1
|
Ufuk F, Kurnaz B, Peker H, Sagtas E, Ok ZD, Cobankara V. Comparing three-dimensional zero echo time (3D-ZTE) lung MRI and chest CT in the evaluation of systemic sclerosis-related interstitial lung disease. Eur Radiol 2024:10.1007/s00330-024-11216-2. [PMID: 39592487 DOI: 10.1007/s00330-024-11216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/07/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is a chronic disease that can cause interstitial lung disease (ILD), a poor prognostic factor in SSc patients. Given the concerns over radiation exposure from repeated CT scans, there is a growing interest in exploring radiation-free imaging alternatives like MRI for ILD evaluation. The aim of this study is to assess the efficacy of three-dimensional zero echo time (3D-ZTE) MRI in assessing SSc-related ILD compared to the thin-slice chest CT. METHODS This prospective single-center study investigated 65 SSc patients. SSc patients underwent CT, 3D-ZTE lung MRI, and pulmonary function tests (PFTs) within a week. Three independent reviews visually quantified ILD extent on ZTE and CT imaging and the correlation of ILD extent with PFTs was analyzed. Statistical analyses were performed, including the intraclass correlation coefficient (ICC), Kruskal-Wallis tests, Bland-Altmann analysis, and correlation analyses between imaging results and PFTs. RESULTS ILD was detected in 45 patients via CT. 3D-ZTE MRI identified ILD in 41 (91.1%) of these cases, demonstrating a strong correlation with CT in assessing ILD severity (r = 0.986, p < 0.001). The median ILD extent scores were 5% for CT and 6% for 3D-ZTE MRI. Interobserver reliability for 3D-ZTE MRI was excellent, with ICC values ranging from 0.853 to 0.969. The analysis also revealed significant negative correlations between ILD extent on ZTE MRI and lung function, particularly FVC. CONCLUSION 3D-ZTE lung MRI is a reliable and radiation-free alternative to chest CT for evaluating SSc-related ILD, with a strong correlation in assessing total fibrosis and ground-glass opacities, though limitations remain in detecting fine reticulations and coarseness. KEY POINTS Question Can 3D-ZTE MRI replace thin-slice chest CT as a radiation-free method for assessing SSc-related ILD? Findings 3D-ZTE lung MRI showed an excellent agreement with thin-slice CT in evaluating ILD extent in SSc patients (r = 0.986, p < 0.001). Clinical relevance 3D-ZTE lung MRI provides a reliable, radiation-free alternative to CT for assessing ILD extent in SSc patients, ensuring safer longitudinal monitoring and management.
Collapse
Affiliation(s)
- Furkan Ufuk
- Department of Radiology, Pamukkale University School of Medicine, Denizli, Turkey.
- Department of Radiology, University of Chicago Medicine, Chicago, IL, USA.
| | - Burak Kurnaz
- Department of Radiology, Pamukkale University School of Medicine, Denizli, Turkey
| | - Hakki Peker
- Department of Radiology, Pamukkale University School of Medicine, Denizli, Turkey
| | - Ergin Sagtas
- Department of Radiology, Pamukkale University School of Medicine, Denizli, Turkey
| | - Zeynep Dundar Ok
- Department of Rheumatology, Pamukkale University School of Medicine, Denizli, Turkey
| | - Veli Cobankara
- Department of Rheumatology, Pamukkale University School of Medicine, Denizli, Turkey
| |
Collapse
|
2
|
Hu PW, Chen CK, Hsiao YH, Weng CY, Lee YC, Su KC, Feng JY, Chou KT, Perng DW, Ko HK. Correlations between blood vessel distribution, lung function and structural change in idiopathic pulmonary fibrosis. Respirology 2024; 29:962-968. [PMID: 39147387 DOI: 10.1111/resp.14811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND AND OBJECTIVE Correlations between the image analysis of CT scan, lung function and quality of life in patients with idiopathic pulmonary fibrosis (IPF) remain unclear. This study aimed to investigate the impacts of pulmonary blood-vessel distribution and the extent of fibrosis on the lung function and quality of life of patients with IPF. METHODS Patients were enrolled in an IPF registry and had completed pulmonary function tests, chest HRCT, St. George Respiratory Questionnaire (SGRQ) and echocardiography. Pulmonary blood-vessel distribution, specific image-derived airway volume (siVaw) and fibrosis extent (siVfib) were quantitatively calculated by functional respiratory imaging on HRCT. RESULTS The study subjects were categorized into DLco <40% pred. (n = 40) and DLco ≥40% pred. (n = 19) groups. Patients with DLco <40% pred. had significantly higher scores of SGRQ, composite physiologic index (CPI), exercise oxygen desaturation (∆SpO2), siVaw, lower FVC% pred. and 6-minute walking distance% pred. The proportion of small blood vessels in the upper lobes (BV5PR-UL) was significantly correlated with CPI, DLco % Pred., FVC% pred., SGRQ and ∆SpO2. Only BV5PR-UL had a significant impact on all indices but not BV5PR in the lower lobes (BV5PR-LL). siVfib was significantly negatively correlated with BV5PR-UL, DLco% pred. and FVC% pred., as well as positively correlated with CPI, ∆SpO2 and siVaw. CONCLUSION BV5PR-UL and siVfib had significant correlations with lung function and may become important indicators to assess the severity of IPF and the impact on quality of life.
Collapse
Affiliation(s)
- Po-Wei Hu
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of Chest Medicine, Department of Internal Medicine, National Yang-Ming Chiao Tung University Hospital, Yi-Lan, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chun-Ku Chen
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Han Hsiao
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ching-Yao Weng
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ying-Chi Lee
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Kang-Cheng Su
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Kun-Ta Chou
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Diahn-Warng Perng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Hsin-Kuo Ko
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
3
|
Mondoni M, Rinaldo R, Ryerson CJ, Albrici C, Baccelli A, Tirelli C, Marchetti F, Cefalo J, Nalesso G, Ferranti G, Alfano F, Sotgiu G, Guazzi M, Centanni S. Vascular involvement in idiopathic pulmonary fibrosis. ERJ Open Res 2024; 10:00550-2024. [PMID: 39588083 PMCID: PMC11587140 DOI: 10.1183/23120541.00550-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 11/27/2024] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic, fibrosing and progressive interstitial lung disease of unknown aetiology with a pathogenesis still partly unknown. Several microvascular and macrovascular abnormalities have been demonstrated in the pathogenesis of IPF and related pulmonary hypertension (PH), a complication of the disease. Methods We carried out a non-systematic, narrative literature review aimed at describing the role of the vasculature in the natural history of IPF. Results The main molecular pathogenetic mechanisms involving vasculature (i.e. endothelial-to-mesenchymal transition, vascular remodelling, endothelial permeability, occult alveolar haemorrhage, vasoconstriction and hypoxia) and the genetic basis of vascular remodelling are described. The prevalence and clinical relevance of associated PH are highlighted with focus on the vasculature as a prognostic marker. The vascular effects of current antifibrotic therapies, the role of pulmonary vasodilators in the treatment of disease, and new pharmacological options with vascular-targeted activity are described. Conclusions The vasculature plays a key role in the natural history of IPF from the early phases of disease until development of PH in a subgroup of patients, a complication related to a worse prognosis. Pulmonary vascular volume has emerged as a novel computed tomography finding and a predictor of mortality, independent of PH. New pharmacological options with concomitant vascular-directed activity might be promising in the treatment of IPF.
Collapse
Affiliation(s)
- Michele Mondoni
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Rocco Rinaldo
- Department of Medical Sciences, Respiratory Diseases Unit, AOU Città della Salute e della Scienza di Torino, Molinette Hospital, University of Turin, Turin, Italy
| | - Christopher J. Ryerson
- Department of Medicine and Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
| | - Cristina Albrici
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Andrea Baccelli
- Department of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas’ NHS Foundation Trust, London, UK
| | - Claudio Tirelli
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Francesca Marchetti
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Jacopo Cefalo
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Giulia Nalesso
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Giulia Ferranti
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Fausta Alfano
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Sotgiu
- Dept of Medical, Clinical Epidemiology and Medical Statistics Unit, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Marco Guazzi
- Department of Cardiology, University of Milano School of Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Stefano Centanni
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Mahmutovic Persson I, Bozovic G, Westergren-Thorsson G, Rolandsson Enes S. Spatial lung imaging in clinical and translational settings. Breathe (Sheff) 2024; 20:230224. [PMID: 39360023 PMCID: PMC11444490 DOI: 10.1183/20734735.0224-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/05/2024] [Indexed: 10/04/2024] Open
Abstract
For many severe lung diseases, non-invasive biomarkers from imaging could improve early detection of lung injury or disease onset, establish a diagnosis, or help follow-up disease progression and treatment strategies. Imaging of the thorax and lung is challenging due to its size, respiration movement, transferred cardiac pulsation, vast density range and gravitation sensitivity. However, there is extensive ongoing research in this fast-evolving field. Recent improvements in spatial imaging have allowed us to study the three-dimensional structure of the lung, providing both spatial architecture and transcriptomic information at single-cell resolution. This fast progression, however, comes with several challenges, including significant image file storage and network capacity issues, increased costs, data processing and analysis, the role of artificial intelligence and machine learning, and mechanisms to combine several modalities. In this review, we provide an overview of advances and current issues in the field of spatial lung imaging.
Collapse
Affiliation(s)
- Irma Mahmutovic Persson
- Lund University BioImaging Centre (LBIC), Faculty of Medicine, Lund University, Lund, Sweden
- Respiratory Immunopharmacology, Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Gracijela Bozovic
- Department of Clinical Sciences, Radiology, Lund University, Lund, Sweden
- Department of Medical Imaging and Clinical Physiology, Skåne University Hospital, Lund, Sweden
| | - Gunilla Westergren-Thorsson
- Lund University BioImaging Centre (LBIC), Faculty of Medicine, Lund University, Lund, Sweden
- Lung Biology, Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sara Rolandsson Enes
- Lung Biology, Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Ouyang T, Tang Y, Zhang C, Yang Q. Phase-resolved MRI for measurement of pulmonary perfusion and ventilation defects in comparison with dynamic contrast-enhanced MRI and 129Xe MRI. BMJ Open Respir Res 2024; 11:e002198. [PMID: 39117397 PMCID: PMC11423719 DOI: 10.1136/bmjresp-2023-002198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION This meta-analysis aims to evaluate the agreement and correlation between phase-resolved functional lung MRI (PREFUL MRI) and dynamic contrast-enhanced (DCE) MRI in evaluating perfusion defect percentage (QDP), as well as the agreement between PREFUL MRI and 129Xe MRI in assessing ventilation defect percentage (VDP). METHOD A systematic search was conducted in the Medline, Embase and Cochrane Library databases to identify relevant studies comparing QDP and VDP measured by DCE MRI and 129Xe MRI compared with PREFUL MRI. Meta-analytical techniques were applied to calculate the pooled weighted bias, limits of agreement (LOA) and correlation coefficient. The publication bias was assessed using Egger's regression test, while heterogeneity was assessed using Cochran's Q test and Higgins I2 statistic. RESULTS A total of 399 subjects from 10 studies were enrolled. The mean difference and LOA were -2.31% (-8.01% to 3.40%) for QDP and 0.34% (-4.94% to 5.62%) for VDP. The pooled correlations (95% CI) were 0.65 (0.55 to 0.73) for QDP and 0.72 (0.61 to 0.80) for VDP. Furthermore, both QDP and VDP showed a negative correlation with forced expiratory volume in 1 s (FEV1). The pooled correlation between QDP and FEV1 was -0.51 (-0.74 to -0.18), as well as between VDP and FEV1 was -0.60 (-0.73 to -0.44). CONCLUSIONS PREFUL MRI is a promising imaging for the assessment of lung function, as it demonstrates satisfactory deviations and LOA when compared with DEC MRI and 129Xe MRI. PROSPERO REGISTRATION NUMBER CRD42023430847.
Collapse
Affiliation(s)
- Tao Ouyang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Yichen Tang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Chen Zhang
- MR Research Collaboration, Siemens Healthineers, Beijing, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
He Y, Han Y, Zou L, Yao T, Zhang Y, Lv X, Jiang M, Long L, Li M, Cheng X, Jiang G, Peng Z, Tao L, Meng J, Xie W. Succinate promotes pulmonary fibrosis through GPR91 and predicts death in idiopathic pulmonary fibrosis. Sci Rep 2024; 14:14376. [PMID: 38909094 PMCID: PMC11193722 DOI: 10.1038/s41598-024-64844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2024] [Indexed: 06/24/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is believed to be associated with a notable disruption of cellular energy metabolism. By detecting the changes of energy metabolites in the serum of patients with pulmonary fibrosis, we aimed to investigate the diagnostic and prognostic value of energy metabolites in IPF, and further elucidated the mechanism of their involvement in pulmonary fibrosis. Through metabolomics research, it was discovered that the TCA cycle intermediates changed dramatically in IPF patients. In another validation cohort of 55 patients with IPF compared to 19 healthy controls, it was found that succinate, an intermediate product of TCA cycle, has diagnostic and prognostic value in IPF. The cut-off levels of serum succinate were 98.36 μM for distinguishing IPF from healthy controls (sensitivity, 83.64%; specificity, 63.16%; likelihood ratio, 2.27, respectively). Moreover, a high serum succinate level was independently associated with higher rates of disease progression (OR 13.087, 95%CI (2.819-60.761)) and mortality (HR 3.418, 95% CI (1.308-8.927)). In addition, accumulation of succinate and increased expression of the succinate receptor GPR91 were found in both IPF patients and BLM mouse models of pulmonary fibrosis. Reducing succinate accumulation in BLM mice alleviated pulmonary fibrosis and 21d mortality, while exogenous administration of succinate can aggravate pulmonary fibrosis in BLM mice. Furthermore, GPR91 deficiency protected against lung fibrosis caused by BLM. In vitro, succinate promoted the activation of lung fibroblasts by activating ERK pathway through GPR91. In summary, succinate is a promising biomarker for diagnosis and prognosis of IPF. The accumulation of succinate may promote fibroblast activation through GPR91 and pulmonary fibrosis.
Collapse
Affiliation(s)
- Yijun He
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Yuanyuan Han
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Lijun Zou
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Tingting Yao
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Yan Zhang
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Xin Lv
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Mao Jiang
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Lingzhi Long
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Mengyu Li
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Xiaoyun Cheng
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Guoliang Jiang
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Zhangzhe Peng
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Changsha, China
| | - Lijian Tao
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Changsha, China
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China.
- National International Collaborative Research Center for Medical Metabolomics, Changsha, China.
| | - Wei Xie
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
7
|
Triphan SMF, Bauman G, Konietzke P, Konietzke M, Wielpütz MO. Magnetic Resonance Imaging of Lung Perfusion. J Magn Reson Imaging 2024; 59:784-796. [PMID: 37466278 DOI: 10.1002/jmri.28912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
"Lung perfusion" in the context of imaging conventionally refers to the delivery of blood to the pulmonary capillary bed through the pulmonary arteries originating from the right ventricle required for oxygenation. The most important physiological mechanism in the context of imaging is the so-called hypoxic pulmonary vasoconstriction (HPV, also known as "Euler-Liljestrand-Reflex"), which couples lung perfusion to lung ventilation. In obstructive airway diseases such as asthma, chronic-obstructive pulmonary disease (COPD), cystic fibrosis (CF), and asthma, HPV downregulates pulmonary perfusion in order to redistribute blood flow to functional lung areas in order to conserve optimal oxygenation. Imaging of lung perfusion can be seen as a reflection of lung ventilation in obstructive airway diseases. Other conditions that primarily affect lung perfusion are pulmonary vascular diseases, pulmonary hypertension, or (chronic) pulmonary embolism, which also lead to inhomogeneity in pulmonary capillary blood distribution. Several magnetic resonance imaging (MRI) techniques either dependent on exogenous contrast materials, exploiting periodical lung signal variations with cardiac action, or relying on intrinsic lung voxel attributes have been demonstrated to visualize lung perfusion. Additional post-processing may add temporal information and provide quantitative information related to blood flow. The most widely used and robust technique, dynamic-contrast enhanced MRI, is available in clinical routine assessment of COPD, CF, and pulmonary vascular disease. Non-contrast techniques are important research tools currently requiring clinical validation and cross-correlation in the absence of a viable standard of reference. First data on many of these techniques in the context of observational studies assessing therapy effects have just become available. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Simon M F Triphan
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Grzegorz Bauman
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Philip Konietzke
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Marilisa Konietzke
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Mark O Wielpütz
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Ruano CA, Veiga J, Antunes N, Carvalho VB, Fernandes O, Borba A, Oliveira FPM, Moraes-Fontes MF, Bilhim T, Irion KL. Segmentation-Based Analysis of T2- and T1-Weighted Dynamic Magnetic Resonance Images Provides Adequate Observer Agreement in the Evaluation of Interstitial Lung Disease. J Comput Assist Tomogr 2024; 48:92-97. [PMID: 37551150 DOI: 10.1097/rct.0000000000001524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
OBJECTIVE The aim of the study is to quantify observer agreement in the magnetic resonance imaging (MRI) classification of inflammatory or fibrotic interstitial lung disease (ILD). METHODS Our study is a preliminary analysis of a larger prospective cohort. The MRI images of 18 patients with ILD (13 females; mean age, 65 years) were acquired in a 1.5 T scanner and included axial fat-saturated T2-weighted (T2-WI, n = 18) and coronal fat-saturated T1-weighted images before and 1, 3, 5, and 10 minutes after gadolinium administration (n = 16). The MRI studies were evaluated with 2 different methods: a qualitative evaluation (visual assessment and measurement of few regions of interest; evaluations were performed independently by 5 radiologists and 3 times by 1 radiologist) and a segmentation-based analysis with software extraction of signal intensity values (evaluations were performed independently by 2 radiologists and twice by 1 radiologist). Interstitial lung disease was classified as inflammatory or fibrotic, based on previously described imaging criteria. RESULTS Regarding the qualitative evaluation, intraobserver agreement was excellent (κ = 0.92, P < 0.05) for T2-WI and fair (κ = 0.29, P < 0.05) for T1 dynamic study, while interobserver agreement was moderate (κ = 0.56, P < 0.05) and poor (κ = 0.11, P = 0.18), respectively. In contrast, upon segmentation-based analysis, intraobserver and interobserver agreement were excellent for T2-WI (κ = 0.886, P < 0.001; κ = 1.00, P < 0.001; respectively); for T1-WI, intraobserver agreement was excellent (κ = 0.87, P < 0.05) and interobserver agreement was good (κ = 0.75, P < 0.05). CONCLUSIONS Segmentation-based MRI analysis is more reproducible than a qualitative evaluation with visual assessment and measurement of few regions of interest.
Collapse
Affiliation(s)
| | - José Veiga
- From the Department of Radiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central
| | | | - Vera B Carvalho
- From the Department of Radiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central
| | | | - Alexandra Borba
- Department of Pulmonology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central
| | | | | | - Tiago Bilhim
- Interventional Radiology Unit, Hospital Curry Cabral, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - Klaus L Irion
- Department of Radiology, College of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
9
|
Lacharie M, Villa A, Milidonis X, Hasaneen H, Chiribiri A, Benedetti G. Role of pulmonary perfusion magnetic resonance imaging for the diagnosis of pulmonary hypertension: A review. World J Radiol 2023; 15:256-273. [PMID: 37823020 PMCID: PMC10563854 DOI: 10.4329/wjr.v15.i9.256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
Among five types of pulmonary hypertension, chronic thromboembolic pulmonary hypertension (CTEPH) is the only curable form, but prompt and accurate diagnosis can be challenging. Computed tomography and nuclear medicine-based techniques are standard imaging modalities to non-invasively diagnose CTEPH, however these are limited by radiation exposure, subjective qualitative bias, and lack of cardiac functional assessment. This review aims to assess the methodology, diagnostic accuracy of pulmonary perfusion imaging in the current literature and discuss its advantages, limitations and future research scope.
Collapse
Affiliation(s)
- Miriam Lacharie
- Oxford Centre of Magnetic Resonance Imaging, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Adriana Villa
- Department of Diagnostic and Interventional Radiology, German Oncology Centre, Limassol 4108, Cyprus
| | - Xenios Milidonis
- Deep Camera MRG, CYENS Centre of Excellence, Nicosia, Cyprus, Nicosia 1016, Cyprus
| | - Hadeer Hasaneen
- School of Biomedical Engineering & Imaging Sciences, King's College London, London WC2R 2LS, United Kingdom
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, Kings Coll London, Div Imaging Sci, St Thomas Hospital, London WC2R 2LS, United Kingdom
| | - Giulia Benedetti
- Department of Cardiovascular Imaging and Biomedical Engineering, King’s College London, London WC2R 2LS, United Kingdom
| |
Collapse
|
10
|
Ruano CA, Moraes-Fontes MF, Borba A, Grafino M, Veiga J, Fernandes O, Bilhim T, Irion KL. Lung Magnetic Resonance Imaging for Prediction of Progression in Patients With Nonidiopathic Pulmonary Fibrosis Interstitial Lung Disease: A Pilot Study. J Thorac Imaging 2023:00005382-990000000-00094. [PMID: 37732700 DOI: 10.1097/rti.0000000000000744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
PURPOSE Correlate magnetic resonance imaging (MRI) parameters at baseline with disease progression in nonidiopathic pulmonary fibrosis interstitial lung disease (ILD). MATERIALS AND METHODS Prospective observational cohort study, in which patients with non-idiopathic pulmonary fibrosis ILD underwent MRI at baseline (1.5 T). T2-weighted images (T2-WI) were acquired by axial free-breathing respiratory-gated fat-suppressed "periodically rotated overlapping parallel lines with enhanced reconstruction" and T1-weighted images (T1-WI) by coronal end-expiratory breath-hold fat-suppressed "volumetric interpolated breath-hold examination" sequences, before and at time points T1, T3, T5, and T10 minutes after gadolinium administration. After MRI segmentation, signal intensity values were extracted by dedicated software. Percentage of the ILD volume and a ratio between signal intensity of ILD (SIILD) and normal lung (SInormal lung) were calculated for T2-WI; percentage of signal intensity (%SI) at each time point, time to peak enhancement, and percent relative enhancement of ILD in comparison with normal lung (%SIILD/normal lung) were calculated for T1-WI. MRI parameters at baseline were correlated with diagnosis of disease progression and variation in percent predicted forced vital capacity (%FVC) and diffusing capacity of the lung for carbon monoxide after 12 months. RESULTS Comprehensive MRI evaluation (T2-WI and T1-WI) was performed in 21 of the 25 patients enrolled (68% females; mean age: 62.6 y). Three of the 24 patients who completed follow-up fulfilled criteria for disease progression. Baseline T2-WI SIILD/SInormal lung was higher for the progression group (P = 0.052). T2-WI SIILD/SInormal lung and T1-WI %SIILD/normal lung at T1 were positively correlated with the 12-month variation in %FVC (r = 0.495, P = 0.014 and r = 0.489, P= 0.034, respectively). CONCLUSIONS Baseline MRI parameters correlate with %FVC decline after 12 months.
Collapse
Affiliation(s)
- Carina A Ruano
- Department of Radiology, Hospital de Santa Marta
- Department of Radiology
- NOVA Medical School, Universidade Nova de Lisboa
| | | | | | | | - José Veiga
- Department of Radiology, Hospital de Santa Marta
| | - Otília Fernandes
- Department of Radiology, Hospital de Santa Marta
- Department of Radiology
| | - Tiago Bilhim
- Interventional Radiology Unit, Department of Radiology, Hospital Curry Cabral, Centro Hospitalar Universitário de Lisboa Central
| | - Klaus L Irion
- Department of Radiology, College of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
11
|
Smyth RM, Neder JA, James MD, Vincent SG, Milne KM, Marillier M, de-Torres JP, Moran-Mendoza O, O'Donnell DE, Phillips DB. Physiological underpinnings of exertional dyspnoea in mild fibrosing interstitial lung disease. Respir Physiol Neurobiol 2023; 312:104041. [PMID: 36858334 DOI: 10.1016/j.resp.2023.104041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/03/2023]
Abstract
The functional disturbances driving "out-of-proportion" dyspnoea in patients with fibrosing interstitial lung disease (f-ILD) showing only mild restrictive abnormalities remain poorly understood. Eighteen patients (10 with idiopathic pulmonary fibrosis) showing preserved spirometry and mildly reduced total lung capacity (≥70% predicted) and 18 controls underwent an incremental cardiopulmonary exercise test with measurements of operating lung volumes and Borg dyspnoea scores. Patients' lower exercise tolerance was associated with higher ventilation (V̇E)/carbon dioxide (V̇CO2) compared with controls (V̇E/V̇CO2 nadir=35 ± 3 versus 29 ± 2; p < 0.001). Patients showed higher tidal volume/inspiratory capacity and lower inspiratory reserve volume at a given exercise intensity, reporting higher dyspnoea scores as a function of both work rate and V̇E. Steeper dyspnoea-work rate slopes were associated with lower lung diffusing capacity, higher V̇E/V̇CO2, and lower peak O2 uptake (p < 0.05). Heightened ventilatory demands in the setting of progressively lower capacity for tidal volume expansion on exertion largely explain higher-than-expected dyspnoea in f-ILD patients with largely preserved dynamic and "static" lung volumes at rest.
Collapse
Affiliation(s)
- Reginald M Smyth
- Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital, Kingston, ON, Canada.
| | - J Alberto Neder
- Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital, Kingston, ON, Canada.
| | - Matthew D James
- Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital, Kingston, ON, Canada.
| | - Sandra G Vincent
- Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital, Kingston, ON, Canada.
| | - Kathryn M Milne
- Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital, Kingston, ON, Canada; Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, St. Paul's Hospital, Vancouver, BC, Canada.
| | - Mathieu Marillier
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, Grenoble, France.
| | - Juan P de-Torres
- Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital, Kingston, ON, Canada.
| | - Onofre Moran-Mendoza
- Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital, Kingston, ON, Canada.
| | - Denis E O'Donnell
- Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital, Kingston, ON, Canada.
| | - Devin B Phillips
- Department of Medicine, Queen's University and Kingston Health Sciences Centre Kingston General Hospital, Kingston, ON, Canada.
| |
Collapse
|
12
|
Lungenperfusionsmessung zur Detektion eines IPF-Progresses. Pneumologie 2023. [DOI: 10.1055/a-1988-3520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
13
|
Konietzke M, Triphan SMF, Eichinger M, Bossert S, Heller H, Wege S, Eberhardt R, Puderbach MU, Kauczor HU, Heußel G, Heußel CP, Risse F, Wielpütz MO. Unsupervised clustering algorithms improve the reproducibility of dynamic contrast-enhanced magnetic resonance imaging pulmonary perfusion quantification in muco-obstructive lung diseases. Front Med (Lausanne) 2022; 9:1022981. [PMID: 36353218 PMCID: PMC9637664 DOI: 10.3389/fmed.2022.1022981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
Background Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) allows the assessment of pulmonary perfusion, which may play a key role in the development of muco-obstructive lung disease. One problem with quantifying pulmonary perfusion is the high variability of metrics. Quantifying the extent of abnormalities using unsupervised clustering algorithms in residue function maps leads to intrinsic normalization and could reduce variability. Purpose We investigated the reproducibility of perfusion defects in percent (QDP) in clinically stable patients with cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Methods 15 CF (29.3 ± 9.3y, FEV1%predicted = 66.6 ± 15.8%) and 20 COPD (66.5 ± 8.9y, FEV1%predicted = 42.0 ± 13.3%) patients underwent DCE-MRI twice 1 month apart. QDP, pulmonary blood flow (PBF), and pulmonary blood volume (PBV) were computed from residue function maps using an in-house quantification pipeline. A previously validated MRI perfusion score was visually assessed by an expert reader. Results Overall, mean QDP, PBF, and PBV did not change within 1 month, except for QDP in COPD (p < 0.05). We observed smaller limits of agreement (± 1.96 SD) related to the median for QDP (CF: ± 38%, COPD: ± 37%) compared to PBF (CF: ± 89%, COPD: ± 55%) and PBV (CF: ± 55%, COPD: ± 51%). QDP correlated moderately with the MRI perfusion score in CF (r = 0.46, p < 0.05) and COPD (r = 0.66, p < 0.001). PBF and PBV correlated poorly with the MRI perfusion score in CF (r =-0.29, p = 0.132 and r =-0.35, p = 0.067, respectively) and moderately in COPD (r =-0.57 and r =-0.57, p < 0.001, respectively). Conclusion In patients with muco-obstructive lung diseases, QDP was more robust and showed a higher correlation with the MRI perfusion score compared to the traditionally used perfusion metrics PBF and PBV.
Collapse
Affiliation(s)
- Marilisa Konietzke
- Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riß, Germany
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Simon M. F. Triphan
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Monika Eichinger
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Sebastian Bossert
- Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riß, Germany
| | - Hartmut Heller
- Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riß, Germany
| | - Sabine Wege
- Department of Pulmonology and Respiratory Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Ralf Eberhardt
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pulmonology and Respiratory Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Michael U. Puderbach
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, Hufeland Hospital, Bad Langensalza, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Gudula Heußel
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Claus P. Heußel
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| | - Frank Risse
- Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riß, Germany
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|