be considered to understand the need for and the benefits of the procedure. Unfortunately, prospective trials are often lacking in this setting, making an evidence-based decision process particularly arduous. In the present review, we will analyze the main controversial points of allogeneic transplantation in MF, that is, the development of more sophisticated models for the identification of eligible patients; the need for tools offering a more precise definition of expected outcomes combining comorbidity assessment and factors related to the procedure; the decision-making process about the best transplantation time; the evaluation of the most appropriate platform for curative treatment; the impact of splenomegaly; and splenectomy on outcomes.
Collapse
Affiliation(s)
- Paola Ranalli
- Hematology Unit, Pescara Hospital, Pescara, Italy
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Chieti, Italy
| | | | - Francesco Guardalupi
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Chieti, Italy
| | | | - Chiara Cantò
- Hematology Unit, Pescara Hospital, Pescara, Italy
| | | | - Mauro Di Ianni
- Hematology Unit, Pescara Hospital, Pescara, Italy
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
3
|
Mascarenhas J, Migliaccio AR, Kosiorek H, Bhave R, Palmer J, Kuykendall A, Mesa R, Rampal RK, Gerds AT, Yacoub A, Pettit K, Talpaz M, Komrokji R, Kremyanskaya M, Gonzalez A, Fabris F, Johnson K, Dougherty M, McGovern E, Arango Ossa J, Domenico D, Farnoud N, Weinberg RS, Kong A, Najfeld V, Vannucchi AM, Arciprete F, Zingariello M, Falchi M, Salama ME, Mead-Harvey C, Dueck A, Varricchio L, Hoffman R. A Phase Ib Trial of AVID200, a TGFβ 1/3 Trap, in Patients with Myelofibrosis. Clin Cancer Res 2023; 29:3622-3632. [PMID: 37439808 PMCID: PMC10502472 DOI: 10.1158/1078-0432.ccr-23-0276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/09/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE Myelofibrosis (MF) is a clonal myeloproliferative neoplasm characterized by systemic symptoms, cytopenias, organomegaly, and bone marrow fibrosis. JAK2 inhibitors afford symptom and spleen burden reduction but do not alter the disease course and frequently lead to thrombocytopenia. TGFβ, a pleiotropic cytokine elaborated by the MF clone, negatively regulates normal hematopoiesis, downregulates antitumor immunity, and promotes bone marrow fibrosis. Our group previously showed that AVID200, a potent and selective TGFβ 1/3 trap, reduced TGFβ1-induced proliferation of human mesenchymal stromal cells, phosphorylation of SMAD2, and collagen expression. Moreover, treatment of MF mononuclear cells with AVID200 led to increased numbers of progenitor cells (PC) with wild-type JAK2 rather than JAK2V617F. PATIENTS AND METHODS We conducted an investigator-initiated, multicenter, phase Ib trial of AVID200 monotherapy in 21 patients with advanced MF. RESULTS No dose-limiting toxicity was identified at the three dose levels tested, and grade 3/4 anemia and thrombocytopenia occurred in 28.6% and 19.0% of treated patients, respectively. After six cycles of therapy, two patients attained a clinical benefit by IWG-MRT criteria. Spleen and symptom benefits were observed across treatment cycles. Unlike other MF-directed therapies, increases in platelet counts were noted in 81% of treated patients with three patients achieving normalization. Treatment with AVID200 resulted in potent suppression of plasma TGFβ1 levels and pSMAD2 in MF cells. CONCLUSIONS AVID200 is a well-tolerated, rational, therapeutic agent for the treatment of patients with MF and should be evaluated further in patients with thrombocytopenic MF in combination with agents that target aberrant MF intracellular signaling pathways.
Collapse
Affiliation(s)
- John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Heidi Kosiorek
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, Arizona
| | - Rupali Bhave
- Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina
| | | | - Andrew Kuykendall
- Department of Hematologic Malignancy, Moffitt Cancer Center, Tampa, Florida
| | - Ruben Mesa
- Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina
| | - Raajit K. Rampal
- Leukemia Service, Department of Medicine, Center for Hematologic Malignancies, Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Aaron T. Gerds
- Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | | | - Kristen Pettit
- University of Michigan, Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Moshe Talpaz
- University of Michigan, Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Rami Komrokji
- Department of Hematologic Malignancy, Moffitt Cancer Center, Tampa, Florida
| | - Marina Kremyanskaya
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Agapito Gonzalez
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Frank Fabris
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kathryn Johnson
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mikaela Dougherty
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Erin McGovern
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Juan Arango Ossa
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dylan Domenico
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Noushin Farnoud
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Amy Kong
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Vesna Najfeld
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Francesca Arciprete
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Mario Falchi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena Rome Italy
| | | | - Carolyn Mead-Harvey
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, Arizona
| | - Amylou Dueck
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, Arizona
| | - Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
4
|
Rienhoff HY, Gill H. Bomedemstat as an investigative treatment for myeloproliferative neoplasms. Expert Opin Investig Drugs 2023; 32:879-886. [PMID: 37804041 DOI: 10.1080/13543784.2023.2267980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
INTRODUCTION Myeloproliferative neoplasm (MPN) is a heterogeneous group of hematopoietic stem cell disorders characterized by clonal proliferation of one of more of the hematopoietic stem cell lineages. Clinical manifestations result from uncontrolled myeloproliferation, extramedullary hematopoiesis with splenomegaly and excessive inflammatory cytokine production. Currently available therapy improves hematologic parameters and symptoms but does not adequately address the underlying neoplastic biology. Bomedemstat has thus far demonstrated clinical efficacy and tolerability in the treatment of MPNs with recent evidence of impacting the malignant stem cell population. AREAS COVERED This review summarizes the mechanisms of action, pharmacokinetics and pharmacodynamics, safety and efficacy of bomedemstat in MPN with specific emphasis on essential thrombocythemia (ET) and myelofibrosis (MF). EXPERT OPINION In patients with MPNs, bomedemstat appears effective and well tolerated. The signs and symptoms of these diseases are managed as a reduction in the frequency of mutant cells was demonstrated in patients with ET and MF. Ongoing and planned studies of bomedemstat in MPN will establish the position of bomedemstat in MPNs and may help to redefine treatment endpoints of MPNs in the future.
Collapse
Affiliation(s)
| | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Pemmaraju N, Bose P, Rampal R, Gerds AT, Fleischman A, Verstovsek S. Ten years after ruxolitinib approval for myelofibrosis: a review of clinical efficacy. Leuk Lymphoma 2023:1-19. [PMID: 37081809 DOI: 10.1080/10428194.2023.2196593] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Myelofibrosis (MF) is a chronic myeloproliferative neoplasm characterized by splenomegaly, abnormal cytokine expression, cytopenias, and progressive bone marrow fibrosis. The disease often manifests with burdensome symptoms and is associated with reduced survival. Ruxolitinib, an oral Janus kinase (JAK) 1 and JAK2 inhibitor, was the first agent approved for MF. As a first-in-class targeted treatment, ruxolitinib approval transformed the MF treatment approach and remains standard of care. In addition, targeted inhibition of JAK1/JAK2 signaling, a key molecular pathway underlying MF pathogenesis, and the large volume of literature evaluating ruxolitinib, have led to a better understanding of the disease and improved management in general. Here we review ruxolitinib efficacy in patients with MF in the 10 years following approval, including demonstration of clinical benefit in the phase 3 COMFORT-I/II trials, real-world evidence, translational studies, and expanded access data. Lastly, future directions for MF treatment are discussed, including ruxolitinib-based combination therapies.
Collapse
Affiliation(s)
- Naveen Pemmaraju
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raajit Rampal
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aaron T Gerds
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Angela Fleischman
- Division of Hematology/Oncology, Medicine, University of California, Irvine, CA, USA
| | - Srdan Verstovsek
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Machine Learning Improves Risk Stratification in Myelofibrosis: An Analysis of the Spanish Registry of Myelofibrosis. Hemasphere 2022; 7:e818. [PMID: 36570691 PMCID: PMC9771324 DOI: 10.1097/hs9.0000000000000818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Myelofibrosis (MF) is a myeloproliferative neoplasm (MPN) with heterogeneous clinical course. Allogeneic hematopoietic cell transplantation remains the only curative therapy, but its morbidity and mortality require careful candidate selection. Therefore, accurate disease risk prognostication is critical for treatment decision-making. We obtained registry data from patients diagnosed with MF in 60 Spanish institutions (N = 1386). These were randomly divided into a training set (80%) and a test set (20%). A machine learning (ML) technique (random forest) was used to model overall survival (OS) and leukemia-free survival (LFS) in the training set, and the results were validated in the test set. We derived the AIPSS-MF (Artificial Intelligence Prognostic Scoring System for Myelofibrosis) model, which was based on 8 clinical variables at diagnosis and achieved high accuracy in predicting OS (training set c-index, 0.750; test set c-index, 0.744) and LFS (training set c-index, 0.697; test set c-index, 0.703). No improvement was obtained with the inclusion of MPN driver mutations in the model. We were unable to adequately assess the potential benefit of including adverse cytogenetics or high-risk mutations due to the lack of these data in many patients. AIPSS-MF was superior to the IPSS regardless of MF subtype and age range and outperformed the MYSEC-PM in patients with secondary MF. In conclusion, we have developed a prediction model based exclusively on clinical variables that provides individualized prognostic estimates in patients with primary and secondary MF. The use of AIPSS-MF in combination with predictive models that incorporate genetic information may improve disease risk stratification.
Collapse
|
7
|
England JT, Gupta V. Fedratinib: a pharmacotherapeutic option for JAK-inhibitor naïve and exposed patients with myelofibrosis. Expert Opin Pharmacother 2022; 23:1677-1686. [PMID: 36252265 DOI: 10.1080/14656566.2022.2135989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Ruxolitinib is the most commonly used JAK-inhibitor (JAKi) for the management of symptoms related to splenomegaly and cytokine-mediated inflammation in patients with myelofibrosis (MF), but is limited by variable durability of response with most patients experiencing failure after 2-3 years. Long-term data on other approved JAKi, fedratinib and pacritinib, are not available due to the clinical hold put on pivotal trials for toxicity concerns. AREAS COVERED Following the initial hold for concern of Wernicke's encephalopathy, fedratinib was approved by the Food and Drug Administration (FDA) in 2019 for MF. We review the data available from early, and late phase critical trials, outline a role for fedratinib in the current treatment landscape of MF, and highlight the knowledge gaps in optimizing use of fedratinib. EXPERT OPINION The JAKARTA and JAKARTA2 trials established efficacy in spleen volume response (SVR) and symptom reduction in JAKi-naïve and ruxolitinib-exposed MF patients, respectively. Further trials, FREEDOM and FREEDOM2, are in progress to understand long-term effects of fedratinib; and include strategies to mitigate gastrointestinal toxicity, monitor thiamine levels and surveil for encephalopathy. We use fedratinib for symptomatic MF following ruxolitinib failure in patients without significant cytopenias; with practical strategies for monitoring and managing potential toxicity.
Collapse
Affiliation(s)
- James T England
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Vikas Gupta
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|