1
|
Liu Y, Pu Y, Wang J, Li Z, Liu S, Tang S. A bioinformatics-driven approach to identify biomarkers and elucidate the pathogenesis of type 2 diabetes concurrent with pulmonary tuberculosis. Sci Rep 2025; 15:16931. [PMID: 40374744 PMCID: PMC12081747 DOI: 10.1038/s41598-025-00928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 05/02/2025] [Indexed: 05/18/2025] Open
Abstract
Type 2 diabetes (T2DM) co-existing with pulmonary tuberculosis (PTB) is associated with increased rates of treatment failure and mortality. Therefore, greater understanding of the occurrence and prevalence of this comorbidity and research to address the prevention and treatment of PTB in patients with T2DM (PTB + T2DM) have become paramount. Weighted gene co-expression network analysis (WGCNA) and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were employed to identify key gene modules and functions related to PTB + T2DM. Immune cell infiltration and drug sensitivity were compared between PTB + T2DM patients and healthy controls (HCs), with a bioinformatic approach. Several key genes were chosen for in vitro expression assays using quantitative real-time PCR (qRT-PCR), western blotting (WB), and enzyme-linked immunosorbent assay (ELISA). Compared to HCs and T2DM-only patients, PTB + 2DM patients showed upregulated expression of complement component C1q. WGCNA identified five crucial genes associated with PTB + T2DM: C1QA, CD248, LINC00278, MMP8, and MMP9. Multiscale embedded gene co-expression network analysis further identified FN1. The main KEGG pathways in PTB + T2DM patients were related to extracellular matrix-receptor interaction, the interleukin-17 signaling pathway, the AGE-RAGE signaling pathway in diabetic complications, the PI3K-Akt signaling pathway, and neutrophil extracellular trap formation. Receiver operating characteristic (ROC) analysis indicated that CD248, MMP8, MMP9, LINC00278, and C1QA have potential as diagnostic markers for PTB + T2DM. The expression levels of C1QA, LINC00278, MMP8, and MMP9 were significantly higher, and that of CD248 was significantly lower, in PTB + T2DM patients than in HCs. A network comprising highly correlated hub genes and microRNAs revealed the following interactions: C1QA with hsa-miR-363-5p, hsa-miR-671-5p, and hsa-miR-25-5p; CD248 with COL1 A2, COL1 A1, and COL4 A1; MMP8 with hsa-miR-539-5p, MMP9, and CEACAM8; and MMP9 with FN1, MMP8, hsa-miR-29b-3p, hsa-miR-942-3p, hsa-miR-302-5p, and hsa-miR-133a-5p. Seven drugs (ERK_440_1713, JAK_8517_1739, Palbociclib_1054, PLX.4720_1036, Savolitinib_1936, Selumetinib_1736, and VX.11e_2096) exhibited significant sensitivity in patients with high-expression or low-expression of C1QA. ELISA, qRT-PCR, and WB analyses confirmed the upregulated expression of C1QA, MMP8, and MMP9 in the peripheral blood of PTB + T2DM patients. This study elucidated the intricate molecular connections between PTB and T2DM and identified potential shared targets. Five genes (C1QA, MMP8, MMP9, CD248, and LINC00278) have potential as diagnostic markers for PTB + T2DM, and three genes (C1QA, MMP8, and MMP9) were upregulated in the peripheral blood of PTB + T2DM patients. Our findings may serve as a valuable reference for future research and clinical applications.
Collapse
Affiliation(s)
- Yan Liu
- Clinical Medical Center for Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yonglan Pu
- Department of Infectious Diseases, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Taicang, China
| | - Jie Wang
- Department of Infectious Diseases, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Taicang, China.
| | - Zhiyong Li
- Department of Infectious Diseases, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Taicang, China
| | - Songliang Liu
- Department of Infectious Diseases, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Taicang, China
| | - Shenjie Tang
- Clinical Medical Center for Tuberculosis & Beijing Tuberculosis Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 100091, China.
| |
Collapse
|
2
|
Emmerick LS, Schwarz MGA, Corrêa PR, Piñero SL, Gomes LHF, Almeida AMM, Valente RH, Degrave WMS, Mendonça-Lima L. Characterization of mycobacteria isolated from the Brazilian Atlantic Forest: a public health and bioprospection perspective. Front Microbiol 2025; 16:1558006. [PMID: 40351310 PMCID: PMC12062998 DOI: 10.3389/fmicb.2025.1558006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
The Mycobacterium genus remains highly relevant today due to the rising incidence of tuberculosis and opportunistic infections caused by environmental mycobacteria. While much is known about M. tuberculosis, M. leprae and M. bovis, studies focusing on environmental mycobacteria remain limited. These microorganisms are globally distributed and have been identified in diverse biomes, including the Atlantic Forest. This study aims to provide a characterization of four mycobacterial strains isolated from the Atlantic Forest, assessing their metabolic capabilities and biotechnological potential. We investigated the presence of cellulases and proteases and conducted an initial profiling of secreted proteins. Furthermore, the examination of shared antigens and infection kinetics within macrophages offered insights into the ecological and pathogenic potential of these isolates. From a public health perspective, antigenic similarities between these environmental microorganisms and the BCG vaccine strain may influence the efficacy of BCG in protecting against diseases such as tuberculosis. Continued research on these and other environmental isolates, particularly within Brazil's highly biodiverse ecosystems, holds promise for advancing scientific knowledge and contributing to human health.
Collapse
Affiliation(s)
- Leandro Santiago Emmerick
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcos Gustavo Araujo Schwarz
- Laboratório de Biologia Molecular Aplicada à Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Paloma Rezende Corrêa
- Laboratório de Biologia Molecular Aplicada à Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Sindy Licette Piñero
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Leonardo Henrique Ferreira Gomes
- Laboratório de Alta Complexidade, Unidade de Pesquisa Clínica, Instituto Fernandes Figueira, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Maria Mazotto Almeida
- Laboratório de Biocatálise Microbiana, Instituto de Microbiologia Paulo de Góes, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Richard Hemmi Valente
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Wim Maurits Sylvain Degrave
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Leila Mendonça-Lima
- Laboratório de Biologia Molecular Aplicada à Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Wang Y, Liu Y, Long M, Dong Y, Li L, Zhou X. Nanoparticles target M2 macrophages to silence kallikrein-related peptidase 12 for the treatment of tuberculosis and drug-resistant tuberculosis. Acta Biomater 2024; 188:358-373. [PMID: 39305944 DOI: 10.1016/j.actbio.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024]
Abstract
Matrix metalloproteinases (MMPs) are involved in the breakdown of lung extracellular matrix and the consequent release of Mycobacterium tuberculosis into the airways. Recent studies indicate that kallikrein-related peptidase 12 (KLK12) regulate MMP-1 and MMP-9, suggesting that targeting the KLK12 gene could be a promising tuberculosis (TB) treatment. To maximise therapeutic potential, this strategy of silencing KLK12 needs to be delivered to the pathogenic cell population while preserving the immunoprotective and tissue homeostatic functions of other lung macrophages. Our research found that KLK12 is highly expressed in M2 macrophages, leading us to design mannose-based bovine serum albumin nanoparticles (MBNPs) for delivering siRNA to silence KLK12 in these cells. The results of in vitro experiments showed that MBNPs could accurately enter M2 macrophages and sustainably release KLK12-siRNA with the help of mannose and mannose receptor targeting. The results of the in vivo experiments showed that MBNPs could reach the lungs within 1 h after intraperitoneal injection and peaked at 6 h. MBNPs increased collagen fibre content in the lungs by decreasing the levels of KLK12/MMPs thereby limiting the progression of TB. Importantly, MBNPs provided greater alleviation of pulmonary TB symptoms and reduced bacterial load in both TB and drug-resistant TB models. These findings provide an alternative and effective option for the treatment of TB, especially when drug resistance occurs. STATEMENT OF SIGNIFICANCE: RNA interference using small interfering RNA (siRNA) can target various genes and has potential for treating diseases such as tuberculosis (TB). However, siRNAs are unstable in the blood and within cells. This study presents bovine serum albumin nanoparticles encapsulating KLK12-siRNA (BNPs) synthesized via desolvation. A mannose layer was added (MBNPs) to target mannose receptors on M2 macrophages, facilitating endocytosis. The low pH-responsive MBNPs enhance lysosomal escape for siRNA delivery, downregulating the KLK12 pathway. Tests confirmed that MBNPs effectively inhibited Mycobacterium bovis proliferation, reduced granulomas, and decreased inflammation in a mouse model. This research aims to reduce antibiotic use, shorten treatment duration, and provide a novel TB treatment option.
Collapse
Affiliation(s)
- Yuanzhi Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yiduo Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Meizhen Long
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuhui Dong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lin Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiangmei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Abbasnia S, Hashem Asnaashari AM, Sharebiani H, Soleimanpour S, Mosavat A, Rezaee SA. Mycobacterium tuberculosis and host interactions in the manifestation of tuberculosis. J Clin Tuberc Other Mycobact Dis 2024; 36:100458. [PMID: 38983441 PMCID: PMC11231606 DOI: 10.1016/j.jctube.2024.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
The final step of epigenetic processes is changing the gene expression in a new microenvironment in the body, such as neuroendocrine changes, active infections, oncogenes, or chemical agents. The case of tuberculosis (TB) is an outcome of Mycobacterium tuberculosis (M.tb) and host interaction in the manifestation of active and latent TB or clearance. This comprehensive review explains and interprets the epigenetics findings regarding gene expressions on the host-pathogen interactions in the development and progression of tuberculosis. This review introduces novel insights into the complicated host-pathogen interactions, discusses the challengeable results, and shows the gaps in the clear understanding of M.tb behavior. Focusing on the biological phenomena of host-pathogen interactions, the epigenetic changes, and their outcomes provides a promising future for developing effective TB immunotherapies when converting gene expression toward appropriate host immune responses gradually becomes attainable. Overall, this review may shed light on the dark sides of TB pathogenesis as a life-threatening disease. Therefore, it may support effective planning and implementation of epigenetics approaches for introducing proper therapies or effective vaccines.
Collapse
Affiliation(s)
- Shadi Abbasnia
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hiva Sharebiani
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Larenas-Muñoz F, Sánchez-Carvajal JM, Ruedas-Torres I, Álvarez-Delgado C, Fristiková K, Pallarés FJ, Carrasco L, Chicano-Gálvez E, Rodríguez-Gómez IM, Gómez-Laguna J. Proteomic analysis of granulomas from cattle and pigs naturally infected with Mycobacterium tuberculosis complex by MALDI imaging. Front Immunol 2024; 15:1369278. [PMID: 39021575 PMCID: PMC11252589 DOI: 10.3389/fimmu.2024.1369278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has recently gained prominence for its ability to provide molecular and spatial information in tissue sections. This technology has the potential to uncover novel insights into proteins and other molecules in biological and immunological pathways activated along diseases with a complex host-pathogen interaction, such as animal tuberculosis. Thus, the present study conducted a data analysis of protein signature in granulomas of cattle and pigs naturally infected with the Mycobacterium tuberculosis complex (MTC), identifying biological and immunological signaling pathways activated throughout the disease. Lymph nodes from four pigs and four cattle, positive for the MTC by bacteriological culture and/or real-time PCR, were processed for histopathological examination and MALDI-MSI. Protein identities were assigned using the MaTisse database, and protein-protein interaction networks were visualized using the STRING database. Gene Ontology (GO) analysis was carried out to determine biological and immunological signaling pathways in which these proteins could participate together with Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Distinct proteomic profiles between cattle and pig granulomas were displayed. Noteworthy, the GO analysis revealed also common pathways among both species, such as "Complement activation, alternative pathway" and "Tricarboxylic acid cycle", which highlight pathways that are conserved among different species infected by the MTC. In addition, species-specific terms were identified in the current study, such as "Natural killer cell degranulation" in cattle or those related to platelet and neutrophil recruitment and activation in pigs. Overall, this study provides insights into the immunopathogenesis of tuberculosis in cattle and pigs, opening new areas of research and highlighting the importance, among others, of the complement activation pathway and the regulation of natural killer cell- and neutrophil-mediated immunity in this disease.
Collapse
Affiliation(s)
- Fernanda Larenas-Muñoz
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - José María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
- Pathology Group, United Kingdom Health Security Agency (UKHSA), Salisbury, United Kingdom
| | - Carmen Álvarez-Delgado
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Karola Fristiková
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Francisco José Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Eduardo Chicano-Gálvez
- Instituto Maimónides de Investigaciones Biomédicas (IMIBIC) Mass Spectrometry and Molecular Imaging Unit (IMSMI), Maimónides Biomedical Research Institute of Córdoba, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| |
Collapse
|
6
|
Song L, Zhang D, Wang H, Xia X, Huang W, Gonzales J, Via LE, Wang D. Automated quantitative assay of fibrosis characteristics in tuberculosis granulomas. Front Microbiol 2024; 14:1301141. [PMID: 38235425 PMCID: PMC10792068 DOI: 10.3389/fmicb.2023.1301141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/06/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Granulomas, the pathological hallmark of Mycobacterium tuberculosis (Mtb) infection, are formed by different cell populations. Across various stages of tuberculosis conditions, most granulomas are classical caseous granulomas. They are composed of a necrotic center surrounded by multilayers of histocytes, with the outermost layer encircled by fibrosis. Although fibrosis characterizes the architecture of granulomas, little is known about the detailed parameters of fibrosis during this process. Methods In this study, samples were collected from patients with tuberculosis (spanning 16 organ types), and Mtb-infected marmosets and fibrotic collagen were characterized by second harmonic generation (SHG)/two-photon excited fluorescence (TPEF) microscopy using a stain-free, fully automated analysis program. Results Histopathological examination revealed that most granulomas share common features, including necrosis, solitary and compact structure, and especially the presence of multinuclear giant cells. Masson's trichrome staining showed that different granuloma types have varying degrees of fibrosis. SHG imaging uncovered a higher proportion (4%~13%) of aggregated collagens than of disseminated type collagens (2%~5%) in granulomas from matched tissues. Furthermore, most of the aggregated collagen presented as short and thick clusters (200~620 µm), unlike the long and thick (200~300 µm) disseminated collagens within the matched tissues. Matrix metalloproteinase-9, which is involved in fibrosis and granuloma formation, was strongly expressed in the granulomas in different tissues. Discussion Our data illustrated that different tuberculosis granulomas have some degree of fibrosis in which collagen strings are short and thick. Moreover, this study revealed that the SHG imaging program could contribute to uncovering the fibrosis characteristics of tuberculosis granulomas.
Collapse
Affiliation(s)
- Li Song
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Ding Zhang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Hankun Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Xuan Xia
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Weifeng Huang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Jacqueline Gonzales
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Decheng Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| |
Collapse
|
7
|
Cao XS, Zheng WQ, Hu ZD. Diagnostic value of soluble biomarkers for parapneumonic pleural effusion. Crit Rev Clin Lab Sci 2023; 60:233-247. [PMID: 36593742 DOI: 10.1080/10408363.2022.2158779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Parapneumonic pleural effusion (PPE) is a common complication in patients with pneumonia. Timely and accurate diagnosis of PPE is of great value for its management. Measurement of biomarkers in circulating and pleural fluid have the advantages of easy accessibility, short turn-around time, objectiveness and low cost and thus have utility for PPE diagnosis and stratification. To date, many biomarkers have been reported to be of value for the management of PPE. Here, we review the values of pleural fluid and circulating biomarkers for the diagnosis and stratification PPE. The biomarkers discussed are C-reactive protein, procalcitonin, presepsin, soluble triggering receptor expressed on myeloid cells 1, lipopolysaccharide-binding protein, inflammatory markers, serum amyloid A, soluble urokinase plasminogen activator receptor, matrix metalloproteinases, pentraxin-3 and cell-free DNA. We found that none of the available biomarkers has adequate performance for diagnosing and stratifying PPE. Therefore, further work is needed to identify and validate novel biomarkers, and their combinations, for the management of PPE.
Collapse
Affiliation(s)
- Xi-Shan Cao
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
8
|
Maranatha D, Ambarwati D. Association of serum MMP-9 level and lung function in new pulmonary tuberculosis case. CURRENT RESPIRATORY MEDICINE REVIEWS 2022. [DOI: 10.2174/1573398x18666220407084457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Histopathological abnormalities of pulmonary tuberculosis (TB) include caseous granuloma formation, tissue damage, and cavity formation, all of which could lead to permanent changes in the pulmonary anatomy. In pulmonary TB, an increase in serum Matrix Metalloproteinase (MMP)-9 correlates with disease severity and worse prognosis. This study aims to analyze the association between serum MMP-9 levels and the values of FVC, FEV1, and FEV1/FVC.
Methods:
A cross-sectional study of patients with pulmonary tuberculosis was conducted in the Tuberculosis Outpatient Clinic, Dr. Soetomo Academic Hospital, Surabaya, Indonesia. Spirometry and serum MMP-9 levels were examined in new pulmonary TB patients prior to anti-tuberculosis therapy. The relationship between serum MMP-9 levels and results of spirometry examination was then analyzed.
Results:
There were 44 new pulmonary TB cases with a mean age of 37.90 ± 15.15 years. The patients who experienced symptoms in < 1 month were 20.5%, ≥ 1 month 59.1%, and ≥ 2 months 20.4%. The mean MMP-9 serum level was 11.27±5.47 ng/ml. Spirometry results: FVC 1.83±0.69 L, FVC predicted 56.24±18.74%, FEV1 1.71±0.72 L/sec, FEV1 predicted 60.85±21.30%, and FEV1/FVC 104.16 ± 17.45%. In pulmonary TB patients with symptoms experienced in < 1 month to diagnosis, a significant relationship between MMP-9 and FVC levels was found with r = -0.839 (p = 0.005).
Conclusion:
There is a correlation between serum MMP-9 level and restrictive pulmonary impairment in new pulmonary TB cases with symptoms experienced in < 1 month.
Collapse
Affiliation(s)
- Daniel Maranatha
- Department of Pulmonology and Respiratory Medicine
Faculty of Medicine, Universitas Airlangga, Dr. Soetomo Hospital Surabaya, Indonesia
| | - Devi Ambarwati
- Department of Pulmonology and Respiratory Medicine
Faculty of Medicine, Universitas Airlangga, Dr. Soetomo Hospital Surabaya, Indonesia
| |
Collapse
|
9
|
Robak A, Kistowski M, Wojtas G, Perzanowska A, Targowski T, Michalak A, Krasowski G, Dadlez M, Domański D. Diagnosing pleural effusions using mass spectrometry-based multiplexed targeted proteomics quantitating mid- to high-abundance markers of cancer, infection/inflammation and tuberculosis. Sci Rep 2022; 12:3054. [PMID: 35197508 PMCID: PMC8866415 DOI: 10.1038/s41598-022-06924-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/09/2022] [Indexed: 01/08/2023] Open
Abstract
Pleural effusion (PE) is excess fluid in the pleural cavity that stems from lung cancer, other diseases like extra-pulmonary tuberculosis (TB) and pneumonia, or from a variety of benign conditions. Diagnosing its cause is often a clinical challenge and we have applied targeted proteomic methods with the aim of aiding the determination of PE etiology. We developed a mass spectrometry (MS)-based multiple reaction monitoring (MRM)-protein-panel assay to precisely quantitate 53 established cancer-markers, TB-markers, and infection/inflammation-markers currently assessed individually in the clinic, as well as potential biomarkers suggested in the literature for PE classification. Since MS-based proteomic assays are on the cusp of entering clinical use, we assessed the merits of such an approach and this marker panel based on a single-center 209 patient cohort with established etiology. We observed groups of infection/inflammation markers (ADA2, WARS, CXCL10, S100A9, VIM, APCS, LGALS1, CRP, MMP9, and LDHA) that specifically discriminate TB-PEs and other-infectious-PEs, and a number of cancer markers (CDH1, MUC1/CA-15-3, THBS4, MSLN, HPX, SVEP1, SPINT1, CK-18, and CK-8) that discriminate cancerous-PEs. Some previously suggested potential biomarkers did not show any significant difference. Using a Decision Tree/Multiclass classification method, we show a very good discrimination ability for classifying PEs into one of four types: cancerous-PEs (AUC: 0.863), tuberculous-PEs (AUC of 0.859), other-infectious-PEs (AUC of 0.863), and benign-PEs (AUC: 0.842). This type of approach and the indicated markers have the potential to assist in clinical diagnosis in the future, and help with the difficult decision on therapy guidance.
Collapse
Affiliation(s)
- Aleksandra Robak
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics - Polish Academy of Sciences, Warsaw, Poland
| | - Michał Kistowski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics - Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Wojtas
- Mazovian Center of Pulmonary Disease and Tuberculosis Treatment, Otwock, Poland
| | - Anna Perzanowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics - Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Targowski
- Department of Geriatrics, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Agata Michalak
- Mazovian Center of Pulmonary Disease and Tuberculosis Treatment, Otwock, Poland
| | - Grzegorz Krasowski
- Mazovian Center of Pulmonary Disease and Tuberculosis Treatment, Otwock, Poland
| | - Michał Dadlez
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics - Polish Academy of Sciences, Warsaw, Poland
| | - Dominik Domański
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics - Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
10
|
Guler R, Ozturk M, Sabeel S, Motaung B, Parihar SP, Thienemann F, Brombacher F. Targeting Molecular Inflammatory Pathways in Granuloma as Host-Directed Therapies for Tuberculosis. Front Immunol 2021; 12:733853. [PMID: 34745105 PMCID: PMC8563828 DOI: 10.3389/fimmu.2021.733853] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/01/2021] [Indexed: 01/15/2023] Open
Abstract
Globally, more than 10 million people developed active tuberculosis (TB), with 1.4 million deaths in 2020. In addition, the emergence of drug-resistant strains in many regions of the world threatens national TB control programs. This requires an understanding of host-pathogen interactions and finding novel treatments including host-directed therapies (HDTs) is of utter importance to tackle the TB epidemic. Mycobacterium tuberculosis (Mtb), the causative agent for TB, mainly infects the lungs causing inflammatory processes leading to immune activation and the development and formation of granulomas. During TB disease progression, the mononuclear inflammatory cell infiltrates which form the central structure of granulomas undergo cellular changes to form epithelioid cells, multinucleated giant cells and foamy macrophages. Granulomas further contain neutrophils, NK cells, dendritic cells and an outer layer composed of T and B lymphocytes and fibroblasts. This complex granulomatous host response can be modulated by Mtb to induce pathological changes damaging host lung tissues ultimately benefiting the persistence and survival of Mtb within host macrophages. The development of cavities is likely to enhance inter-host transmission and caseum could facilitate the dissemination of Mtb to other organs inducing disease progression. This review explores host targets and molecular pathways in the inflammatory granuloma host immune response that may be beneficial as target candidates for HDTs against TB.
Collapse
Affiliation(s)
- Reto Guler
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Solima Sabeel
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Bongani Motaung
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Suraj P Parihar
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Friedrich Thienemann
- General Medicine & Global Health, Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Internal Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
11
|
Kuźniarz K, Luchowska-Kocot D, Tomaszewski T, Kurzepa J. Role of matrix metalloproteinases and their tissue inhibitors in the pathological mechanisms underlying maxillofacial cystic lesions. Biomed Rep 2021; 15:65. [PMID: 34155449 PMCID: PMC8212445 DOI: 10.3892/br.2021.1441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022] Open
Abstract
Cystic lesions are considered to be one of the most common pathologies of the maxillofacial region, and matrix metalloproteinases (MMPs) may represent potential etiological factors. The aim of the present study was to elucidate the role of MMP-2 and MMP-9, and their endogenous tissue inhibitors, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2, respectively, in the pathogenesis of maxillofacial cystic lesions. A total of 25 patients diagnosed with radicular cysts (RCs; n=20), dentigerous cysts (n=3) and retention cysts (RtCs; n=7) were enrolled in the present study. Gelatin zymography was performed to assess the gelatinolytic activity of MMP-2 and MMP-9, and commercial ELISA kits were used to determine TIMP-1 and TIMP-2 concentrations. Gelatin zymography revealed the presence of both MMP-2 and MMP-9 in all types of samples analyzed. An increase in MMP-9 activity, TIMP-1 concentration and MMP-9/TIMP-1 ratio was observed in the fluid obtained from RCs compared with that obtained from RtCs. In conclusion, MMP-9 may be involved in the pathogenesis of RCs, whereas the activity of MMP-2 in the wall of RtCs was low, and this gelatinase did not appear to significantly affect the development of this type of lesion.
Collapse
Affiliation(s)
- Krystian Kuźniarz
- Department of Maxillofacial Surgery, Medical University of Lublin, Lublin 20-081, Poland
| | | | - Tomasz Tomaszewski
- Department of Maxillofacial Surgery, Medical University of Lublin, Lublin 20-081, Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, Lublin 20-081, Poland
| |
Collapse
|
12
|
Zhang M, Yan L, Lippi G, Hu ZD. Pleural biomarkers in diagnostics of malignant pleural effusion: a narrative review. Transl Lung Cancer Res 2021; 10:1557-1570. [PMID: 33889529 PMCID: PMC8044497 DOI: 10.21037/tlcr-20-1111] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although cytology and pleural biopsy of pleural effusion (PE) are the gold standards for diagnosing malignant pleural effusion (MPE), these tools’ diagnostic accuracy is plagued by some limitations such as low sensitivity, considerable inter-observer variation and invasiveness. The assessment of PE biomarkers may hence be seen as an objective and non-invasive diagnostic alternative in MPE diagnostics. In this review, we summarize the characteristics and diagnostic accuracy of available PE biomarkers, including carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), carbohydrate antigens 125 (CA125), carbohydrate antigen 19-9 (CA19-9), carbohydrate antigen 15-3 (CA15-3), a fragment of cytokeratin 19 (CYFRA 21-1), chitinase-like proteins (CLPs), vascular endothelial growth factor (VEGF) and its soluble receptor, endostatin, calprotectin, cancer ratio, homocysteine, apolipoprotein E (Apo-E), B7 family members, matrix metalloproteinase (MMPs) and tissue-specific inhibitors of metalloproteinases (TIMPs), reactive oxygen species modulator 1 (Romo1), tumor-associated macrophages (TAMs) and monocytes, epigenetic markers (e.g., cell-free microRNA and mRNA). We summarized the evidence from systematic review and meta-analysis for traditional tumor markers’ diagnostic accuracy. According to the currently available evidence, we conclude that the traditional tumor markers have high specificity (around 0.90) but low sensitivity (around 0.50). The diagnostic accuracy of novel tumor markers needs to be validated by further studies. None of these tumor biomarkers would have sufficient diagnostic accuracy to confirm or exclude MPE when used alone. A multi-biomarker strategy, also encompassing the use of artificial intelligence algorithms, may be a valuable perspective for improving the diagnostic accuracy of MPE.
Collapse
Affiliation(s)
- Man Zhang
- Department of Thoracic Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Li Yan
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Zhi-De Hu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
13
|
Kathamuthu GR, Kumar NP, Moideen K, Nair D, Banurekha VV, Sridhar R, Baskaran D, Babu S. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases Are Potential Biomarkers of Pulmonary and Extra-Pulmonary Tuberculosis. Front Immunol 2020; 11:419. [PMID: 32218787 PMCID: PMC7078103 DOI: 10.3389/fimmu.2020.00419] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) are potential regulators of tuberculosis (TB) pathology. Whether they are candidates for non-sputum-based biomarkers for pulmonary TB (PTB) and extra-pulmonary TB (EPTB) is not fully understood. Hence, to examine the association of MMPs and TIMPs with PTB and EPTB, we have measured the circulating levels of MMPs (MMP-1, 2, 3, 7, 8, 9, 12, and 13) and TIMPs (TIMP-1, 2, 3, and 4) in PTB, EPTB and compared them with latent tuberculosis (LTB) or healthy control (HC) individuals. We have also assessed their circulating levels before and after the completion of anti-tuberculosis treatment (ATT). Our data describes that systemic levels of MMP-1, 8, 9, 12 were significantly increased in PTB compared to EPTB, LTB, and HC individuals. In contrast, MMP-7 was significantly reduced in PTB compared to EPTB individuals. Likewise, the systemic levels of MMP-1, 7, 13 were significantly increased in EPTB in comparison to LTB and HC individuals. In contrast, MMP-8 was significantly reduced in EPTB individuals compared to LTB and HC individuals. In addition, the systemic levels of TIMP-1, 2, 3 were significantly diminished and TIMP-4 levels were significantly enhanced in PTB compared to EPTB, LTB, and HC individuals. The circulating levels of TIMP-2 was significantly reduced and TIMP-3 was significantly elevated in EPTB individuals in comparison with LTB and HCs. Some of the MMPs (7, 8, 9, 12, 13 in PTB and 1, 7, 8, 9 in EPTB) and TIMPs (1, 2, 3, 4 in PTB and 4 in EPTB) were significantly modulated upon treatment completion. ROC analysis showed that MMP-1, 9 and TIMP-2, 4 could clearly discriminate PTB from EPTB, LTB and HCs and MMP-13 and TIMP-2 could clearly discriminate EPTB from LTB and HCs. Additionally, multivariate analysis also indicated that these alterations were independent of age and sex in PTB and EPTB individuals. Therefore, our data demonstrates that MMPs and TIMPs are potential candidates for non-sputum-based biomarkers for differentiating PTB and EPTB from LTB and HC individuals.
Collapse
Affiliation(s)
- Gokul Raj Kathamuthu
- National Institute for Research in Tuberculosis, National Institute of Health, International Center for Excellence in Research, Chennai, India.,National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Nathella Pavan Kumar
- National Institute for Research in Tuberculosis, National Institute of Health, International Center for Excellence in Research, Chennai, India
| | - Kadar Moideen
- National Institute for Research in Tuberculosis, National Institute of Health, International Center for Excellence in Research, Chennai, India
| | - Dina Nair
- National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | | | | | - Dhanaraj Baskaran
- National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Subash Babu
- National Institute for Research in Tuberculosis, National Institute of Health, International Center for Excellence in Research, Chennai, India.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Howlett P, Du Bruyn E, Morrison H, Godsent IC, Wilkinson KA, Ntsekhe M, Wilkinson RJ. The immunopathogenesis of tuberculous pericarditis. Microbes Infect 2020; 22:172-181. [PMID: 32092538 DOI: 10.1016/j.micinf.2020.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
Tuberculous pericarditis is a severe form of extrapulmonary tuberculosis and is the commonest cause of pericardial effusion in high incidence settings. Mortality ranges between 8 and 34%, and it is the leading cause of pericardial constriction in Africa and Asia. Current understanding of the disease is based on models derived from studies performed in the 1940-50s. This review summarises recent advances in the histology, microbiology and immunology of tuberculous pericarditis, with special focus on the effect of Human Immunodeficiency Virus (HIV) and the determinants of constriction.
Collapse
Affiliation(s)
- Patrick Howlett
- National Heart & Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, United Kingdom; Department of Medicine, University of Cape Town, Observatory 7925, South Africa.
| | - Elsa Du Bruyn
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Hazel Morrison
- The Jenner Institute, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Oxford OX3 7DQ, United Kingdom
| | - Isiguzo C Godsent
- National Heart & Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, United Kingdom; Department of Medicine, Federal Teaching Hospital Abakaliki, Nigeria
| | - Katalin A Wilkinson
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa; Francis Crick Institute, 1 Midland Rd, London NW1 1AT, United Kingdom
| | - Mpiko Ntsekhe
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Robert J Wilkinson
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa; Francis Crick Institute, 1 Midland Rd, London NW1 1AT, United Kingdom; Department of Infectious Diseases, Imperial College London, W2 1PG, United Kingdom
| |
Collapse
|
15
|
Baez IB, Sampieri CL, Solano FC, Martínez Cazares MT, Montero H, Cuevas RZ. Activity of matrix metalloproteinase 2 and 9 isoforms in sputum samples from individuals infected with M. tuberculosis. Microb Pathog 2019; 135:103607. [DOI: 10.1016/j.micpath.2019.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 11/17/2022]
|
16
|
Sabir N, Hussain T, Mangi MH, Zhao D, Zhou X. Matrix metalloproteinases: Expression, regulation and role in the immunopathology of tuberculosis. Cell Prolif 2019; 52:e12649. [PMID: 31199047 PMCID: PMC6668971 DOI: 10.1111/cpr.12649] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) leads to approximately 1.5 million human deaths every year. In pulmonary tuberculosis (TB), Mtb must drive host tissue destruction to cause pulmonary cavitation and dissemination in the tissues. Matrix metalloproteinases (MMPs) are endopeptidases capable of degrading all components of pulmonary extracellular matrix (ECM). It is well established that Mtb infection leads to upregulation of MMPs and also causes disturbance in the balance between MMPs and tissue inhibitors of metalloproteinases (TIMPs), thus altering the extracellular matrix deposition. In TB, secretion of MMPs is mainly regulated by NF-κB, p38 and MAPK signalling pathways. In addition, recent studies have demonstrated the immunomodulatory roles of MMPs in Mtb pathogenesis. Researchers have proposed a new regimen of improved TB treatment by inhibition of MMP activity to hinder matrix destruction and to minimize the TB-associated morbidity and mortality. The proposed regimen involves adjunctive use of MMP inhibitors such as doxycycline, marimastat and other related drugs along with front-line anti-TB drugs to reduce granuloma formation and bacterial load. These findings implicate the possible addition of economical and well-tolerated MMP inhibitors to current multidrug regimens as an attractive mean to increase the drug potency. Here, we will summarize the recent advancements regarding expression of MMPs in TB, their immunomodulatory role, as well as their potential as therapeutic targets to control the deadly disease.
Collapse
Affiliation(s)
- Naveed Sabir
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Tariq Hussain
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Mazhar Hussain Mangi
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Deming Zhao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Xiangmei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| |
Collapse
|
17
|
Kumar NP, Moideen K, Viswanathan V, Shruthi BS, Sivakumar S, Menon PA, Kornfeld H, Babu S. Elevated levels of matrix metalloproteinases reflect severity and extent of disease in tuberculosis-diabetes co-morbidity and are predominantly reversed following standard anti-tuberculosis or metformin treatment. BMC Infect Dis 2018; 18:345. [PMID: 30045688 PMCID: PMC6060542 DOI: 10.1186/s12879-018-3246-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/09/2018] [Indexed: 11/25/2022] Open
Abstract
Background Matrix metalloproteinases (MMPs) are considered to be key mediators of tuberculosis (TB) pathology but their role in tuberculosis – diabetes comorbidity (TB-DM) is not well understood. Methods To study the association of MMP levels with severity and extent of disease as well as bacterial burden in TB-DM, we examined the systemic levels of MMP-1, − 2, − 3, − 7, − 8, − 9, − 10, − 12 and − 13 in individuals with TB-DM and compared them to those with TB alone (TB) or healthy controls (HC). Results Circulating levels of MMP-1, − 2, − 3, − 7, − 10 and − 12 were significantly higher in TB-DM compared to both TB and HC and MMP -13 levels were higher in comparison to HC alone. To understand the effect of standard anti-tuberculosis therapy (ATT) on these MMP levels in TB-DM, we measured the levels of MMPs at the end of treatment (post-treatment). Our findings indicate that ATT is associated with a significant reduction in the levels of MMP-1, − 2, − 3, − 8 and − 13 post-treatment. Moreover, the levels of MMP-1, − 2, − 3, − 9 and − 12 were significantly higher in TB-DM individuals with cavitary disease and/or bilateral disease at baseline but not post-treatment. Similarly, the levels of MMP -1, − 2, − 3 and − 8 exhibited a significant positive relationship with bacterial burden and HbA1c levels at baseline but not post-treatment. Within the TB-DM group, those known to be diabetic before incident TB (KDM) exhibited significantly higher levels of MMP-1, − 2, − 10 and − 12 at baseline and of MMP-1 and -3 post-treatment compared to those newly diagnosed with DM (NDM). Finally, KDM individuals on metformin treatment exhibited significantly lower levels of MMP-1, − 2, − 3, − 7, − 9 and − 12 at baseline and of MMP-7 post-treatment. Conclusions Our data demonstrate that systemic MMP levels reflect baseline disease severity and extent in TB-DM, differentiate KDM from NDM and are modulated by ATT and metformin therapy. Electronic supplementary material The online version of this article (10.1186/s12879-018-3246-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nathella P Kumar
- National Institutes of Health-NIH-NIRT-ICER, National Institute for Research in Tuberculosis, International Center for Excellence in Research, # 1 Mayor Sathyamoothy Road, Chetpet, Chennai, India.
| | - Kadar Moideen
- National Institutes of Health-NIH-NIRT-ICER, National Institute for Research in Tuberculosis, International Center for Excellence in Research, # 1 Mayor Sathyamoothy Road, Chetpet, Chennai, India
| | | | | | | | - Pradeep A Menon
- National Institute for Research in Tuberculosis, Chennai, India
| | - Hardy Kornfeld
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Subash Babu
- National Institutes of Health-NIH-NIRT-ICER, National Institute for Research in Tuberculosis, International Center for Excellence in Research, # 1 Mayor Sathyamoothy Road, Chetpet, Chennai, India.,LPD, NIAID, NIH, MD, Bethesda, USA
| |
Collapse
|
18
|
Ordonez AA, Pokkali S, Kim S, Carr B, Klunk MH, Tong L, Saini V, Chang YS, McKevitt M, Smith V, Gossage DL, Jain SK. Adjunct antibody administration with standard treatment reduces relapse rates in a murine tuberculosis model of necrotic granulomas. PLoS One 2018; 13:e0197474. [PMID: 29758082 PMCID: PMC5951562 DOI: 10.1371/journal.pone.0197474] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/02/2018] [Indexed: 01/30/2023] Open
Abstract
Matrix metalloproteinase (MMP)-9 is a zinc-dependent protease associated with early immune responses to Mycobacterium tuberculosis infection, macrophage recruitment and granuloma formation. We evaluated whether adjunctive inhibition of MMP-9 could improve the response to standard TB treatment in a mouse model that develops necrotic lesions. Six weeks after an aerosol infection with M. tuberculosis, C3HeB/FeJ mice received standard TB treatment (12 weeks) comprising rifampin, isoniazid and pyrazinamide alone or in combination with either anti-MMP-9 antibody, etanercept (positive control) or isotype antibody (negative control) for 6 weeks. Anti-MMP-9 and the isotype control had comparable high serum exposures and expected terminal half-life. The relapse rate in mice receiving standard TB treatment was 46.6%. Compared to the standard TB treatment, relapse rates in animals that received adjunctive treatments with anti-MMP-9 antibody or etanercept were significantly decreased to 25.9% (P = 0.006) and 29.8% (P = 0.019) respectively, but were not different from the arm that received the isotype control antibody (25.9%). Immunostaining demonstrated localization of MMP-9 primarily in macrophages in both murine and human lung tissues infected with M. tuberculosis, suggesting the importance of MMP-9 in TB pathogenesis. These data suggest that the relapse rates in M. tuberculosis-infected mice may be non-specifically improved by administration of antibodies in conjunction with standard TB treatments. Future studies are needed to evaluate the mechanism(s) leading to improved outcomes with adjunctive antibody treatments.
Collapse
Affiliation(s)
- Alvaro A. Ordonez
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Supriya Pokkali
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sunhwa Kim
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Brian Carr
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Mariah H. Klunk
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Leah Tong
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Vikram Saini
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yong S. Chang
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew McKevitt
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Victoria Smith
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - David L. Gossage
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Sanjay K. Jain
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
19
|
Liu QY, Han F, Pan LP, Jia HY, Li Q, Zhang ZD. Inflammation responses in patients with pulmonary tuberculosis in an intensive care unit. Exp Ther Med 2018; 15:2719-2726. [PMID: 29456674 PMCID: PMC5795479 DOI: 10.3892/etm.2018.5775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 08/18/2017] [Indexed: 01/05/2023] Open
Abstract
Pulmonary tuberculosis caused by Mycobacterium tuberculosis remains a global problem. Inflammatory responses are the primary characteristics of patients with pulmonary tuberculosis in intensive care units (ICU). The aim of the present study was to investigate the clinical importance of inflammatory cells and factors for patients with pulmonary tuberculosis in ICU. A total of 124 patients with pulmonary tuberculosis in ICU were recruited for the present study. The inflammatory responses in patients with pulmonary tuberculosis in ICU were examined by changes in inflammatory cells and factors in the serum. The results indicated that serum levels of lymphocytes, plasma cells, granulocytes and monocytes were increased in patients with pulmonary tuberculosis in ICU compared with healthy controls. The serum levels of inflammatory factors interleukin (IL)-1, IL-6, IL-10, IL-12, and IL-4 were upregulated in patients with pulmonary tuberculosis in ICU. Lower plasma concentrations of IL-2, IL-15 and interferon-γ were detected in patients with pulmonary tuberculosis compared with healthy controls. It was demonstrated that high mobility group box-1 protein expression levels were higher in the serum of patients with pulmonary tuberculosis compared with healthy controls. Notably, an imbalance of T-helper cell (Th)1/Th2 cytokines was observed in patients with pulmonary tuberculosis. Pulmonary tuberculosis caused by M. tuberculosis also upregulated expression of matrix metalloproteinase (MMP)-1 and MMP-9 in hPMCs. In conclusion, these outcomes demonstrated that inflammatory responses and inflammatory factors are associated with the progression of pulmonary tuberculosis, suggesting that inhibition of inflammatory responses and inflammatory factors may be beneficial for the treatment of patients with pulmonary tuberculosis in ICU.
Collapse
Affiliation(s)
- Qiu-Yue Liu
- Department of Tuberculosis, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing 101149, P.R. China
| | - Fen Han
- Intensive Care Unit, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing 101149, P.R. China
| | - Li-Ping Pan
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing 101149, P.R. China
| | - Hong-Yan Jia
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing 101149, P.R. China
| | - Qi Li
- Department of Tuberculosis, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing 101149, P.R. China
| | - Zong-De Zhang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing 101149, P.R. China
| |
Collapse
|
20
|
Majeed S, Singh P, Sharma N, Sharma S. Title: role of matrix metalloproteinase -9 in progression of tuberculous meningitis: a pilot study in patients at different stages of the disease. BMC Infect Dis 2016; 16:722. [PMID: 27899068 PMCID: PMC5129227 DOI: 10.1186/s12879-016-1953-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TBM (Tuberculous meningitis) is severe form of tuberculosis causing death of one third of the affected individuals or leaving two-third of the survivors disabled. MMP-9 (Matrix metalloproteinase-9) is produced by the central nervous system in a variety of inflammatory conditions and has a role in the breakdown of extracellular matrix and blood-brain barrier. METHODS In this study, the levels of MMP-9 and its inhibitor, TIMP-1 (tissue inhibitor of metalloproteinases-1), were screened using zymography and reverse zymography in cerebrospinal fluid and serum of tuberculous meningitis patients at different stages of the disease. Further, role of MMP-9 as therapeutic target was studied in C6 glioma cells infected with Mycobacterium tuberculosis H37Rv. Cells were treated with dexamethasone or SB-3CT (specific inhibitor of MMP-9) in combination with conventional antitubercular drugs. RESULTS MMP-9 levels in patients were increased as the disease progressed to advanced stages. The infection led to increased MMP-9 levels in C6 glioma cells and specific inhibition of MMP-9 by SB-3CT augmented bacillary clearance when used along with antitubercular drugs. CONCLUSION MMP-9 plays a prominent role in progression of tuberculous meningitis from initial to advanced stages. Increased levels of MMP-9 during advancement of the disease leads to degeneration of nervous tissue and blood brain barrier disruption. Hence, MMP-9 can be considered as a therapeutic target for efficient management of TBM and can be explored to inhibit further progression of the disease if used at an early stage.
Collapse
Affiliation(s)
- S Majeed
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - P Singh
- Department of Neurology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - N Sharma
- Department of Internal Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - S Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| |
Collapse
|
21
|
Ndlovu H, Marakalala MJ. Granulomas and Inflammation: Host-Directed Therapies for Tuberculosis. Front Immunol 2016; 7:434. [PMID: 27822210 PMCID: PMC5075764 DOI: 10.3389/fimmu.2016.00434] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/04/2016] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) remains a leading global health problem that is aggravated by emergence of drug-resistant strains, which account for increasing number of treatment-refractory cases. Thus, eradication of this disease will strongly require better therapeutic strategies. Identification of host factors promoting disease progression may accelerate discovery of adjunct host-directed therapies (HDTs) that will boost current treatment protocols. HDTs focus on potentiating key components of host anti-mycobacterial effector mechanisms, and limiting inflammation and pathological damage in the lung. Granulomas represent a pathological hallmark of TB. They are comprised of impressive arrangement of immune cells that serve to contain the invading pathogen. However, granulomas can also undergo changes, developing caseums and cavities that facilitate bacterial spread and disease progression. Here, we review current concepts on the role of granulomas in pathogenesis and protective immunity against TB, drawing from recent clinical studies in humans and animal models. We also discuss therapeutic potential of inflammatory pathways that drive granuloma progression, with a focus on new and existing drugs that will likely improve TB treatment outcomes.
Collapse
Affiliation(s)
- Hlumani Ndlovu
- Division of Immunology, Department of Pathology, University of Cape Town , Cape Town , South Africa
| | - Mohlopheni J Marakalala
- TB Immunopathogenesis Group, Division of Immunology, Department of Pathology, University of Cape Town , Cape Town , South Africa
| |
Collapse
|
22
|
Profile of Metalloproteinases and Their Association with Inflammatory Markers in Pleural Effusions. Lung 2016; 194:1021-1027. [PMID: 27677622 DOI: 10.1007/s00408-016-9945-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/12/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are responsible for the breakdown of the extracellular matrix and play an important role in the inflammatory processes of pleural exudates. The imbalance between MMPs and their inhibitors (TIMPs) is present in various pathological processes. OBJECTIVE To evaluate the profile of MMPs and TIMPs in pleural effusions of different etiologies correlated with inflammatory markers. METHODS The patients with pleural effusion due to tuberculosis (TB), cancer (CA) or transudate were prospectively evaluated. Pleural fluid was submitted to cytological, biochemical, cytokines, MMP, and TIMP analysis. Statistical analysis was performed using ANOVA and Spearman's correlation, and p < 0.05 was considered significant. RESULTS One hundred and fourteen patients were enrolled, 80 exudates (41 TB and 39 CA) and 34 transudates. The levels of MMP-8 and MMP-9 were higher in exudates compared to transudates. The level of MMP-8 was significantly higher in TB than in CA. TIMP-1 levels were higher in exudates. IL-6, VEGF, and TGF-β1 showed differences between exudates and transudates. However, IL-6 level was higher in TB than in CA. We found a significant correlation between MMPs and TIMPs with inflammation markers. MMP-1 was correlated with LDH levels. MMP-8 was correlated with LDH, total cell count, neutrophils, and ADA as well as MMP-1 levels. MMP-9 was correlated with IL-6, TGF-β1, and VEGF. TIMP-1 was correlated with MMP-9 and IL-6. CONCLUSIONS MMPs and TIMPs are expressed in pleural fluid of different etiologies and correlate with inflammatory mediators. MMPs may be useful in determining the cause of fluid, but more studies are needed to determine the spectrum of diseases associated with the various isoforms of MMPS and TIMPs.
Collapse
|
23
|
Majeed S, Radotra BD, Sharma S. Adjunctive role of MMP-9 inhibition along with conventional anti-tubercular drugs against experimental tuberculous meningitis. Int J Exp Pathol 2016; 97:230-7. [PMID: 27385155 DOI: 10.1111/iep.12191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 03/20/2016] [Indexed: 12/25/2022] Open
Abstract
Tuberculous meningitis (TBM) is an outcome of neuroinflammatory degeneration caused due to Mycobacterium tuberculosis infection and leads to death or neurological disabilities in the affected individuals. It causes the highest morbidity and mortality amongst all forms of tuberculosis. Matrix metalloproteinase-9 levels increase and cause inflammatory destruction during progression of the disease. Although corticosteroids are usually given as an adjuvant therapy to overcome these complications, treatment outcome is contradictory. This study was designed to evaluate whether specific inhibition of MMP-9 can be beneficial in management of the disease. MMP-9 levels were inhibited using SB-3CT or dexamethasone along with conventional drugs for treatment of tuberculous meningitis. Both SB-3CT and dexamethasone decreased the elevated levels of MMP-9 in sera and tissues of the infected mice. However, dexamethasone administration had an inhibitory effect on bacillary clearance, while SB-3CT potentiated the bacillary clearance, suggesting that MMP-9, if specifically inhibited, can be beneficial in the management of TBM.
Collapse
Affiliation(s)
- Shahnawaz Majeed
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Bishan D Radotra
- Department of Histopathology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Sadhna Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
24
|
Kassa D, Ran L, Jager WD, van den Broek T, Jacobi R, Mekonen M, Messele T, Haks MC, Ottenhoff THM, van Baarle D. Discriminative expression of whole blood genes in HIV patients with latent and active TB in Ethiopia. Tuberculosis (Edinb) 2016; 100:25-31. [PMID: 27553407 DOI: 10.1016/j.tube.2016.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/03/2016] [Accepted: 06/07/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Transcriptomic host biomarkers could assist in developing effective diagnostics, vaccines and therapeutics for tuberculosis (TB). However, different biomarkers may be discriminatory in different populations depending on the host and bacillary genetics and HIV infection, and need to be addressed. METHODS The expression levels of 45 genes that are known to be involved in or affected by TB pathogenesis were analyzed using dual color Reverse Transcriptase Multiplex Ligation-dependent Probe Amplification (dcRT-MLPA) assay in whole blood of 106 HIV positive individuals including active TB patients (TB(+)HIV(+), n = 29), and non TB patients that are tuberculin skin test positive (TST+) (TST(+)HIV(+), n = 26), or TST negative (TST(-)HIV(+), n = 51). RESULTS Between the two clinical groups (TB(+)HIV(+) vs. TST(-)HIV(+)) 8 genes were differently expressed (CCL19, CD14, CD8A, FPR1, IL7R, CCL22, TNFRSF1A, and FCGR1A); between TB(+)HIV(+) vs. TST(+)HIV(+), 6 genes (CD14, IL7R, TIMP2, CCL22, TNFRSF1A, and FCGR1A) were differently expressed. Since no difference in gene expression was revealed between TST(+)HIV(+) vs. TST(-)HIV(+), we clustered both the TST(+)HIV(+) and TST(-)HIV(+) individuals as one group (TST(+/-)HIV(+)) and compared gene expression with TB(+)HIV(+) patients. Thus, the results revealed that the levels of five genes (CD8A, TIMP2, CCL22, FCGR1A and TNFRSF1A) were the most accurate single gene markers for differentiation between TB(+)HIV(+) and TST(+/-)HIV(+), with AUCs of 0.71, 0.71, 0.79, 0.83 and 0.73, respectively. However, the combination of two genes (CCL22 + FCGR1A) and FCGR1A alone were the most accurate marker for differentiation between the two groups (TB(+)HIV(+) and TST(+/-)HIV(+)) with AUC of 0.85 and 0.83, respectively. CONCLUSIONS We showed that five genes (CD8A, TIMP2, CCL22, FCGR1A and TNFRSF1A), specifically FCGR1A and CCL22 have the potential to discriminate active TB from non-active TB in HIV patients in Ethiopia and could be used to improve diagnostic tools for active TB in HIV patients, and to understand the pathogenesis of TB/HIV coinfection.
Collapse
Affiliation(s)
- Desta Kassa
- HIV/AIDS and Tuberculosis Research Directorate, Ethiopian Public Health Institute (EPHI), Addis Ababa, Ethiopia; Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Leonie Ran
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wilco de Jager
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Theo van den Broek
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ronald Jacobi
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Muluberhan Mekonen
- HIV/AIDS and Tuberculosis Research Directorate, Ethiopian Public Health Institute (EPHI), Addis Ababa, Ethiopia; Axum University, Tigray, Ethiopia
| | - Tsehaynesh Messele
- HIV/AIDS and Tuberculosis Research Directorate, Ethiopian Public Health Institute (EPHI), Addis Ababa, Ethiopia
| | - Mariëlle C Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Debbie van Baarle
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
25
|
Porcel JM, Esquerda A, Martínez-Alonso M, Bielsa S, Salud A. Identifying Thoracic Malignancies Through Pleural Fluid Biomarkers: A Predictive Multivariate Model. Medicine (Baltimore) 2016; 95:e3044. [PMID: 26962828 PMCID: PMC4998909 DOI: 10.1097/md.0000000000003044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The diagnosis of malignant pleural effusions may be challenging when cytological examination of aspirated pleural fluid is equivocal or noncontributory. The purpose of this study was to identify protein candidate biomarkers differentially expressed in the pleural fluid of patients with mesothelioma, lung adenocarcinoma, lymphoma, and tuberculosis (TB).A multiplex protein biochip comprising 120 biomarkers was used to determine the pleural fluid protein profile of 29 mesotheliomas, 29 lung adenocarcinomas, 12 lymphomas, and 35 tuberculosis. The relative abundance of these predetermined biomarkers among groups served to establish the differential diagnosis of: malignant versus benign (TB) effusions, lung adenocarcinoma versus mesothelioma, and lymphoma versus TB. The selected putative markers were validated using widely available commercial techniques in an independent sample of 102 patients.Significant differences were found in the protein expressions of metalloproteinase-9 (MMP-9), cathepsin-B, C-reactive protein, and chondroitin sulfate between malignant and TB effusions. When integrated into a scoring model, these proteins yielded 85% sensitivity, 100% specificity, and an area under the curve (AUC) of 0.98 for labeling malignancy in the verification sample. For lung adenocarcinoma-mesothelioma discrimination, combining CA19-9, CA15-3, and kallikrein-12 had maximal discriminatory capacity (65% sensitivity, 100% specificity, AUC 0.94); figures which also refer to the validation set. Last, cathepsin-B in isolation was only moderately useful (sensitivity 89%, specificity 62%, AUC 0.75) in separating lymphomatous and TB effusions. However, this last differentiation improved significantly when cathepsin-B was used with respect to the patient's age (sensitivity 72%, specificity 100%, AUC 0.94).In conclusion, panels of 4 (i.e., MMP-9, cathepsin-B, C-reactive protein, chondroitin sulfate), or 3 (i.e., CA19-9, CA15-3, kallikrein-12) different protein biomarkers on pleural fluid samples are highly discriminative for signaling a malignant versus tuberculous effusion, or lung adenocarcinoma versus mesothelioma, respectively. Cathepsin-B could also be helpful in establishing the presence of a lymphomatous effusion versus that of TB, if the patient's age is simultaneously taken into consideration.
Collapse
Affiliation(s)
- José M Porcel
- From the Pleural Medicine Unit (JMP, SB); Departments of Internal Medicine, Laboratory Medicine (AE); Biostatistics (MMA); and Oncology-Hematology (AS), Arnau de Vilanova University Hospital, Biomedical Research Institute of Lleida, Lleida, Spain
| | | | | | | | | |
Collapse
|
26
|
Venkatasubramanian S, Tripathi D, Tucker T, Paidipally P, Cheekatla S, Welch E, Raghunath A, Jeffers A, Tvinnereim AR, Schechter ME, Andrade BB, Mackman N, Idell S, Vankayalapati R. Tissue factor expression by myeloid cells contributes to protective immune response against Mycobacterium tuberculosis infection. Eur J Immunol 2016; 46:464-79. [PMID: 26471500 PMCID: PMC4740218 DOI: 10.1002/eji.201545817] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/03/2015] [Accepted: 10/12/2015] [Indexed: 12/19/2022]
Abstract
Tissue factor (TF) is a transmembrane glycoprotein that plays an essential role in hemostasis by activating coagulation. TF is also expressed by monocytes/macrophages as part of the innate immune response to infections. In the current study, we determined the role of TF expressed by myeloid cells during Mycobacterium tuberculosis (M. tb) infection by using mice lacking the TF gene in myeloid cells (TF(Δ) ) and human monocyte derived macrophages (MDMs). We found that during M. tb infection, a deficiency of TF in myeloid cells was associated with reduced inducible nitric oxide synthase (iNOS) expression, enhanced arginase 1 (Arg1) expression, enhanced IL-10 production and reduced apoptosis in infected macrophages, which augmented M. tb growth. Our results demonstrate that a deficiency of TF in myeloid cells promotes M2-like phenotype in M .tb infected macrophages. A deficiency in TF expression by myeloid cells was also associated with reduced fibrin deposition and increased matrix metalloproteases (MMP)-2 and MMP-9 mediated inflammation in M. tb infected lungs. Our studies demonstrate that TF expressed by myeloid cells has newly recognized abilities to polarize macrophages and to regulate M. tb growth.
Collapse
Affiliation(s)
| | - Deepak Tripathi
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Torry Tucker
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Padmaja Paidipally
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Satyanarayana Cheekatla
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Elwyn Welch
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Anjana Raghunath
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Ann Jeffers
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Amy R. Tvinnereim
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Melissa E Schechter
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Bruno B Andrade
- Investigative Medicine Branch, Laboratory of Immune Regulation, Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, 40296-710, Brazil
- Research Center, Brazilian Institute for Tuberculosis Research, Salvador, Bahia, 45204-040, Brazil
| | - Nizel Mackman
- Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, NC 27516, USA
| | - Steven Idell
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| |
Collapse
|
27
|
Fiorelli A, Ricci S, Feola A, Mazzella A, D'Angelo L, Santini M, Di Domenico M, Di Carlo A. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in diagnosis of pleural effusion of malignant origin. Interact Cardiovasc Thorac Surg 2016; 22:411-8. [PMID: 26769731 DOI: 10.1093/icvts/ivv378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/26/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The aim of the present study was to evaluate the diagnostic accuracy of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in differentiating benign from malignant exudative pleural effusions. METHODS This is a unicentre observational study including 97 consecutive patients with exudative pleural effusions. Metalloproteinase-9, tissue inhibitor of metalloproteinase-1, lactate dehydrogenase, ferritin, carcinoembryonic antigen and carbohydrate antigen 15-3 were measured in pleural effusion and serum by enzyme-linked immunosorbent assay. The activity of metalloproteinase-9 was also evaluated by substrate zymography. The data were correlated with final diagnosis of pleural effusions to evaluate the diagnostic accuracy. RESULTS Of the 97 eligible patients, 6 were excluded. Of the 91 patients included in the study, 70 had malignant pleural effusions and 21 had benign pleural effusions. Both in sera and pleural effusions, matrix metalloproteinase-9 (P < 0.0001), tissue inhibitor of metalloproteinase-1 (P < 0.0001) and carcinoembryonic antigen (P < 0.0001) levels were higher in neoplastic patients than in benign group. Zymography analysis showed a most prominent band at a molecular weight of 92 kDa (metalloproteinase-9) whereas a less intense band was observed at 72 kDa (metalloproteinase-2). A significant correlation was found between metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels in pleural effusion (P < 0.0001; r = 0.8) and serum (P < 0.03; r = 0.2). Pleural effusion metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels showed higher value of sensitivity (97 and 91%, respectively) and specificity (90 and 95%, respectively) compared with other standard markers. Serum metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels showed similar results. Among 70 neoplastic patients, 29 had negative pleural cytology. Of these, 25 presented elevated levels of metalloproteinase-9 and tissue inhibitor of metalloproteinase-1, whereas 4 patients had elevated levels of one of the two markers. CONCLUSIONS Our results showed that metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 might be valuable markers in differentiating benign from malignant pleural effusions. Their levels are neither influenced by the histology and tumour origin nor by the presence of tumour cells in pleural effusions. Thus, their use in clinical practice could help in the selection of patients needing more invasive procedures, such as thoracoscopic biopsy.
Collapse
Affiliation(s)
- Alfonso Fiorelli
- Thoracic Surgery Unit, Second University of Naples, Naples, Italy
| | - Serena Ricci
- Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
| | - Antonia Feola
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Antonio Mazzella
- Thoracic Surgery Unit, Second University of Naples, Naples, Italy
| | - Luigi D'Angelo
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, Second University of Naples, Naples, Italy
| | - Mario Santini
- Thoracic Surgery Unit, Second University of Naples, Naples, Italy
| | - Marina Di Domenico
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Philadelphia, PA, USA
| | - Angelina Di Carlo
- Department of Medico-Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
28
|
Hwang KE, Shon YJ, Cha BK, Park MJ, Chu MS, Kim YJ, Jeong ET, Kim HR. Tissue inhibitor of metalloproteinase-1 is responsible for residual pleural thickening in pleural tuberculosis. TOHOKU J EXP MED 2015; 235:327-33. [PMID: 25854270 DOI: 10.1620/tjem.235.327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Residual pleural thickening (RPT) is the most frequent complication associated with pleural tuberculosis, and may occur even after successful anti-tuberculosis medications. Matrix metalloproteinases (MMPs) are zinc-dependent proteinases capable of degrading all components of the extracellular matrix. The proteolytic action of MMPs may be involved in the pathogenesis of tuberculosis. MMP-9, secreted by monocytes and lymphocyte, may lead to long-term fibrosis. The aim of the present study was to determine whether MMP-2 and/or MMP-9 and their specific inhibitors, tissue inhibitors of metalloproteinase 1 (TIMP-1) and TIMP-2, could be used to predict RPT. This retrospective study enrolled 52 patients diagnosed with pleural tuberculosis. Levels of MMP-2, MMP-9, TIMP-1, and TIM-2 were determined in the pleural fluid by ELISA. The RPT was measured on chest X-ray at the completion of treatment and the final follow-up. The average periods of anti-tuberculosis medication and the follow-up after completion of treatment were 6.7 and 7.6 months, respectively. MMP-2 or MMP-9 levels had no significant correlation to RPT. The patients with RPT > 2 mm at the completion of anti-tuberculosis medication and the final follow-up had higher TIMP-1 levels (p = 0.00 and p = 0.001, respectively). However, patients with RPT > 2 mm at the completion of anti-tuberculosis medication had lower TIMP-2 levels (p = 0.005). In a logistic regression model, elevated TIMP-1 levels at the completion of anti-tuberculosis medications were associated with RPT. In conclusion, higher TIMP-1 levels are responsible for the development of RPT and may be helpful for predicting RPT in pleural tuberculosis.
Collapse
Affiliation(s)
- Ki-Eun Hwang
- Department of Internal Medicine, Institute of Wonkwang Medical Science, Wonkwang University, School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Mycobacterium tuberculosis Upregulates TNF-α Expression via TLR2/ERK Signaling and Induces MMP-1 and MMP-9 Production in Human Pleural Mesothelial Cells. PLoS One 2015; 10:e0137979. [PMID: 26367274 PMCID: PMC4569295 DOI: 10.1371/journal.pone.0137979] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 08/24/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tumor necrosis factor (TNF)-α and matrix metalloproteinases (MMPs) are elevated in pleural fluids of tuberculous pleuritis (TBP) where pleural mesothelial cells (PMCs) conduct the first-line defense against Mycobacterium tuberculosis (MTB). However, the clinical implication of TNF-α and MMPs in TBP and the response of PMCs to MTB infection remain unclear. METHODS We measured pleural fluid levels of TNF-α and MMPs in patients with TBP (n = 18) or heart failure (n = 18) as controls. Radiological scores for initial effusion amount and residual pleural fibrosis at 6-month follow-up were assessed. In vitro human PMC experiments were performed to assess the effect of heat-killed M. tuberculosis H37Ra (MTBRa) on the expression of TNF-α and MMPs. RESULTS As compared with controls, the effusion levels of TNF-α, MMP-1 and MMP-9 were significantly higher and correlated positively with initial effusion amount in patients with TBP, while TNF-α and MMP-1, but not MMP-9, were positively associated with residual pleural fibrosis of TBP. Moreover, effusion levels of TNF-α had positive correlation with those of MMP-1 and MMP-9 in TBP. In cultured PMCs, MTBRa enhanced TLR2 and TLR4 expression, activated ERK signaling, and upregulated TNF-α mRNA and protein expression. Furthermore, knockdown of TLR2, but not TLR4, significantly inhibited ERK phosphorylation and TNF-α expression. Additionally, both MTBRa and TNF-α markedly induced MMP-1 and MMP-9 synthesis in human PMCs, and TNF-α neutralization substantially reduced the production of MMP-1, but not MMP-9, in response to MTBRa stimulation. CONCLUSION MTBRa activates TLR2/ERK signalings to induce TNF-α and elicit MMP-1 and MMP-9 in human PMCs, which are associated with effusion volume and pleural fibrosis and may contribute to pathogenesis of TBP. Further investigation of manipulation of TNF-α and MMP expression in pleural mesothelium may provide new insights into the mechanisms and rational treatment strategies for TBP.
Collapse
|
30
|
Xu D, Li Y, Li X, Wei LL, Pan Z, Jiang TT, Chen ZL, Wang C, Cao WM, Zhang X, Ping ZP, Liu CM, Liu JY, Li ZJ, Li JC. Serum protein S100A9, SOD3, and MMP9 as new diagnostic biomarkers for pulmonary tuberculosis by iTRAQ-coupled two-dimensional LC-MS/MS. Proteomics 2014; 15:58-67. [PMID: 25332062 DOI: 10.1002/pmic.201400366] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/23/2014] [Accepted: 10/15/2014] [Indexed: 11/06/2022]
Abstract
This study aimed to discover the novel noninvasive biomarkers for the diagnosis of pulmonary tuberculosis (TB). We applied iTRAQ 2D LC-MS/MS technique to investigate protein profiles in patients with pulmonary TB and other lung diseases. A total of 34 differentially expressed proteins (24 upregulated proteins and ten downregulated proteins) were identified in the serum of pulmonary TB patients. Significant differences in protein S100-A9 (S100A9), extracellular superoxide dismutase [Cu-Zn] (SOD3), and matrix metalloproteinase 9 (MMP9) were found between pulmonary TB and other lung diseases by ELISA. Correlations analysis revealed that the serum concentration of MMP9 in the pulmonary TB was in moderate correlation with SOD3 (r = 0.581) and S100A9 (r = 0.471), while SOD3 was in weak correlation with S100A9 (r = 0.287). The combination of serum S100A9, SOD3, and MMP9 levels could achieve 92.5% sensitivity and 95% specificity to discriminate between pulmonary TB and healthy controls, 90% sensitivity and 87.5% specificity to discriminate between pulmonary TB and pneumonia, and 85% sensitivity and 92.5% specificity to discriminate between pulmonary TB and lung cancer, respectively. The results showed that S100A9, SOD3, and MMP9 may be potential diagnostic biomarkers for pulmonary TB, and provided experimental basis for the diagnosis of pulmonary TB.
Collapse
Affiliation(s)
- Dandan Xu
- Institute of Cell Biology, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pagán AJ, Ramakrishnan L. Immunity and Immunopathology in the Tuberculous Granuloma. Cold Spring Harb Perspect Med 2014; 5:cshperspect.a018499. [PMID: 25377142 DOI: 10.1101/cshperspect.a018499] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Granulomas, organized aggregates of immune cells, are a defining feature of tuberculosis (TB). Granuloma formation is implicated in the pathogenesis of a variety of inflammatory disorders. However, the tuberculous granuloma has been assigned the role of a host protective structure which "walls-off" mycobacteria. Work conducted over the past decade has provided a more nuanced view of its role in pathogenesis. On the one hand, pathogenic mycobacteria accelerate and exploit granuloma formation for their expansion and dissemination by manipulating host immune responses to turn leukocyte recruitment and cell death pathways in their favor. On the other hand, granuloma macrophages can preserve granuloma integrity by exerting a microbicidal immune response, thus preventing an even more rampant expansion of infection in the extracellular milieu. Even this host-beneficial immune response required to maintain the bacteria intracellular must be tempered, as an overly vigorous immune response can also cause granuloma breakdown, thereby directly supporting bacterial growth extracellularly. This review will discuss how mycobacteria manipulate inflammatory responses to drive granuloma formation and will consider the roles of the granuloma in pathogenesis and protective immunity, drawing from clinical studies of TB in humans and from animal models--rodents, zebrafish, and nonhuman primates. A deeper understanding of TB pathogenesis and immunity in the granuloma could suggest therapeutic approaches to abrogate the host-detrimental aspects of granuloma formation to convert it into the host-beneficial structure that it has been thought to be for nearly a century.
Collapse
Affiliation(s)
- Antonio J Pagán
- Department of Microbiology, University of Washington, Seattle, Washington 98195
| | - Lalita Ramakrishnan
- Department of Microbiology, University of Washington, Seattle, Washington 98195 Department of Medicine, University of Washington, Seattle, Washington 98195 Department of Immunology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
32
|
Ramos-Martínez AG, Enciso-Moreno JA, Espinosa-Ayala I, Mata-Espinoza D, Rivas-Santiago B, Trujillo-Paez V, Monárrez-Espino J, Hernández-Pando R, Serrano CJ. Expression kinetics of metalloproteinases and their tissue inhibitors in experimental murine pulmonary tuberculosis. Exp Lung Res 2014; 41:1-11. [PMID: 25275921 DOI: 10.3109/01902148.2014.956946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM Explore the temporal expression of metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) during experimental tuberculosis induced by virulent Mycobacterium tuberculosis strain H37Rv. METHODS BALB/c mice were infected via endotracheal instillation with H37Rv. Groups of mice were euthanized at different time points during infection. RNA was isolated from the lungs, and the expression of MMP-3, 8, 9, 10, 12, 13 and TIMP-1-4 was determined by quantitative PCR. Immunohistochemical detection of MMP-3, MMP-9, and MMP-10 was done to determine the cell source. RESULTS The infection with H37Rv-induced inflammation resulted in maximal up-regulation of MMP-3, 8, 9, 10, 12 and 13 at day 21 postinfection. Additionally, MMP-13 showed another expression peak during late disease at day 60. Airway epithelium and macrophages were the most common MMP-3 and MMP-9 immunopositive cells, while for MMP-10, macrophages and endothelial cells were the most common, particularly at days 14 and 21 in well-formed granulomas. During late disease, vacuolated macrophages in pneumonic areas and bronchial epithelium showed mild MMP immunostaining. CONCLUSIONS MMP-3, 8, 9, 10, 12, and 13 are maximally expressed at the peak of granuloma formation in the mouse tuberculosis model, with no compensation in levels or timing of TIMP expression. This data opens the possibility of participation of these molecules in the granuloma process.
Collapse
Affiliation(s)
- Ana G Ramos-Martínez
- 1Medical Research Unit of Zacatecas, Mexican Institute of Social Security , Zacatecas , México
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ong CWM, Elkington PT, Friedland JS. Tuberculosis, pulmonary cavitation, and matrix metalloproteinases. Am J Respir Crit Care Med 2014; 190:9-18. [PMID: 24713029 DOI: 10.1164/rccm.201311-2106pp] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tuberculosis (TB), a chronic infectious disease of global importance, is facing the emergence of drug-resistant strains with few new drugs to treat the infection. Pulmonary cavitation, the hallmark of established disease, is associated with very high bacillary burden. Cavitation may lead to delayed sputum culture conversion, emergence of drug resistance, and transmission of the infection. The host immunological reaction to Mycobacterium tuberculosis is implicated in driving the development of TB cavities. TB is characterized by a matrix-degrading phenotype in which the activity of proteolytic matrix metalloproteinases (MMPs) is relatively unopposed by the specific tissue inhibitors of metalloproteinases. Proteases, in particular MMPs, secreted from monocyte-derived cells, neutrophils, and stromal cells, are involved in both cell recruitment and tissue damage and may cause cavitation. MMP activity is augmented by proinflammatory chemokines and cytokines, is tightly regulated by complex signaling paths, and causes matrix destruction. MMP concentrations are elevated in human TB and are closely associated with clinical and radiological markers of lung tissue destruction. Immunomodulatory therapies targeting MMPs in preclinical and clinical trials are potential adjuncts to TB treatment. Strategies targeting patients with cavitary TB have the potential to improve cure rates and reduce disease transmission.
Collapse
Affiliation(s)
- Catherine W M Ong
- 1 Infectious Diseases and Immunity, Hammersmith Campus, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
34
|
Antimycobacterial drugs modulate immunopathogenic matrix metalloproteinases in a cellular model of pulmonary tuberculosis. Antimicrob Agents Chemother 2014; 58:4657-65. [PMID: 24890593 DOI: 10.1128/aac.02141-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis is characterized by extensive destruction and remodelling of the pulmonary extracellular matrix. Stromal cell-derived matrix metalloproteinases (MMPs) are implicated in this process and may be a target for adjunctive immunotherapy. We hypothesized that MMPs are elevated in bronchoalveolar lavage fluid of tuberculosis patients and that antimycobacterial agents may have a modulatory effect on MMP secretion. Concentrations of MMP-1, -2, -3, -7, -8, and -9 were elevated in the bronchoalveolar lavage fluid from tuberculosis patients compared to those in bronchoalveolar lavage fluid from patients with other pulmonary conditions. There was a positive correlation between MMP-3, MMP-7, and MMP-8 and a chest radiological score of cavitation and parenchymal damage. Respiratory epithelial cell-derived MMP-3 was suppressed by moxifloxacin, rifampicin, and azithromycin in a dose-dependent manner. Respiratory epithelial cell-derived MMP-1 was suppressed by moxifloxacin and azithromycin, whereas MMP-9 secretion was only decreased by moxifloxacin. In contrast, moxifloxacin and azithromycin both increased MMP-1 and -3 secretion from MRC-5 fibroblasts, demonstrating that the effects of these drugs are cell specific. Isoniazid did not affect MMP secretion. In conclusion, MMPs are elevated in bronchoalveolar lavage fluid from tuberculosis patients and correlate with parameters of tissue destruction. Antimycobacterial agents have a hitherto-undescribed immunomodulatory effect on MMP release by stromal cells.
Collapse
|
35
|
Abstract
MTB ranks as the first worldwide pathogen latently infecting one third of the population and the second leading cause of death from a single infectious agent, after the human immunodeficiency virus (HIV). The development of vigorous and apparently appropriate immune response upon infection with M. tuberculosis in humans and experimental animals conflict with failure to eradicate the pathogen itself and with its ability to undergo clinical latency from which it may exit. From a clinical standpoint, our views on MTB infection may take advantage from updating the overall perspective, that has quite changed over the last decade, following remarkable advances in our understanding of the manipulation of the immune system by M. tuberculosis and of the role of innate components of the immune response, including macrophages, neutrophils, dendritic cells and NK cells in the initial spread of MTB and its exit from latency. Scope of this review is to highlight the major mechanisms of MTB escape from immune control and to provide a supplementary translational perspective for the interpretation of innate immune mechanisms with particular impact on clinical aspects.
Collapse
|
36
|
Gupta VK. CSD, BBB and MMP-9 elevations: animal experiments versus clinical phenomena in migraine. Expert Rev Neurother 2014; 9:1595-614. [DOI: 10.1586/ern.09.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Tadokera R, Meintjes GA, Wilkinson KA, Skolimowska KH, Walker N, Friedland JS, Maartens G, Elkington PTG, Wilkinson RJ. Matrix metalloproteinases and tissue damage in HIV-tuberculosis immune reconstitution inflammatory syndrome. Eur J Immunol 2014; 44:127-36. [PMID: 24136296 PMCID: PMC3992843 DOI: 10.1002/eji.201343593] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/29/2013] [Accepted: 09/25/2013] [Indexed: 12/18/2022]
Abstract
The HIV-TB-associated immune reconstitution inflammatory syndrome (TB-IRIS) can complicate combined treatments for HIV-1 and TB. Little is known about tissue damage in TB-IRIS. Matrix metalloproteinases (MMPs) degrade components of the extracellular matrix and consequently may play a role in such immunopathology. Here we investigated the involvement of MMPs in TB-IRIS. We determined MMP transcript abundance and secreted protein in Mycobacterium tuberculosis stimulated PBMCs from 22 TB-IRIS patients and 22 non-IRIS controls. We also measured MMP protein levels in corresponding serum and the effect of prednisone--which reduces the duration of symptoms in IRIS patients--or placebo treatment on MMP transcript and circulating MMP protein levels. PBMCs from TB-IRIS had increased MMP-1, -3, -7, and -10 transcript levels when compared with those of controls at either 6 or 24 h. Similarly, MMP-1, -3, -7, and -10 protein secretion in stimulated cultures was higher in TB-IRIS than in controls. Serum MMP-7 concentration was elevated in TB-IRIS and 2 weeks of corticosteroid therapy decreased this level, although not significantly. TB-IRIS is associated with a distinct pattern of MMP gene and protein activation. Modulation of dysregulated MMP activity may represent a novel therapeutic approach to alleviate TB-IRIS in HIV-TB patients undergoing treatment.
Collapse
Affiliation(s)
- Rebecca Tadokera
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
| | - Graeme A Meintjes
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
- Infectious Diseases Unit, GF Jooste HospitalManenberg, South Africa
- Department of Medicine, Imperial College LondonLondon, UK
| | - Katalin A Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
- MRC National Institute for Medical ResearchLondon, UK
| | - Keira H Skolimowska
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
- Department of Medicine, Imperial College LondonLondon, UK
| | - Naomi Walker
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
- Department of Medicine, Imperial College LondonLondon, UK
| | | | - Gary Maartens
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape TownCape Town, South Africa
| | - Paul T G Elkington
- Department of Medicine, Imperial College LondonLondon, UK
- Faculty of Medicine, University of Southampton, Southampton General HospitalSouthampton, UK
| | - Robert J Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
- Infectious Diseases Unit, GF Jooste HospitalManenberg, South Africa
- Department of Medicine, Imperial College LondonLondon, UK
- MRC National Institute for Medical ResearchLondon, UK
| |
Collapse
|
38
|
Huang CC, Tchetgen ET, Becerra MC, Cohen T, Hughes KC, Zhang Z, Calderon R, Yataco R, Contreras C, Galea J, Lecca L, Murray M. The effect of HIV-related immunosuppression on the risk of tuberculosis transmission to household contacts. Clin Infect Dis 2013; 58:765-74. [PMID: 24368620 DOI: 10.1093/cid/cit948] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Coinfection with human immunodeficiency virus (HIV) may modify the risk of transmitting tuberculosis. Some previous investigations suggest that patients coinfected with HIV and tuberculosis are less likely to transmit infection, whereas others do not support this conclusion. Here, we estimated the relative risk of tuberculosis transmission from coinfected patients compared to HIV-negative patients with tuberculosis. METHODS Between September 2009 and August 2012, we identified and enrolled 4841 household contacts of 1608 patients with drug-sensitive tuberculosis in Lima, Peru. We assessed the HIV status and CD4 counts of index patients, as well as other risk factors for infection specific to the index patient, the household, and the exposed individuals. Contacts underwent tuberculin skin testing to determine tuberculosis infection status. RESULTS After adjusting for covariates, we found that household contacts of HIV-infected tuberculosis patients with a CD4 count ≤250 cells/µL were less likely to be infected with tuberculosis (risk ratio = 0.49 [95% confidence interval, .24-.96]) than the contacts of HIV-negative tuberculosis patients. No children younger than 15 years who were exposed to HIV-positive patients with a CD4 count ≤250 cells/µL were infected with tuberculosis, compared to 22% of those exposed to non-HIV-infected patients. There was no significant difference in the risk of infection between contacts of HIV-infected index patients with CD4 counts >250 cells/µL and contacts of index patients who were not HIV-infected. CONCLUSIONS We found a reduced risk of tuberculosis infection among the household contacts of patients with active tuberculosis who had advanced HIV-related immunosuppression, suggesting reduced transmission from these index patients.
Collapse
|
39
|
Srinivasan A, Syal K, Banerjee D, Hota D, Gupta D, Kaul D, Chakrabarti A. Low plasma levels of cholecalciferol and 13-cis-retinoic acid in tuberculosis: implications in host-based chemotherapy. Nutrition 2013; 29:1245-51. [PMID: 23880094 DOI: 10.1016/j.nut.2013.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/27/2013] [Accepted: 03/31/2013] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The aim of this study was to estimate the concentration of cholecalciferol and 13-cis-retinoic acid (RA) in the plasma and pleural fluid of patients with tuberculosis (TB) against controls. METHODS Plasma levels of cholecalciferol and 13-cis-RA were measured in 22 patients with TB and healthy controls and their pleural fluids levels were measured in 6 TB patients and diseased controls by established high-performance liquid chromatography-based procedure. RESULTS Cholecalciferol levels in plasma and pleural fluid of patients with TB and healthy controls were 67.45 (10.71) nmol/L and 21.40 (8.58) nmol/L compared with 117.43 (18.40) nmol/L (P < 0.001) and 94.73 (33.34) nmol/L (P = 0.0049), respectively. 13-cis-RA level in the plasma of patients with TB and healthy controls were 1.51 (0.72) nmol/L and 6.67 (0.81) nmol/L (P < 0.001), respectively. 13-cis-RA was not detectable in pleural fluid. The levels of both the agents were lower in patients with TB than in controls. CONCLUSION It was observed that in patients with TB there is a combined deficiency of cholecalciferol and 13-cis-RA compared with healthy volunteers. Because cholecalciferol and 13-cis-RA are in equilibrium with active ingredients of vitamins A and D, we feel that there is a combined deficiency of these vitamins in patients with TB. There is an evidence that concomitant vitamin A and D supplementation can kill intracellular Mycobacterium tuberculosis in vitro. Therefore, the observations made in this study can pave the path for a trial of combined supplementation of available formulations of vitamin A and D (cholecalciferol and 13-cis-RA) for novel anti-tubercular drug therapy. Because such an approach is host-based it has potential to treat even multidrug-resistant and extensively drug-resistant forms of TB.
Collapse
Affiliation(s)
- Anand Srinivasan
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | | | | | |
Collapse
|
40
|
El Margoushy NM, Khaleel AT. Metalloproteinase and tissue inhibitor of metalloproteinase in tuberculosis and malignant pleural effusion. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2013. [DOI: 10.1016/j.ejcdt.2013.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
41
|
An intra-abdominal abscess or "rind" as a consequence of peritoneal dialysis-associated pseudomonas peritonitis. Clin Nephrol Case Stud 2013; 1:1-6. [PMID: 29043117 PMCID: PMC5437986 DOI: 10.5414/cncs107951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/22/2013] [Indexed: 11/21/2022] Open
Abstract
Background: Abdominal CT imaging has defined characteristics of two pathological entities specific to peritoneal dialysis patients. Both are associated with serious peritoneal complications. One is comprised of ascites accompanied by septation and loculated fluid pockets as a complication of bacterial peritonitis. The other is the syndrome of encapsulating peritoneal sclerosis. We present the evolution of a single, thick-walled fluid collection as a consequence of relapsing Pseudomonas aeruginosa peritonitis. The entity had distinctive features differing from either of the two previously described entities, and to our knowledge, has not been described previously. Our patient’s radiological evolution resembled the formation of a pleural or peritoneal “rind.” Conclusion: Peritonitis, as a result of Pseudomonas aeruginosa, may lead to “rind” formation as described with empyemas and is distinct from previously described intra-abdominal pathologies in peritoneal dialysis patients.
Collapse
|
42
|
MMP expression in rheumatoid inflammation: the rs11568818 polymorphism is associated with MMP-7 expression at an extra-articular site. Genes Immun 2013; 14:162-9. [PMID: 23343931 DOI: 10.1038/gene.2012.65] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Matrix metalloproteinases (MMPs) contribute to the joint damage in rheumatoid arthritis (RA). Less is known of the involvement of MMPs at extra-articular sites of rheumatoid inflammation. We assessed the relative contribution from MMP-1, MMP-3, MMP-7 and MMP-12 to joint and extra-articular tissue destruction and inflammation by comparing gene expression in joint synovia and subcutaneous rheumatoid nodules from RA patients. Expression of MMP-1 and MMP-3 predominated in synovia, whereas MMP-12 expression was significantly higher in rheumatoid nodules. Markedly higher MMP-7 expression distinguished a subgroup of nodules that featured infiltrating monocyte/macrophage-producing MMP-7 protein. The high MMP-7 expression in nodules was associated with the single-nucleotide polymorphism (SNP) rs11568818 (-181A>G, MMP-7 promoter) and more active inflammation within the nodule lesions. Patients with such nodules had significantly earlier age of RA onset. Our findings indicate that the expression of MMP-1 and MMP-3 occurs relatively independent of the tissue microenvironment with substantial expression also at extra-articular sites. MMP-12 expression reflects the involvement of monocyte/macrophages in rheumatoid inflammation. Evidence for the association between the rs11568818 SNP and increased MMP-7 expression is restricted to nodules, which indicates that consequences of the MMP-7 polymorphism are likely to manifest within aspects of immune/inflammatory activity that are monocyte/macrophage-mediated.
Collapse
|
43
|
Looking Within the Zebrafish to Understand the Tuberculous Granuloma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 783:251-66. [DOI: 10.1007/978-1-4614-6111-1_13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Hsieh WY, Kuan TC, Cheng KS, Liao YC, Chen MY, Lin PH, Hsu YC, Huang CY, Hsu WH, Yu SY, Lin CS. ACE/ACE2 ratio and MMP-9 activity as potential biomarkers in tuberculous pleural effusions. Int J Biol Sci 2012; 8:1197-205. [PMID: 23091417 PMCID: PMC3477689 DOI: 10.7150/ijbs.5087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/06/2012] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Pleural effusion is common problem, but the rapid and reliable diagnosis for specific pathogenic effusions are lacking. This study aimed to identify the diagnosis based on clinical variables to differentiate pleural tuberculous exudates from other pleural effusions. We also investigated the role of renin-angiotensin system (RAS) and matrix metalloproteinase (MMPs) in the pathogenesis of pleural exudates. EXPERIMENTAL DESIGN The major components in RAS and extracellular matrix metabolism, including angiotensin converting enzyme (ACE), ACE2, MMP-2 and MMP-9 activities, were measured and compared in the patients with transudative (n = 45) and exudative (n = 80) effusions. The exudative effusions were come from the patients with tuberculosis (n = 20), pneumonia (n = 32), and adenocarcinoma (n = 28). RESULTS Increased ACE and equivalent ACE2 activities, resulting in a significantly increased ACE/ACE2 ratio in exudates, were detected compared to these values in transudates. MMP-9 activity in exudates was significantly higher than that in transudates. The significant correlation between ACE and ACE2 activity that was found in transudates was not found in exudates. Advanced analyses showed significantly increased ACE and MMP-9 activities, and decreased ACE2 activity in tuberculous pleural effusions compared with those in pneumonia and adenocarcinoma effusions. The results indicate that increased ACE and MMP-9 activities found in the exudates were mainly contributed from a higher level of both enzyme activities in the tuberculous pleural effusions. CONCLUSION Interplay between ACE and ACE2, essential functions in the RAS, and abnormal regulation of MMP-9 probably play a pivotal role in the development of exudative effusions. Moreover, the ACE/ACE2 ratio combined with MMP-9 activity in pleural fluid may be potential biomarkers for diagnosing tuberculous pleurisy.
Collapse
Affiliation(s)
- Wen-Yeh Hsieh
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sundararajan S, Babu S, Das SD. Comparison of localized versus systemic levels of Matrix metalloproteinases (MMPs), its tissue inhibitors (TIMPs) and cytokines in tuberculous and non-tuberculous pleuritis patients. Hum Immunol 2012; 73:985-91. [PMID: 22820625 PMCID: PMC3511911 DOI: 10.1016/j.humimm.2012.07.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/30/2012] [Accepted: 07/11/2012] [Indexed: 01/09/2023]
Abstract
The interaction of Matrix metalloproteinases (MMPs), its tissue inhibitors (TIMPs) and pro-inflammatory cytokines in response to Mycobacterium tuberculosis (MTB) infection is important to understand the immune response at the site of infection. We compared the levels of MMPs, TIMPs and cytokines in plasma (BL) and pleural fluid (PF) of tuberculosis (TB) and non tuberculosis (NTB) patients. Comparison between BL and PF showed significantly higher levels of MMP-1, TIMP-1 and -3 in TB PF; of MMP-7, -8, -9 in BL of both groups. Also, levels of MMP-1,-8,-9 and TIMP-3 were significantly higher in TB PF compared to NTB. Cytokines INF-γ, TNF-α, and IL-6 significantly increased in PF of both groups. A positive correlation of MMPs with TIMPs in TB, MMP-1 and -9 with IL-6 in TB PF and MMP-9 with IFN-γ in NTB PF was observed. This study implicates the possible usage of MMPs as bio-markers aiding diagnosis in TB pleuritis.
Collapse
Affiliation(s)
- Swetha Sundararajan
- Dept. of Immunology, National Institute for Research in Tuberculosis, Chennai, India
| | - Subash Babu
- NIH-TRC-International Centre for Excellence in Research (ICER), NIRT, Chennai, India
| | - Sulochana D. Das
- Dept. of Immunology, National Institute for Research in Tuberculosis, Chennai, India
| |
Collapse
|
46
|
Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 2012; 12:352-66. [PMID: 22517424 DOI: 10.1038/nri3211] [Citation(s) in RCA: 585] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The granuloma, which is a compact aggregate of immune cells, is the hallmark structure of tuberculosis. It is historically regarded as a host-protective structure that 'walls off' the infecting mycobacteria. This Review discusses surprising new discoveries--from imaging studies coupled with genetic manipulations--that implicate the innate immune mechanisms of the tuberculous granuloma in the expansion and dissemination of infection. It also covers why the granuloma can fail to eradicate infection even after adaptive immunity develops. An understanding of the mechanisms and impact of tuberculous granuloma formation can guide the development of therapies to modulate granuloma formation. Such therapies might be effective for tuberculosis as well as for other granulomatous diseases.
Collapse
Affiliation(s)
- Lalita Ramakrishnan
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
47
|
Choudhury R, Das P, De T, Chakraborti T. 115 kDa serine protease confers sustained protection to visceral leishmaniasis caused by Leishmania donovani via IFN-γ induced down-regulation of TNF-α mediated MMP-9 activity. Immunobiology 2012; 218:114-26. [PMID: 22440312 DOI: 10.1016/j.imbio.2012.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 11/30/2022]
Abstract
Visceral leishmaniasis caused by the intracellular parasite Leishmania donovani is a major public health problem in the developing world. The emergence of increasing number of L. donovani strains resistance to antimonial drugs recommended worldwide requires the intervention of effective vaccine strategy for treatment of VL. In the present study L. donovani culture derived, soluble, secretory serine protease (pSP) has been shown to be vaccine target of VL. Protection from VL could be achieved by the use of safer vaccine which generally requires an adjuvant for induction of strong Th1 response. To assess the safety, immunogenicity and efficacy of pSP as vaccine candidate in mouse model we used IL-12 as adjuvant. BALB/c mice immunized with pSP+IL-12 were protected significantly from challenged infection even after four months by reducing the parasite load in liver and spleen and suppressed the development of the disease along with an increase in IgG2a antibody level in serum, enhanced delayed type hypersensitivity and strong T-cell proliferation. Groups receiving pSP+IL-12 had an augmented pSP antigen specific Th1 cytokines like IFN-γ and TNF-α response with concomitant decrease of Th2 cytokines IL-4 and IL-10 after vaccination. In this study the vaccine efficacy of pSP was further assessed for its prophylactic potential by enumerating matrix metalloprotease-9 (MMP-9) profile which has been implicated in various diseases. MMP-9 associated with different microbial infections is controlled by their natural inhibitors (TIMPS) and by some cytokines. In this study pSP was found to regulate excessive inflammation by modulating the balance between MMP-9 and TIMP-1 expression. This modulatory effect has also been demonstrated by IFN-γ mediated down regulation of TNF-α induced MMP-9 expression in activated murine macrophages. This is the first report where a secretory L. donovani serine protease (pSP) adjuvanted with IL-12 could also act as protective imunogen by modifying cytokine mediated MMP-9 expression in experimental VL. These findings elucidate the mechanisms of regulation of MMP-9 following infection of L. donovani in vaccinated animals and thus pave the way for developing new immunotherapeutic interventions for VL.
Collapse
Affiliation(s)
- Rajdeep Choudhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | | | | | | |
Collapse
|
48
|
Pleural fluid analysis: standstill or a work in progress? Pulm Med 2012; 2012:716235. [PMID: 22448326 PMCID: PMC3289839 DOI: 10.1155/2012/716235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/26/2011] [Indexed: 11/30/2022] Open
Abstract
Pleural fluid analysis yields important diagnostic information in pleural effusions in combination with clinical history, examination, and radiology. For more than 30 years, the initial and most pragmatic step in this process is to determine whether the fluid is a transudate or an exudate. Light's criteria remain the most robust in separating the transudate-exudate classification which dictates further investigations or management. Recent studies have led to the evaluation and implementation of a number of additional fluid analyses that may improve the diagnostic utility of this method. This paper discusses the current practice and future direction of pleural fluid analysis in determining the aetiology of a pleural effusion. While this has been performed for a few decades, a number of other pleural characteristics are becoming available suggesting that this diagnostic tool is indeed a work in progress.
Collapse
|
49
|
Pandey RK, Dahiya Y, Sodhi A. Mycobacterium indicus pranii downregulates MMP-9 and iNOS through COX-2 dependent and TNF-α independent pathway in mouse peritoneal macrophages in vitro. Microbes Infect 2011; 14:348-56. [PMID: 22138502 DOI: 10.1016/j.micinf.2011.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/12/2011] [Accepted: 11/10/2011] [Indexed: 01/30/2023]
Abstract
Despite the popular belief that granulomas are innate immune mechanism to restrict mycobacterial growth, evidences suggest that granulomas facilitate growth of Mycobacterium by recruiting large numbers of uninfected macrophages to the site of infection. Matrix metalloproteinase-9 (MMP-9) has been shown to be directly involved in recruitment of macrophages at the site of infection, contributing to nascent granuloma maturation and bacterial growth. In this manuscript it is reported that heat-killed Mycobacterium indicus pranii (MIP) leads to a significant downregulation of MMP-9 in murine peritoneal macrophages in vitro. The downregulation of MMP-9 is mediated through cyclooxygenase-2 (COX-2), but independent of tumor necrosis factor-α (TNF-α). By limiting nuclear to cytoplasmic export of COX-2 and iNOS transcripts, MIP inhibits excessively-high levels of nitric oxide which can be damaging to the host during acute phases of infection. MIP has been shown to provide clinical improvement in all phases of leprosy and used for treatment of leprosy and tuberculosis.
Collapse
|
50
|
Shiryaev SA, Cieplak P, Aleshin AE, Sun Q, Zhu W, Motamedchaboki K, Sloutsky A, Strongin AY. Matrix metalloproteinase proteolysis of the mycobacterial HSP65 protein as a potential source of immunogenic peptides in human tuberculosis. FEBS J 2011; 278:3277-86. [PMID: 21752195 DOI: 10.1111/j.1742-4658.2011.08244.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mycobacterium tuberculosis is the causative agent of human tuberculosis (TB). Mycobacterial secretory protein ESAT-6 induces matrix metalloproteinase (MMP)-9 in epithelial cells neighboring infected macrophages. MMP-9 then enhances recruitment of uninfected macrophages, which contribute to nascent granuloma maturation and bacterial growth. Disruption of MMP-9 function attenuates granuloma formation and bacterial growth. The abundant mycobacterial 65 kDa heat shock protein (HSP65) chaperone is the major target for the immune response and a critical component in M. tuberculosis adhesion to macrophages. We hypothesized that HSP65 is susceptible to MMP-9 proteolysis and that the resulting HSP65 immunogenic peptides affect host adaptive immunity. To identify MMPs that cleave HSP65, we used MMP-2 and MMP-9 gelatinases, the simple hemopexin domain MMP-8, membrane-associated MMP-14, MMP-15, MMP-16 and MMP-24, and glycosylphosphatidylinositol-linked MMP-17 and MMP-25. We determined both the relative cleavage efficiency of MMPs against the HSP65 substrate and the peptide sequence of the cleavage sites. Cleavage of the unstructured PAGHG474L C-terminal region initiates the degradation of HSP65 by MMPs. This initial cleavage destroys the substrate-binding capacity of the HSP65 chaperone. Multiple additional cleavages of the unfolded HSP65 then follow. MMP-2, MMP-8, MMP-14, MMP-15 and MMP-16, in addition to MMP-9, generate the known highly immunogenic N-terminal peptide of HSP65. Based on our biochemical data, we now suspect that MMP proteolysis of HSP65 in vivo, including MMP-9 proteolysis, also results in the abundant generation of the N-terminal immunogenic peptide and that this peptide, in addition to intact HSP65, contributes to the complex immunomodulatory interplay in the course of TB infection.
Collapse
Affiliation(s)
- Sergey A Shiryaev
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|