1
|
Jad R, Ma X, Stanojevic S, Illango A, Tullis E, Gilmour J, Goss CH, Strug LJ, Stephenson AL. Longitudinal changes in BMD in adults with cystic fibrosis. J Bone Miner Res 2024; 39:1716-1721. [PMID: 39221749 PMCID: PMC11637762 DOI: 10.1093/jbmr/zjae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Improved survival in people with cystic fibrosis (pwCF) presents new complexities of care, including CF-related bone disease, a common complication in older pwCF. The trajectory of bone loss with age in this population remains unclear. The objective of this study was to estimate the average rate of change in BMD in adults with CF. This retrospective study included adults with CF, aged 25-48 yr, followed between January 2000 and December 2021. Subjects with at least one DXA scan were included. Scans obtained posttransplantation, after the initiation of bisphosphonates or cystic fibrosis transmembrane conductance regulator modulator therapy was excluded. The primary outcome was BMD (g/cm2) at the LS and FN. A linear mixed-effects model with both random intercept and random slope terms was used to estimate the average annual change in BMD. A total of 1502 DXA scans in 500 adults (average age 28.4 y) were included. There was a statistically significant annual decline in BMD of -0.008 gm/cm2/yr (95% CI, -0.009 to -0.007) at the FN and -0.006 gm/cm2/yr (95% CI, -0.007 to -0.004) at the LS. Relative to BMD at age 25, there was a 18.8% decline at the FN by age 48 yr and a 11% decline at the LS. Pancreatic insufficient subjects had a faster rate of decline in BMD compared with pancreatic sufficient subjects. After adjusting for markers of disease severity, the annual rate of decline remained significant. Individuals with CF experience bone loss at an age when it is not anticipated, thereby entering early adulthood, where further bone loss is inevitable especially with the decrease in estrogen during menopause, with suboptimal BMD. As the CF population ages, it will become very important to consider interventions to maximize bone health.
Collapse
Affiliation(s)
- Reem Jad
- Division of Respirology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Xiayi Ma
- Division of Respirology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Sanja Stanojevic
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, NS B3H 1V7, Canada
| | - Abarnaa Illango
- Division of Respirology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Elizabeth Tullis
- Division of Respirology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Julie Gilmour
- Division of Endocrinology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Christopher H Goss
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA 98195, United States
- Division of Pulmonology, Department of Pediatrics, University of Washington, Seattle, WA 98195, United States
| | - Lisa J Strug
- The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
- Departments of Statistical Sciences and Computer Science, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Anne L Stephenson
- Division of Respirology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
2
|
Cao L, Wu Y, Gong Y, Zhou Q. Small molecule modulators of cystic fibrosis transmembrane conductance regulator (CFTR): Structure, classification, and mechanisms. Eur J Med Chem 2024; 265:116120. [PMID: 38194776 DOI: 10.1016/j.ejmech.2023.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
The advent of small molecule modulators targeting the cystic fibrosis transmembrane conductance regulator (CFTR) has revolutionized the treatment of persons with cystic fibrosis (CF) (pwCF). Presently, these small molecule CFTR modulators have gained approval for usage in approximately 90 % of adult pwCF. Ongoing drug development endeavors are focused on optimizing the therapeutic benefits while mitigating potential adverse effects associated with this treatment approach. Based on their mode of interaction with CFTR, these drugs can be classified into two distinct categories: specific CFTR modulators and non-specific CFTR modulators. Specific CFTR modulators encompass potentiators and correctors, whereas non-specific CFTR modulators encompass activators, proteostasis modulators, stabilizers, reader-through agents, and amplifiers. Currently, four small molecule modulators, all classified as potentiators and correctors, have obtained marketing approval. Furthermore, numerous novel small molecule modulators, exhibiting diverse mechanisms of action, are currently undergoing development. This review aims to explore the classification, mechanisms of action, molecular structures, developmental processes, and interrelationships among small molecule CFTR modulators.
Collapse
Affiliation(s)
- Luyang Cao
- China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yong Wu
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China
| | - Yanchun Gong
- Jiangsu Vcare PharmaTech Co., Ltd., Huakang Road 136, Biotech and Pharmaceutical Valley, Jiangbei New Area, Nanjing, 211800, PR China.
| | - Qingfa Zhou
- China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
3
|
Chadwick C, Arcinas R, Ham M, Huang R, Hunter S, Mehta M, Sharma P, Varghese PA, Williams K, Troendle DM, Sathe M. The use of DXA for early detection of pediatric cystic fibrosis-related bone disease. Pediatr Pulmonol 2023; 58:1136-1144. [PMID: 36593123 DOI: 10.1002/ppul.26304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/30/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Cystic fibrosis (CF)-related bone disease (CFBD) is seen in adults and can be associated with respiratory illness and malnutrition. There is limited and conflicting data regarding CFBD in pediatric CF. With longer life expectancy and promotion of disease prevention, pediatric CFBD demands further investigation. METHODS Our center initiated a quality improvement (QI) project from April 2016 to December 2018 to improve CFBD screening in patients 8 years or older, per current CF Foundation (CFF) guidelines. Our team formulated a dual-energy X-ray absorptiometry (DXA) scan algorithm based upon degree of bone mineral density (BMD); shared CFBD guideline recommendations in our quarterly newsletter; and ordered scans for eligible patients at weekly review meetings. We reviewed DXA results from 141 patients after institutional review board approval and gathered data including comorbidities, genetics, anthropometric measures, medication exposure, and relevant serum studies. RESULTS Fifty-three percent of our patients had normal BMD (n = 75). Seventeen patients (12%) had a Z score ≤ -2. Patients with lower BMD also had lower mean forced expiratory volume (FEV1 ) percent predicted (FEV1 %) (p < 0.001) as well as lower body mass index % (p = 0.001). Patients with lower BMD were overall older at time of DXA (p = 0.016). During study duration, 13 patients who had abnormal DXA results underwent repeat DXAs after physical therapy; 11 of the 13 showed improvement in DXA results. CONCLUSIONS A DXA scan is a useful screening tool and can be used to identify pediatric patients who could benefit from further therapy and interventions to preserve adequate bone health and avoid further loss. QI initiatives can lead to improved screening and diagnosis and earlier intervention such as physical therapy. Further studies are needed to better understand the utility of physical therapy in children with CF.
Collapse
Affiliation(s)
- Christina Chadwick
- Division of Pediatric Gastroenterology, University of Florida, Gainesville, Florida, USA
| | - Renallie Arcinas
- Children's Health Rehabilitation and Therapy Services, Physical Rehabilitation, Children's Health, Dallas, Texas, USA
| | - Melissa Ham
- Division of Pediatric Endocrinology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rong Huang
- Department of Clinical Research, Research Administration, Children's Health, Dallas, Texas, USA
| | - Stacie Hunter
- Department of Pediatric Clinical Nutrition, Clinical Nutrition, Children's Health, Dallas, Texas, USA
| | - Megha Mehta
- Division of Pediatric Gastroenterology, University of Florida, Gainesville, Florida, USA
| | - Preeti Sharma
- Division of Pediatric Pulmonology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Prigi Anu Varghese
- Division of Pediatric Pulmonology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kelli Williams
- Division of Pulmonology, Children's Health, Dallas, Texas, USA
| | - David M Troendle
- Division of Pediatric Gastroenterology, University of Florida, Gainesville, Florida, USA
| | - Meghana Sathe
- Division of Pediatric Gastroenterology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Fonseca Ó, Gomes MS, Amorim MA, Gomes AC. Cystic Fibrosis Bone Disease: The Interplay between CFTR Dysfunction and Chronic Inflammation. Biomolecules 2023; 13:425. [PMID: 36979360 PMCID: PMC10046889 DOI: 10.3390/biom13030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Cystic fibrosis is a monogenic disease with a multisystemic phenotype, ranging from predisposition to chronic lung infection and inflammation to reduced bone mass. The exact mechanisms unbalancing the maintenance of an optimal bone mass in cystic fibrosis patients remain unknown. Multiple factors may contribute to severe bone mass reduction that, in turn, have devastating consequences in the patients' quality of life and longevity. Here, we will review the existing evidence linking the CFTR dysfunction and cell-intrinsic bone defects. Additionally, we will also address how the proinflammatory environment due to CFTR dysfunction in immune cells and chronic infection impairs the maintenance of an adequate bone mass in CF patients.
Collapse
Affiliation(s)
- Óscar Fonseca
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Salomé Gomes
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS–Instuto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4030-313 Porto, Portugal
| | | | - Ana Cordeiro Gomes
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
5
|
Abid S, Lee M, Rodich B, Hook JS, Moreland JG, Towler D, Maalouf NM, Keller A, Ratti G, Jain R. Evaluation of an association between RANKL and OPG with bone disease in people with cystic fibrosis. J Cyst Fibros 2023; 22:140-145. [PMID: 36041886 DOI: 10.1016/j.jcf.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND As people with Cystic Fibrosis (CF) live longer, extra-pulmonary complications such as CF-related bone disease (CFBD) are becoming increasingly important. The etiology of CFBD is poorly understood but is likely multifactorial. Bones undergo continuous remodeling via pathways including RANK (receptor activator of NF-κB)/sRANKL (soluble ligand)/OPG (osteoprotegerin). We sought to examine the association between sRANKL (stimulant of osteoclastogenesis) and OPG levels (inhibitor of osteoclast formation) and CFBD to investigate their potential utility as biomarkers of bone turnover in people with CF. METHODS We evaluated sRANKL and OPG in plasma from people with CF and healthy controls (HC) and compared levels in those with CF to bone mineral density results. We used univariable and multivariable analysis to account for factors that may impact sRANKL and OPG. RESULTS We found a higher median [IQR] sRANKL 10,896pg/mL [5,781-24,243] CF; 2,406pg.mL [659.50-5,042] HC; p= 0.0009), lower OPG 56.68pg/mL [36.28-124.70] CF; 583.20pg/mL [421.30-675.10] HC; p < 0.0001), and higher RANKL/OPG in people with CF no BD than in HC (p < 0.0001). Furthermore, we found a higher RANKL/OPG ratio 407.50pg/mL [214.40-602.60] CFBD; 177.70pg/mL [131.50-239.70] CF no BD; p = 0.007) in people with CFBD versus CF without bone disease. This difference persisted after adjusting for variables thought to impact bone health. CONCLUSIONS The current screening recommendations of imaging for CFBD may miss important markers of bone turnover such as the RANKL/OPG ratio. These findings support the investigation of therapies that modulate the RANK/RANKL/OPG pathway as potential therapeutic targets for bone disease in CF.
Collapse
Affiliation(s)
- Shadaan Abid
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - MinJae Lee
- Department of Population & Data Sciences, Division of Biostatistics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bailey Rodich
- Department of Anesthesiology, Baylor Scott and White, Temple, TX
| | - Jessica S Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jessica G Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Dwight Towler
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Naim M Maalouf
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ashley Keller
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Gregory Ratti
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Raksha Jain
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
6
|
Ebeling PR, Nguyen HH, Aleksova J, Vincent AJ, Wong P, Milat F. Secondary Osteoporosis. Endocr Rev 2022; 43:240-313. [PMID: 34476488 DOI: 10.1210/endrev/bnab028] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a global public health problem, with fractures contributing to significant morbidity and mortality. Although postmenopausal osteoporosis is most common, up to 30% of postmenopausal women, > 50% of premenopausal women, and between 50% and 80% of men have secondary osteoporosis. Exclusion of secondary causes is important, as treatment of such patients often commences by treating the underlying condition. These are varied but often neglected, ranging from endocrine to chronic inflammatory and genetic conditions. General screening is recommended for all patients with osteoporosis, with advanced investigations reserved for premenopausal women and men aged < 50 years, for older patients in whom classical risk factors for osteoporosis are absent, and for all patients with the lowest bone mass (Z-score ≤ -2). The response of secondary osteoporosis to conventional anti-osteoporosis therapy may be inadequate if the underlying condition is unrecognized and untreated. Bone densitometry, using dual-energy x-ray absorptiometry, may underestimate fracture risk in some chronic diseases, including glucocorticoid-induced osteoporosis, type 2 diabetes, and obesity, and may overestimate fracture risk in others (eg, Turner syndrome). FRAX and trabecular bone score may provide additional information regarding fracture risk in secondary osteoporosis, but their use is limited to adults aged ≥ 40 years and ≥ 50 years, respectively. In addition, FRAX requires adjustment in some chronic conditions, such as glucocorticoid use, type 2 diabetes, and HIV. In most conditions, evidence for antiresorptive or anabolic therapy is limited to increases in bone mass. Current osteoporosis management guidelines also neglect secondary osteoporosis and these existing evidence gaps are discussed.
Collapse
Affiliation(s)
- Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia
| | - Hanh H Nguyen
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Department of Endocrinology and Diabetes, Western Health, Victoria 3011, Australia
| | - Jasna Aleksova
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Amanda J Vincent
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Monash Centre for Health Research and Implementation, School of Public Health and Preventative Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Phillip Wong
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Frances Milat
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| |
Collapse
|
7
|
Ullal J, Kutney K, Williams KM, Weber DR. Treatment of cystic fibrosis related bone disease. J Clin Transl Endocrinol 2022; 27:100291. [PMID: 35059303 PMCID: PMC8760456 DOI: 10.1016/j.jcte.2021.100291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/29/2022] Open
Abstract
The advent of highly effective CFTR modulator therapies has slowed the progression of pulmonary complications in people with cystic fibrosis. There is increased interest in cystic fibrosis bone disease (CFBD) due to the increasing longevity of people with cystic fibrosis. CFBD is a complex and multifactorial disease. CFBD is a result of hypomineralized bone leading to poor strength, structure and quality leading to susceptibility to fractures. The development of CFBD spans different age groups. The management must be tailored to each group with nuance and based on available guidelines while balancing therapeutic benefits to risks of long-term use of bone-active medication. For now, the mainstay of treatment includes bisphosphonates. However, the long-term effects of bisphosphonate treatment in people with CF are not fully understood. We describe newer agents available for osteoporosis treatment. Still, the lack of data behooves trials of monoclonal antibodies treatments such as Denosumab and Romozosumab and anabolic bone therapy such as teriparatide and Abaloparatide. In this review, we also summarize screening and non-pharmacologic treatment of CFBD and describe the various options available for the pharmacotherapy of CFBD. We address the prospect of CFTR modulators on bone health while awaiting long-term trials to describe the effects of these medications on bone health.
Collapse
Affiliation(s)
- Jagdeesh Ullal
- UPMC Center for Diabetes and Endocrinology, University of Pittsburgh Medical Center, 3601 Fifth Ave, Suite 3B, Falk Medical Building, Pittsburgh, PA 15213, USA
- Corresponding author at: UPMC Center for Diabetes and Endocrinology, Falk Medical Building, 3601 Fifth Ave Suite 3B, Pittsburgh, PA 15213, USA. Tel.: 412-586-9700; Fax: 412-586-9724.
| | - Katherine Kutney
- Pediatric Endocrinology, Rainbow Babies and Children's Hospital, 11100 Euclid Ave, Suite 737, Cleveland, OH 44106, USA
| | - Kristen M. Williams
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center Division of Pediatric Endocrinology, Diabetes, and Metabolism, Columbia University Irving Medical Center, 1150 St Nicholas Avenue, New York, NY 10032, USA
| | - David R. Weber
- Division of Pediatric Endocrinology & Diabetes & Center for Bone Health, The Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania Roberts Clinical Research Bldg., Room 14361 415 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Putman MS, Greenblatt LB, Bruce M, Joseph T, Lee H, Sawicki G, Uluer A, Sicilian L, Neuringer I, Gordon CM, Bouxsein ML, Finkelstein JS. The Effects of Ivacaftor on Bone Density and Microarchitecture in Children and Adults with Cystic Fibrosis. J Clin Endocrinol Metab 2021; 106:e1248-e1261. [PMID: 33258950 PMCID: PMC7947772 DOI: 10.1210/clinem/dgaa890] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Cystic fibrosis (CF) transmembrane conductance (CFTR) dysfunction may play a role in CF-related bone disease (CFBD). Ivacaftor is a CFTR potentiator effective in improving pulmonary and nutritional outcomes in patients with the G551D-CFTR mutation. The effects of ivacaftor on bone health are unknown. OBJECTIVE To determine the impact of ivacaftor on bone density and microarchitecture in children and adults with CF. DESIGN Prospective observational multiple cohort study. SETTING Outpatient clinical research center within a tertiary academic medical center. PATIENTS OR OTHER PARTICIPANTS Three cohorts of age-, race-, and gender-matched subjects were enrolled: 26 subjects (15 adults and 11 children) with CF and the G551D-CFTR mutation who were planning to start or had started treatment with ivacaftor within 3 months (Ivacaftor cohort), 26 subjects with CF were not treated with ivacaftor (CF Control cohort), and 26 healthy volunteers. INTERVENTIONS All treatments, including Ivacaftor, were managed by the subjects' pulmonologists. MAIN OUTCOME MEASURES Bone microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT), areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) and bone turnover markers at baseline, 1, and 2 years. RESULTS Cortical volume, area, and porosity at the radius and tibia increased significantly in adults in the Ivacaftor cohort. No significant differences were observed in changes in aBMD, trabecular microarchitecture, or estimated bone strength in adults or in any outcome measures in children. CONCLUSIONS Treatment with ivacaftor was associated with increases in cortical microarchitecture in adults with CF. Further studies are needed to understand the implications of these findings.
Collapse
Affiliation(s)
- Melissa S Putman
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, USA
- Correspondence and Reprint Requests: Melissa S. Putman, Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114. E-mail:
| | - Logan B Greenblatt
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Bruce
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Taisha Joseph
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hang Lee
- Massachusetts General Hospital Biostatistics Center, Boston, MA, USA
| | - Gregory Sawicki
- Division of Pulmonology, Boston Children’s Hospital, Boston, MA, USA
| | - Ahmet Uluer
- Division of Pulmonology, Boston Children’s Hospital, Boston, MA, USA
- Division of Pulmonology and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Leonard Sicilian
- Division of Pulmonology and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Isabel Neuringer
- Division of Pulmonology and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Catherine M Gordon
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, USA
- Division of Adolescent and Young Adult Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Mary L Bouxsein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Joel S Finkelstein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
9
|
Cystic fibrosis bone disease treatment: Current knowledge and future directions. J Cyst Fibros 2020; 18 Suppl 2:S56-S65. [PMID: 31679730 DOI: 10.1016/j.jcf.2019.08.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022]
Abstract
Bone disease is a frequent complication in adolescents and adults with cystic fibrosis (CF). Early detection and monitoring of bone mineral density and multidisciplinary preventive care are necessary from childhood through adolescence to minimize CF-related bone disease (CFBD) in adult CF patients. Approaches to optimizing bone health include ensuring adequate nutrition, particularly intake of calcium and vitamins D and K, addressing other secondary causes of low bone density such as hypogonadism, encouraging weight bearing exercise, and avoiding bone toxic medications. Of the currently available anti-resorptive or anabolic osteoporosis medications, only bisphosphonates have been studied in individuals with CF. Future studies are needed to better understand the optimal approach for managing CFBD.
Collapse
|
10
|
Orlando V, Morin G, Laffont A, Lénart D, Solórzano Barrera C, Mustafy T, Sankhe S, Villemure I, Mailhot G. CFTR deletion affects mouse osteoblasts in a gender-specific manner. J Cell Physiol 2020; 235:6736-6753. [PMID: 31985038 DOI: 10.1002/jcp.29568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/10/2020] [Indexed: 12/24/2022]
Abstract
Advancements in research and care have contributed to increase life expectancy of individuals with cystic fibrosis (CF). With increasing age comes a greater likelihood of developing CF bone disease, a comorbidity characterized by a low bone mass and impaired bone quality, which displays gender differences in severity. However, pathophysiological mechanisms underlying this gender difference have never been thoroughly investigated. We used bone marrow-derived osteoblasts and osteoclasts from Cftr+/+ and Cftr-/- mice to examine whether the impact of CF transmembrane conductance regulator (CFTR) deletion on cellular differentiation and functions differed between genders. To determine whether in vitro findings translated into in vivo observations, we used imaging techniques and three-point bending testing. In vitro studies revealed no osteoclast-autonomous defect but impairment of osteoblast differentiation and functions and aberrant responses to various stimuli in cells isolated from Cftr-/- females only. Compared with wild-type controls, knockout mice exhibited a trabecular osteopenic phenotype that was more pronounced in Cftr-/- males than Cftr-/- females. Bone strength was reduced to a similar extent in knockout mice of both genders. In conclusion, we find a trabecular bone phenotype in Cftr-/- mice that was slightly more pronounced in males than females, which is reminiscent of the situation found in patients. However, at the osteoblast level, the pathophysiological mechanisms underlying this phenotype differ between males and females, which may underlie gender differences in the way bone marrow-derived osteoblasts behave in absence of CFTR.
Collapse
Affiliation(s)
- Valérie Orlando
- Research Centre, CHU Sainte-Justine, Montreal, Montreal, Quebec, Canada
| | - Geneviève Morin
- Research Centre, CHU Sainte-Justine, Montreal, Montreal, Quebec, Canada
| | - Alisson Laffont
- Research Centre, CHU Sainte-Justine, Montreal, Montreal, Quebec, Canada
| | - Déborah Lénart
- Research Centre, CHU Sainte-Justine, Montreal, Montreal, Quebec, Canada
| | - Carolina Solórzano Barrera
- Research Centre, CHU Sainte-Justine, Montreal, Montreal, Quebec, Canada.,Department of Mechanical Engineering, École Polytechnique of Montréal, Station Centre-Ville, Montréal, Quebec, Canada
| | - Tanvir Mustafy
- Research Centre, CHU Sainte-Justine, Montreal, Montreal, Quebec, Canada.,Department of Mechanical Engineering, École Polytechnique of Montréal, Station Centre-Ville, Montréal, Quebec, Canada
| | - Safiétou Sankhe
- Research Centre, CHU Sainte-Justine, Montreal, Montreal, Quebec, Canada
| | - Isabelle Villemure
- Research Centre, CHU Sainte-Justine, Montreal, Montreal, Quebec, Canada.,Department of Mechanical Engineering, École Polytechnique of Montréal, Station Centre-Ville, Montréal, Quebec, Canada
| | - Geneviève Mailhot
- Research Centre, CHU Sainte-Justine, Montreal, Montreal, Quebec, Canada.,Department of Nutrition, Faculty of Medicine, Université de Montreal, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Braux J, Jourdain ML, Guillaume C, Untereiner V, Piot O, Baehr A, Klymiuk N, Winter N, Berri M, Buzoni-Gatel D, Caballero I, Guillon A, Si-Tahar M, Jacquot J, Velard F. CFTR-deficient pigs display alterations of bone microarchitecture and composition at birth. J Cyst Fibros 2019; 19:466-475. [PMID: 31787573 DOI: 10.1016/j.jcf.2019.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The lack of cystic fibrosis transmembrane conductance regulator (CFTR) function causes cystic fibrosis (CF), predisposing to severe lung disease, reduced growth and osteopenia. Both reduced bone content and strength are increasingly recognized in infants with CF before the onset of significant lung disease, suggesting a developmental origin and a possible role in bone disease pathogenesis. The role of CFTR in bone metabolism is unclear and studies on humans are not feasible. Deletion of CFTR in pigs (CFTR -/- pigs) displays at birth severe malformations similar to humans in the intestine, respiratory tract, pancreas, liver, and male reproductive tract. METHODS We compared bone parameters of CFTR -/- male and female pigs with those of their wild-type (WT) littermates at birth. Morphological and microstructural properties of femoral cortical and trabecular bone were evaluated using micro-computed tomography (μCT), and their chemical compositions were examined using Raman microspectroscopy. RESULTS The integrity of the CFTR -/- bone was altered due to changes in its microstructure and chemical composition in both sexes. Low cortical thickness and high cortical porosity were found in CFTR -/- pigs compared to sex-matched WT littermates. Moreover, an increased chemical composition heterogeneity associated with higher carbonate/phosphate ratio and higher mineral crystallinity was found in CFTR -/- trabecular bone, but not in CFTR -/- cortical bone. CONCLUSIONS The loss of CFTR directly alters the bone composition and metabolism of newborn pigs. Based on these findings, we speculate that bone defects in patients with CF could be a primary, rather than a secondary consequence of inflammation and infection.
Collapse
Affiliation(s)
- Julien Braux
- Université de Reims Champagne Ardenne, BIOS EA 4691, Biomatériaux et Inflammation en site osseux, SFR CAP-Santé (FED 4231), 1, Avenue du Maréchal Juin, 51097 Reims, France
| | - Marie-Laure Jourdain
- Université de Reims Champagne Ardenne, BIOS EA 4691, Biomatériaux et Inflammation en site osseux, SFR CAP-Santé (FED 4231), 1, Avenue du Maréchal Juin, 51097 Reims, France
| | - Christine Guillaume
- Université de Reims Champagne Ardenne, BIOS EA 4691, Biomatériaux et Inflammation en site osseux, SFR CAP-Santé (FED 4231), 1, Avenue du Maréchal Juin, 51097 Reims, France
| | - Valérie Untereiner
- Université de Reims Champagne Ardenne (URCA), PICT Platform, Reims, 1, Avenue du Maréchal Juin, 51097 Reims, France
| | - Olivier Piot
- Université de Reims Champagne-Ardenne, BioSpecT (Translational BioSpectroscopy) EA 7506, 1, Avenue du Maréchal Juin, 51097 Reims, France
| | - Andrea Baehr
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universitat Munchen, Hackerstrasse 27, 85764, Oberschleissheim, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universitat Munchen, Hackerstrasse 27, 85764, Oberschleissheim, Germany
| | - Nathalie Winter
- INRA, UMR1282 ISP, Centre de recherches INRA Val de Loire, 37380, Nouzilly, France
| | - Mustapha Berri
- INRA, UMR1282 ISP, Centre de recherches INRA Val de Loire, 37380, Nouzilly, France
| | | | - Ignaccio Caballero
- INRA, UMR1282 ISP, Centre de recherches INRA Val de Loire, 37380, Nouzilly, France
| | - Antoine Guillon
- Inserm, Centre d'Etude des Pathologies Respiratoires, UMR1100/EA6305, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Mustapha Si-Tahar
- Inserm, Centre d'Etude des Pathologies Respiratoires, UMR1100/EA6305, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Jacky Jacquot
- Université de Reims Champagne Ardenne, BIOS EA 4691, Biomatériaux et Inflammation en site osseux, SFR CAP-Santé (FED 4231), 1, Avenue du Maréchal Juin, 51097 Reims, France.
| | - Frédéric Velard
- Université de Reims Champagne Ardenne, BIOS EA 4691, Biomatériaux et Inflammation en site osseux, SFR CAP-Santé (FED 4231), 1, Avenue du Maréchal Juin, 51097 Reims, France.
| |
Collapse
|
12
|
Bardin P, Foussignière T, Rousselet N, Rebeyrol C, Porter JC, Corvol H, Tabary O. miR-636: A Newly-Identified Actor for the Regulation of Pulmonary Inflammation in Cystic Fibrosis. Front Immunol 2019; 10:2643. [PMID: 31803183 PMCID: PMC6874100 DOI: 10.3389/fimmu.2019.02643] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) results from deficient CF transmembrane conductance regulator (CFTR) protein activity leading to defective epithelial ion transport. Pulmonary degradation due to excessive inflammation is the main cause of morbidity and mortality in CF patients. By analysing miRNAs (small RNAseq) in human primary air-liquid interface cell cultures, we measured the overexpression of miR-636 in CF patients compared to non-CF controls. We validated these results in explant biopsies and determined that the mechanism underlying miR-636 overexpression is linked to inflammation. To identify specific targets, we used bioinformatics analysis to predict whether miR-636 targets the 3′-UTR mRNA regions of IL1R1 and RANK (two pro-inflammatory cytokine receptors), IKBKB (a major protein in the NF-κB pathway), and FAM13A (a modifier gene of CF lung phenotype implicated in epithelial remodelling). Using bronchial epithelial cells from CF patients to conduct a functional analysis, we showed a direct interaction between miR-636 and IL1R1, RANK, and IKBKB, but not with FAM13A. These interactions led to a decrease in IL1R1 and IKKβ protein expression levels, while we observed an increase in RANK protein expression levels following the overexpression of miR-636. Moreover, NF-κB activity and IL-8 and IL-6 secretions decreased following the transfection of miR-636 mimics in CF cells. Similar but opposite effects were found after transfection with an antagomiR-636 in the same cells. Furthermore, we demonstrated that miR-636 was not regulated by Pseudomonas aeruginosa in our model. We went on to show that miR-636 is raised in the blood neutrophils, but not in the plasma, of CF patients and may have potential as a novel biomarker. Collectively, our findings reveal a novel actor for the regulation of inflammation in CF, miR-636, which is able to reduce constitutive NF-κB pathway activation when it is overexpressed.
Collapse
Affiliation(s)
- Pauline Bardin
- Faculté des Sciences, Sorbonne Université, Paris, France.,Inserm, Centre de Recherche Saint-Antoine, Paris, France
| | | | | | - Carine Rebeyrol
- UCL Respiratory, University College London, Hospitals NHS Foundation Trust, London, United Kingdom
| | - Joanna C Porter
- UCL Respiratory, University College London, Hospitals NHS Foundation Trust, London, United Kingdom
| | - Harriet Corvol
- Faculté des Sciences, Sorbonne Université, Paris, France.,Inserm, Centre de Recherche Saint-Antoine, Paris, France.,Département de Pédiatrie Respiratoire, Hôpital Trousseau, AP-HP, Paris, France
| | - Olivier Tabary
- Faculté des Sciences, Sorbonne Université, Paris, France.,Inserm, Centre de Recherche Saint-Antoine, Paris, France
| |
Collapse
|
13
|
Anabtawi A, Le T, Putman M, Tangpricha V, Bianchi ML. Cystic fibrosis bone disease: Pathophysiology, assessment and prognostic implications. J Cyst Fibros 2019; 18 Suppl 2:S48-S55. [DOI: 10.1016/j.jcf.2019.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 12/25/2022]
|
14
|
Delion M, Braux J, Jourdain ML, Guillaume C, Bour C, Gangloff S, Pimpec-Barthes FL, Sermet-Gaudelus I, Jacquot J, Velard F. Overexpression of RANKL in osteoblasts: a possible mechanism of susceptibility to bone disease in cystic fibrosis. J Pathol 2017; 240:50-60. [PMID: 27235726 DOI: 10.1002/path.4753] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/09/2016] [Accepted: 05/18/2016] [Indexed: 12/19/2022]
Abstract
Bone fragility and loss are a significant cause of morbidity in patients with cystic fibrosis (CF), and the lack of effective therapeutic options means that treatment is more often palliative rather than curative. A deeper understanding of the pathogenesis of CF-related bone disease (CFBD) is necessary to develop new therapies. Defective CF transmembrane conductance regulator (CFTR) protein and chronic inflammation in bone are important components of the CFBD development. The receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) drive the regulation of bone turnover. To investigate their roles in CFBD, we evaluated the involvement of defective CFTR in their production level in CF primary human osteoblasts with and without inflammatory stimulation, in the presence or not of pharmacological correctors of the CFTR. No major difference in cell ultrastructure was noted between cultured CF and non-CF osteoblasts, but a delayed bone matrix mineralization was observed in CF osteoblasts. Strikingly, resting CF osteoblasts exhibited strong production of RANKL protein, which was highly localized at the cell membrane and was enhanced in TNF (TNF-α) or IL-17-stimulated conditions. Under TNF stimulation, a defective response in OPG production was observed in CF osteoblasts in contrast to the elevated OPG production of non-CF osteoblasts, leading to an elevated RANKL-to-OPG protein ratio in CF osteoblasts. Pharmacological inhibition of CFTR chloride channel conductance in non-CF osteoblasts replicated both the decreased OPG production and the enhanced RANKL-to-OPG ratio. Interestingly, using CFTR correctors such as C18, we significantly reduced the production of RANKL by CF osteoblasts, in both resting and TNF-stimulated conditions. In conclusion, the overexpression of RANKL and high membranous RANKL localization in osteoblasts are related to defective CFTR, and may worsen bone resorption, leading to bone loss in patients with CF. Targeting osteoblasts with CFTR correctors may represent an effective strategy to treat CFBD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Martial Delion
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | - Julien Braux
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | - Marie-Laure Jourdain
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | - Christine Guillaume
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | - Camille Bour
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | - Sophie Gangloff
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | | | - Isabelle Sermet-Gaudelus
- Unité de Pneumo-Pédiatrie Allergologie, Hôpital Necker, Inserm U1551, Université Paris Sorbonne, Paris, France
| | - Jacky Jacquot
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | - Frédéric Velard
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| |
Collapse
|
15
|
Sermet-Gaudelus I, Delion M, Durieu I, Jacquot J, Hubert D. Bone demineralization is improved by ivacaftor in patients with cystic fibrosis carrying the p.Gly551Asp mutation. J Cyst Fibros 2016; 15:e67-e69. [DOI: 10.1016/j.jcf.2016.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 09/04/2016] [Accepted: 09/14/2016] [Indexed: 10/20/2022]
|
16
|
Braun C, Bacchetta J, Reix P. [Insights into cystic fibrosis-related bone disease]. Arch Pediatr 2016; 23:857-66. [PMID: 27345551 DOI: 10.1016/j.arcped.2016.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/17/2016] [Accepted: 05/11/2016] [Indexed: 02/04/2023]
Abstract
With the increasing life expectancy of patients with cystic fibrosis (CF), prevalence of late complications such as CF-related bone disease (CFBD) has increased. It was initially described in 24% of the adult population with CF and has also been reported in the pediatric population. CFBD is multifactorial and progresses in different steps. Both decreased bone formation and increased bone resorption (in different amounts) are observed. CFBD is likely primitive (directly related to the CFTR defect itself), but is also worsened by acquired secondary factors such as lung infections, chronic inflammation, denutrition, vitamin deficiency, and decreased physical activity. CFBD may be clinically apparent (i.e., mainly vertebral and costal fractures), or clinically asymptomatic (therefore corresponding to abnormalities in bone density and architecture). CFBD management mainly aims to prevent the occurrence of fractures. Prevention and regular monitoring of bone disease as early as 8 years of age is of the utmost importance, as is the control of possible secondary deleterious CFBD factors. New radiological tools, such as high-resolution peripheral quantitative computed tomography, allow an accurate evaluation of cortical and trabecular bone micro-architecture in addition to compartmental density; as such, they will likely improve the assessment of the bone fracture threat in CF patients in the near future.
Collapse
Affiliation(s)
- C Braun
- Université Claude-Bernard Lyon 1, 43, boulevard du 11-Novembre-1918, 69100 Villeurbanne, France
| | - J Bacchetta
- Université Claude-Bernard Lyon 1, 43, boulevard du 11-Novembre-1918, 69100 Villeurbanne, France; Centre de référence des maladies rénales rares, hôpital femme mère enfant, 69500 Bron, France; Inserm 1033 LYOS, prévention des maladies osseuses, 69008 Lyon, France
| | - P Reix
- Université Claude-Bernard Lyon 1, 43, boulevard du 11-Novembre-1918, 69100 Villeurbanne, France; Centre de ressources et de compétences de la mucoviscidose, hôpital femme mère enfant, 69500 Bron, France; UMR 5558, équipe EMET, 43, boulevard du 11-Novembre-1918, 69100 Villeurbanne, France.
| |
Collapse
|
17
|
Jacquot J, Delion M, Gangloff S, Braux J, Velard F. Bone disease in cystic fibrosis: new pathogenic insights opening novel therapies. Osteoporos Int 2016; 27:1401-1412. [PMID: 26431978 DOI: 10.1007/s00198-015-3343-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/24/2015] [Indexed: 01/17/2023]
Abstract
Mutations within the gene encoding for the chloride ion channel cystic fibrosis transmembrane conductance regulator (CFTR) results in cystic fibrosis (CF), the most common lethal autosomal recessive genetic disease that causes a number of long-term health problems, as the bone disease. Osteoporosis and increased vertebral fracture risk associated with CF disease are becoming more important as the life expectancy of patients continues to improve. The etiology of low bone density is multifactorial, most probably a combination of inadequate peak bone mass during puberty and increased bone losses in adults. Body mass index, male sex, advanced pulmonary disease, malnutrition and chronic therapies are established additional risk factors for CF-related bone disease (CFBD). Consistently, recent evidence has confirmed that CFTR plays a major role in the osteoprotegerin (OPG) and COX-2 metabolite prostaglandin E2 (PGE2) production, two key regulators in the bone formation and regeneration. Several others mechanisms were also recognized from animal and cell models contributing to malfunctions of osteoblast (cell that form bone) and indirectly of bone-resorpting osteoclasts. Understanding such mechanisms is crucial for the development of therapies in CFBD. Innovative therapeutic approaches using CFTR modulators such as C18 have recently shown in vitro capacity to enhance PGE2 production and normalized the RANKL-to-OPG ratio in human osteoblasts bearing the mutation F508del-CFTR and therefore potential clinical utility in CFBD. This review focuses on the recently identified pathogenic mechanisms leading to CFBD and potential future therapies for treating CFBD.
Collapse
Affiliation(s)
- J Jacquot
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP-Santé (FED 4231), Université Reims Champagne Ardenne, 1, Avenue du Maréchal Juin, 51095, Reims, France.
| | | | | | | | | |
Collapse
|