1
|
Rassam P, de Mori T, Van Hollebeke M, Rozenberg D, Davenport P, Vallis LA, Reid WD. Cognitive interference of respiratory versus limb muscle dual tasking in healthy adults. ERJ Open Res 2024; 10:00169-2024. [PMID: 39377088 PMCID: PMC11456971 DOI: 10.1183/23120541.00169-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 10/09/2024] Open
Abstract
Background Inspiratory threshold loading (ITL) and associated dyspnoea have been shown to interfere with cognition during cognitive-motor dual tasking. However, ITL has not been compared with another rhythmic muscle activity, such as lower limb pedalling. While ITL has been shown to interfere with cognition, the mechanism of the prefrontal cortex (PFC) during ITL or other rhythmical muscle dual tasking, has not been elucidated. Given the cognitive interference that arises during ITL, we hypothesise that ITL cognitive-motor dual tasking will result in greater cognitive decrements and increased PFC activity compared with the pedalling cognitive-motor dual task. Methods 30 healthy participants (16 females; median age 23 (interquartile range 23-24) years) were recruited. They performed five 3-min tasks in a single visit in a random order: single tasks were ITL, pedalling and Stroop task and dual tasks were ITL-Stroop and pedalling-Stroop. Participant's PFC activity was assessed bilaterally using functional near-infrared spectroscopy throughout each task. Single- and dual-task cognitive performance was evaluated by measuring Stroop task reaction time and accuracy. Dyspnoea and rating of perceived exertion were evaluated at the end of each task. Results ITL-Stroop resulted in greater impairments in reaction time (p<0.001), accuracy (p<0.01) and increased medial/dorsolateral PFC activity (p≤0.006) than pedalling-Stroop. ITL-Stroop elicited greater Borg dyspnoea and rating of perceived exertion than pedalling-Stroop (p<0.001), despite pedalling-Stroop having a greater heart rate response (p<0.001). Conclusion The heightened cognitive decrements, perceptual response and PFC activity suggest that inspiratory muscle loading and its accompanied dyspnoea results in greater cognitive interference than rhythmic pedalling.
Collapse
Affiliation(s)
- Peter Rassam
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - Tamires de Mori
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | | | - Dmitry Rozenberg
- Division of Respirology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Center, University Health Network, Toronto, ON, Canada
| | - Paul Davenport
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Lori Ann Vallis
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - W. Darlene Reid
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- KITE Research Institute - Toronto Rehab, University Health Network, Toronto, ON, Canada
| |
Collapse
|
2
|
Stoupi NA, Weijs ML, Imbach L, Lenggenhager B. Heartbeat-evoked potentials following voluntary hyperventilation in epilepsy patients: respiratory influences on cardiac interoception. Front Neurosci 2024; 18:1391437. [PMID: 39035777 PMCID: PMC11259972 DOI: 10.3389/fnins.2024.1391437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Current evidence indicates a modulating role of respiratory processes in cardiac interoception, yet whether altered breathing patterns influence heartbeat-evoked potentials (HEP) remains inconclusive. Methods Here, we examined the effects of voluntary hyperventilation (VH) as part of a clinical routine examination on scalp-recorded HEPs in epilepsy patients (N = 80). Results Using cluster-based permutation analyses, HEP amplitudes were compared across pre-VH and post-VH conditions within young and elderly subgroups, as well as for the total sample. No differences in the HEP were detected for younger participants or across the full sample, while an increased late HEP during pre-VH compared to post-VH was fond in the senior group, denoting decreased cardiac interoceptive processing after hyperventilation. Discussion The present study, thus, provides initial evidence of breathing-related HEP modulations in elderly epilepsy patients, emphasizing the potential of HEP as an interoceptive neural marker that could partially extend to the representation of pulmonary signaling. We speculate that aberrant CO2-chemosensing, coupled with disturbances in autonomic regulation, might constitute the underlying pathophysiological mechanism behind the obtained effect. Available databases involving patient records of routine VH assessment may constitute a valuable asset in disentangling the interplay of cardiac and ventilatory interoceptive information in various patient groups, providing thorough clinical data to parse, as well as increased statistical power and estimates of effects with higher precision through large-scale studies.
Collapse
Affiliation(s)
- Niovi A Stoupi
- Department of Psychology, University of Zurich, Zürich, Switzerland
| | - Marieke L Weijs
- Department of Psychology, University of Zurich, Zürich, Switzerland
| | - Lukas Imbach
- Department of Neurology, University Hospital of Zurich, Zürich, Switzerland
- Swiss Epilepsy Center, Klinik Lengg, Zürich, Switzerland
- Zurich Neuroscience Center, University of Zurich and ETH Zurich, Zürich, Switzerland
| | | |
Collapse
|
3
|
Chauvin SR, Otoo-Appiah J, Zheng A, Ibrahim CH, Ma JE, Rozenberg D, Reid WD. Dyspnea induced by inspiratory loading limits dual-tasking in healthy young adults. PLoS One 2023; 18:e0286265. [PMID: 37228125 DOI: 10.1371/journal.pone.0286265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVES Dyspnea is a common and multidimensional experience of healthy adults and those with respiratory disorders. Due to its neural processing, it may limit or interfere with cognition, which may be examined with a dual-task paradigm. The aim of this study was to compare single-task performance of Stroop Colour and Word Test (SCWT) or inspiratory threshold loading (ITL) to their combined dual-task performance. Secondly, whether mood was related to dyspnea or cognitive performance was also evaluated. MATERIALS & METHODS A virtual pre-post design examined single (SCWT and ITL) and dual-task (SCWT+ITL) performance. For ITL, a Threshold Trainer™ was used to elicit a "somewhat severe" rating of dyspnea. The SCWT required participants to indicate whether a colour-word was congruent or incongruent with its semantic meaning. The Depression, Anxiety and Stress Scale-21 (DASS-21) was completed to assess mood. Breathing frequency, Borg dyspnea rating, and breathing endurance time were ascertained. RESULTS Thirty young healthy adults (15F, 15M; median age = 24, IQR [23-26] years) completed the study. SCWT+ITL had lower SCWT accuracy compared to SCWT alone (98.6%, [97.1-100.0] vs 99.5%, [98.6-100.0]; p = 0.009). Endurance time was not different between ITL and SCWT+ITL (14.5 minutes, [6.9-15.0]) vs 13.7 minutes, [6.1-15.0]; p = 0.59). DASS-21 scores positively correlated with dyspnea scores during ITL (rho = 0.583, p<0.001) and SCWT+ITL (rho = 0.592, p<0.001). CONCLUSIONS ITL significantly reduced dual-task performance in healthy young adults. Lower mood was associated with greater perceived dyspnea during single and dual-task ITL. Considering the prevalence of dyspnea in respiratory disorders, the findings of this dual task paradigm warrant further exploration to inform dyspnea management during daily activities.
Collapse
Affiliation(s)
| | | | - Anna Zheng
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - Chris H Ibrahim
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - James E Ma
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - Dmitry Rozenberg
- Respirology, Ajmera Transplant Center, University Health Network, Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - W Darlene Reid
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- KITE-Toronto-Rehab-University Health Network, Toronto, ON, Canada
| |
Collapse
|
4
|
Kelley EF, Cross TJ, Johnson BD. Inspiratory threshold loading negatively impacts attentional performance. Front Psychol 2022; 13:959515. [PMID: 36186373 PMCID: PMC9524251 DOI: 10.3389/fpsyg.2022.959515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
RationaleThere are growing concerns over the occurrence of adverse physiologic events (PEs) occurring in pilots during operation of United States Air Force and Navy high-performance aircraft. We hypothesize that a heightened inspiratory work of breathing experienced by jet pilots by virtue of the on-board life support system may constitute a “distraction stimulus” consequent to an increased sensation of respiratory muscle effort. As such, the purpose of this study was to determine whether increasing inspiratory muscle effort adversely impacts on attentional performance.MethodsTwelve, healthy participants (age: 29 ± 6 years) were recruited for this study. Participants completed six repetitions of a modified Masked Conjunctive Continuous Performance Task (MCCPT) protocol while breathing against four different inspiratory threshold loads to assess median reaction times (RTs). A computer-controlled threshold loading device was used to set the inspiratory threshold loads. Repeated measures analysis of variances (ANOVAs) were performed to examine: (i) the efficacy of the threshold loading device to impose significantly higher loading at each loading condition; (ii) the effects of loading condition on respiratory muscle effort sensation; and (iii) the influence of hypercapnia on MCCPT scores during inspiratory threshold loading. Generalized additive mixed effects models (GAMMs) were used to examine the potential non-linear effects of respiratory muscular effort sensation, device loading, and hypercapnia, on MCCPT scores during inspiratory threshold loading.ResultsInspiratory threshold loading significantly augmented (P < 0.05) inspiratory effort sensation and the inspiratory pressure-time product (PTP). Our analyses also revealed that median hit RT was positively associated with inspiratory effort sensation during inspiratory loading trials.ConclusionThe findings of this work suggest that it was not increasing inspiratory muscle effort (i.e., PTP) per se, but rather participant’s subjective perception of inspiratory “load” that impacts negatively on attentional performance; i.e., as the degree of inspiratory effort sensation increased, sotoo did median hit RT. As such, it is reasonable to suggest that minimizing inspiratory effort sensation (independent of the mechanical output of the inspiratory muscles) during high-performance flight operations may prove useful in reducing pilot RTs during complex behavioral tasks.
Collapse
Affiliation(s)
- Eli F. Kelley
- Air Force Research Laboratory (AFRL), 711HPW/RHBFP, WPAFB, Dayton, OH, United States
- *Correspondence: Eli F. Kelley,
| | - Troy J. Cross
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Bruce D. Johnson
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
5
|
Taytard J, Gand C, Niérat MC, Barthes R, Lavault S, Adler D, Morélot Panzini C, Gatignol P, Campion S, Serresse L, Wattiez N, Straus C, Similowski T. Impact of inspiratory threshold loading on brain activity and cognitive performances in healthy humans. J Appl Physiol (1985) 2021; 132:95-105. [PMID: 34818073 DOI: 10.1152/japplphysiol.00994.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In healthy humans, inspiratory threshold loading deteriorates cognitive performances. This can result from motor-cognitive interference (activation of motor respiratory-related cortical networks vs. executive resources allocation), sensory-cognitive interference (dyspnea vs. shift in attentional focus), or both. We hypothesized that inspiratory loading would concomitantly induce dyspnea, activate motor respiratory-related cortical networks, and deteriorate cognitive performance. We reasoned that a concomitant activation of cortical networks and cognitive deterioration would be compatible with motor-cognitive interference, particularly in case of a predominant alteration of executive cognitive performances. Symmetrically, we reasoned that a predominant alteration of attention-depending performances would suggest sensory-cognitive interference. Twenty-five volunteers (12 men; 19.5-51.5 years) performed the Paced Auditory Serial Addition test (PASAT-A and B; calculation capacity, working memory, attention), the Trail Making Test (TMT-A, visuospatial exploration capacity; TMT-B, visuospatial exploration capacity and attention), and the Corsi block-tapping test (visuospatial memory, short-term and working memory) during unloaded breathing and inspiratory threshold loading in random order. Loading consistently induced dyspnea and respiratory-related brain activation. It was associated with deteriorations inPASAT A (52 [45.5;55.5] (median [interquartile range]) to 48 [41;54.5], p=0.01), PASAT B (55 [47.5;58] to 51 [44.5;57.5], p=0.01), and TMT B (44s [36;54.5] to 53s [42;64], p=0.01), but did not affect TMT-A and Corsi. The concomitance of cortical activation and cognitive performance deterioration is compatible with competition for cortical resources (motor-cognitive interference), while the profile of cognitive impairment (PASAT and TMT-B but not TMT-A and Corsi) is compatible with a contribution of attentional distraction (sensory-cognitive interference). Both mechanisms are therefore likely at play.
Collapse
Affiliation(s)
- Jessica Taytard
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Armand-Trousseau, Service de Pneumologie Pédiatrique, F-75012 Paris, France
| | - Camille Gand
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Marie-Cécile Niérat
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Romain Barthes
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Sophie Lavault
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Service de Pneumologie, Médecine Intensive et Réanimation (Département R3S), Paris, France
| | - Dan Adler
- Division of Pulmonary Disease, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Capucine Morélot Panzini
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Service de Pneumologie, Médecine Intensive et Réanimation (Département R3S), Paris, France
| | - Peggy Gatignol
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Service d'ORL et d'oto-neurochirurgie, Paris, France
| | - Sebastien Campion
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Département d'Anesthésie-Réanimation, Paris, France
| | - Laure Serresse
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Unité Mobile de Soins Palliatifs, Paris, France
| | - Nicolas Wattiez
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Christian Straus
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié31 Salpêtrière, Service d'Exploration Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département R3S), Paris, France
| | - Thomas Similowski
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Service de Pneumologie, Médecine Intensive et Réanimation (Département R3S), Paris, France
| |
Collapse
|
6
|
Vinckier F, Betka S, Nion N, Serresse L, Similowski T. Harnessing the power of anticipation to manage respiratory-related brain suffering and ensuing dyspnoea: insights from the neurobiology of the respiratory nocebo effect. Eur Respir J 2021; 58:58/3/2101876. [PMID: 34556533 DOI: 10.1183/13993003.01876-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Fabien Vinckier
- Université de Paris, Paris, France.,Dept of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatry and Neurosciences, Paris, France
| | - Sophie Betka
- Laboratory of Cognitive Neuroscience, Brain Mind Institute and Center for Neuroprosthetics, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Nathalie Nion
- Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM, UMRS1158, Sorbonne Université, Paris, France.,Département R3S (Respiration, Réanimation, Réhabilitation respiratoire, Sommeil), AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Paris, France
| | - Laure Serresse
- Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM, UMRS1158, Sorbonne Université, Paris, France.,Equipe mobile de soins palliatifs, AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Paris, France
| | - Thomas Similowski
- Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM, UMRS1158, Sorbonne Université, Paris, France .,Département R3S (Respiration, Réanimation, Réhabilitation respiratoire, Sommeil), AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Paris, France
| |
Collapse
|
7
|
Finnegan SL, Harrison OK, Harmer CJ, Herigstad M, Rahman NM, Reinecke A, Pattinson KTS. Breathlessness in COPD: linking symptom clusters with brain activity. Eur Respir J 2021; 58:13993003.04099-2020. [PMID: 33875493 PMCID: PMC8607925 DOI: 10.1183/13993003.04099-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 04/04/2021] [Indexed: 11/11/2022]
Abstract
Background Current models of breathlessness often fail to explain disparities between patients' experiences of breathlessness and objective measures of lung function. While a mechanistic understanding of this discordance has thus far remained elusive, factors such as mood, attention and expectation have all been implicated as important modulators of breathlessness. Therefore, we have developed a model to better understand the relationships between these factors using unsupervised machine learning techniques. Subsequently we examined how expectation-related brain activity differed between these symptom-defined clusters of participants. Methods A cohort of 91 participants with mild-to-moderate chronic obstructive pulmonary disease (COPD) underwent functional brain imaging, self-report questionnaires and clinical measures of respiratory function. Unsupervised machine learning techniques of exploratory factor analysis and hierarchical cluster modelling were used to model brain–behaviour–breathlessness links. Results We successfully stratified participants across four key factors corresponding to mood, symptom burden and two capability measures. Two key groups resulted from this stratification, corresponding to high and low symptom burden. Compared with the high symptom burden group, the low symptom burden group demonstrated significantly greater brain activity within the anterior insula, a key region thought to be involved in monitoring internal bodily sensations (interoception). Conclusions This is the largest functional neuroimaging study of COPD to date, and is the first to provide a clear model linking brain, behaviour and breathlessness expectation. Furthermore, it was possible to stratify participants into groups, which then revealed differences in brain activity patterns. Together, these findings highlight the value of multimodal models of breathlessness in identifying behavioural phenotypes and for advancing understanding of differences in breathlessness burden. Towards individualised treatments for chronic breathlessness with functional neuroimaging: revealing the factors underlying the breathlessness experience in COPDhttps://bit.ly/3a8fXPt
Collapse
Affiliation(s)
- Sarah L Finnegan
- Wellcome Centre for Integrative Neuroimaging and Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Olivia K Harrison
- Wellcome Centre for Integrative Neuroimaging and Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.,School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Catherine J Harmer
- Department of Psychiatry, Medical Sciences, University of Oxford, Oxford, UK.,Oxford Health NHS foundation Trust, Warneford Hospital, Oxford, UK
| | - Mari Herigstad
- Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, UK
| | - Najib M Rahman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrea Reinecke
- School of Pharmacy, University of Otago, Dunedin, New Zealand.,Department of Psychiatry, Medical Sciences, University of Oxford, Oxford, UK.,Oxford Health NHS foundation Trust, Warneford Hospital, Oxford, UK
| | - Kyle T S Pattinson
- Wellcome Centre for Integrative Neuroimaging and Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
von Leupoldt A, Farre N. The load of dyspnoea on brain and legs. Eur Respir J 2020; 56:56/2/2001096. [DOI: 10.1183/13993003.01096-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 01/05/2023]
|
9
|
Lawi D, Dupuis-Lozeron E, Berra G, Allali G, Similowski T, Adler D. Experimental dyspnoea interferes with locomotion and cognition: a randomised trial. Eur Respir J 2020; 56:13993003.00054-2020. [PMID: 32299853 DOI: 10.1183/13993003.00054-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chronic respiratory diseases are associated with cognitive dysfunction, but whether dyspnoea by itself negatively impacts on cognition has not been demonstrated. Cortical networks engaged in subjects experiencing dyspnoea are also activated during other tasks that require cognitive input and this may provoke a negative impact through interference with each other. METHODS This randomised, crossover trial investigated whether experimentally-induced dyspnoea would negatively impact on locomotion and cognitive function among 40 healthy adults. Crossover conditions were unloaded breathing or loaded breathing using an inspiratory threshold load. To evaluate locomotion, participants were assessed by the Timed Up and Go (TUG) test. Cognitive function was assessed by categorical and phonemic verbal fluency tests, the Trail Making Tests (TMTs) A and B (executive function), the CODE test from the Wechsler Adult Intelligence Scale (WAIS)-IV (processing speed) and by direct and indirect digit span (working memory). RESULTS The mean time difference to perform the TUG test between unloaded and loaded breathing was -0.752 s (95% CI -1.012 to -0.492 s) (p<0.001). Executive function, processing speed and working memory performed better during unloaded breathing, particularly for subjects starting first with the loaded breathing condition. CONCLUSION Our data suggest that respiratory threshold loading to elicit dyspnoea had a major impact on locomotion and cognitive function in healthy adults.
Collapse
Affiliation(s)
- David Lawi
- Division of Pulmonary Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Elise Dupuis-Lozeron
- Clinical Research Centre and Division of Clinical Epidemiology, Dept of Health and Community Medicine, Geneva University Hospitals, Geneva, Switzerland.,University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Gregory Berra
- Division of Pulmonary Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Gilles Allali
- University of Geneva Faculty of Medicine, Geneva, Switzerland.,Dept of Neurology, Geneva University Hospitals, Geneva, Switzerland.,Dept of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Thomas Similowski
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Intensive Care Unit and Respiratory Division (Département "R3S"), Paris, France.,Sorbonne University, UPMC Paris 06, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Dan Adler
- Division of Pulmonary Diseases, Geneva University Hospitals, Geneva, Switzerland .,University of Geneva Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
10
|
The effect of dyspnea on recognition memory. Int J Psychophysiol 2020; 148:50-58. [DOI: 10.1016/j.ijpsycho.2019.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 02/02/2023]
|
11
|
Sucec J, Herzog M, Van den Bergh O, Van Diest I, von Leupoldt A. The Effects of Repeated Dyspnea Exposure on Response Inhibition. Front Physiol 2019; 10:663. [PMID: 31191355 PMCID: PMC6546958 DOI: 10.3389/fphys.2019.00663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/09/2019] [Indexed: 01/03/2023] Open
Abstract
In order to treat dyspnea (=breathlessness) successfully, response inhibition (RI) as a major form of self-regulation is a premise. This is supported by research showing that self-regulation is associated with beneficial behavioral changes supporting treatment success in patients. Recent research showed that dyspnea has an impairing effect on RI, but the effects of repeated dyspnea exposure on RI remain unknown. Therefore, the present study tested the effects of repeated resistive load-induced dyspnea on RI over a 5-day period. Healthy volunteers (n = 34) performed the standard version of the Stroop task during baseline and dyspnea conditions on the first and fifth testing day and underwent an additional dyspnea exposure phase on each testing day. Variables of interest to investigate RI were reaction time, accuracy as well as the event-related potentials late positive complex (LPC) and N400 in the electroencephalogram. Reduced accuracy for incongruent compared to congruent stimuli during the dyspnea condition on the first testing day were found (p < 0.001). This was paralleled by a reduced LPC and an increased N400 for incongruent stimuli during the induction of dyspnea (p < 0.05). After undergoing dyspnea exposure, habituation of dyspnea intensity was evident. Importantly, on the fifth testing day, no differences between baseline, and dyspnea conditions were found for behavioral and electrophysiological measures of RI. These findings demonstrate that the impairing effect of dyspnea on RI disappeared after repeated dyspnea exposure in healthy participants. Translated to a clinical sample, it might cautiously be suggested that dyspnea exposure such as dyspnea perceived during physical exercise could reduce the impairing effect of dyspnea on RI which might have the potential to help increase self-regulation abilities and subsequent treatment efforts in dyspneic patients.
Collapse
Affiliation(s)
- Josef Sucec
- Health Psychology, University of Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
12
|
Tan Y, Van den Bergh O, Qiu J, von Leupoldt A. The Impact of Unpredictability on Dyspnea Perception, Anxiety and Interoceptive Error Processing. Front Physiol 2019; 10:535. [PMID: 31130876 PMCID: PMC6509155 DOI: 10.3389/fphys.2019.00535] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
Dyspnea is a prevalent interoceptive sensation and the aversive cardinal symptom in many cardiorespiratory diseases as well as in mental disorders. Especially the unpredictability of the occurrence of dyspnea episodes has been suggested to be highly anxiety provoking for affected patients. Moreover, previous studies demonstrated that unpredictable exteroceptive stimuli increased self-reports and electrophysiological responses of anxiety such as the startle probe N100 as well as amplified the processing of errors as reflected by greater error-related negativity (ERN). However, studies directly examining the role of unpredictability on dyspnea perception, anxiety, and error processing are widely absent. Using high-density electroencephalography, the present study investigated whether unpredictable compared to predictable dyspnea would increase the perception of dyspnea, anxiety and interoceptive error processing. Thirty-two healthy participants performed a respiratory forced choice reaction time task to elicit an interoceptive ERN during two conditions: an unpredictable and a predictable resistive load-induced dyspnea condition. Predictability was manipulated by pairing (predictable condition) or not pairing (unpredictable condition) dyspnea with a startle tone probe. Self-reports of dyspnea and affective state as well as the startle probe N100 and interoceptive ERN were measured. The results demonstrated greater dyspnea unpleasantness in the unpredictable compared to the predictable condition. Post hoc analyses revealed that this was paralleled by greater anxiety, and greater amplitudes for the startle probe N100 and the interoceptive ERN during the unpredictable relative to the predictable condition, but only when the unpredictable condition was experienced in the first experimental block. Furthermore, higher trait-like anxiety sensitivity was associated with higher ratings for dyspnea unpleasantness and experimental state anxiety ratings. The present findings suggest that unpredictability increases the perception of dyspnea unpleasantness. This effect seems related to increased state and trait anxiety and interoceptive error processing, especially when upcoming dyspnea is particularly unpredictable, such as in early experimental phases. Future studies are required to further substantiate these findings in patients suffering from dyspnea.
Collapse
Affiliation(s)
- Yafei Tan
- Faculty of Psychology, Southwest University, Chongqing, China
- Health Psychology, KU Leuven, Leuven, Belgium
| | | | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing, China
| | | |
Collapse
|
13
|
Van Hove O, Van Muylem A, Leduc D, Legrand A, Jansen B, Feipel V, Van Sint Jan S, Bonnechère B. The use of cognitive mobile games to assess cognitive function of healthy subjects under various inspiratory loads. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2019. [DOI: 10.1016/j.medntd.2019.100005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
14
|
Focus of attention modulates the heartbeat evoked potential. Neuroimage 2019; 186:595-606. [DOI: 10.1016/j.neuroimage.2018.11.037] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 01/23/2023] Open
|
15
|
Morélot‐Panzini C. Respiratory‐related cortical activity in patients with COPD and aged normal individuals: towards a different vision of dyspnoea? J Physiol 2018; 596:6137-6138. [DOI: 10.1113/jp276761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Capucine Morélot‐Panzini
- AP‐HPGroupe Hospitalier Pitié‐Salpêtrière Charles FoixService de PneumologieMédecine Intensive et Réanimation, (Département “R3S”) F‐75013 Paris France
- Sorbonne UniversitéINSERM UMRS1158 Neurophysiologie respiratoire expérimentale et clinique F‐75005 Paris France
| |
Collapse
|
16
|
Nierat MC, Raux M, Redolfi S, Gonzalez-Bermejo J, Biondi G, Straus C, Rivals I, Morélot-Panzini C, Similowski T. Neuroergonomic and psychometric evaluation of full-face crew oxygen masks respiratory tolerance: a proof-of-concept study. J ROY ARMY MED CORPS 2018; 165:317-324. [PMID: 30415218 DOI: 10.1136/jramc-2018-001028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Preventing in-flight hypoxia in pilots is typically achieved by wearing oxygen masks. These masks must be as comfortable as possible to allow prolonged and repeated use. The consequences of mask-induced facial contact pressure have been extensively studied, but little is known about mask-induced breathing discomfort. Because breathlessness is a strong distractor and engages cerebral resources, it could negatively impact flying performances. METHODS Seventeen volunteers (age 20-32) rated respiratory discomfort while breathing with no mask and with two models of quick-donning full-face crew oxygen masks with regulators (mask A, mask B). Electroencephalographic recordings were performed to detect a putative respiratory-related cortical activation in response to inspiratory constraint (experiment 1, n=10). Oxygen consumption was measured using indirect calorimetry (experiment 2, n=10). RESULTS With mask B, mild respiratory discomfort was reported significantly more frequently than with no mask or mask A (experiment 1: median respiratory discomfort on visual analogue scale 0.9 cm (0.5-1.4), experiment 1; experiment 2: 2 cm (1.7-2.9)). Respiratory-related cortical activation was present in 1/10 subjects with no mask, 1/10 with mask A and 6/10 with mask B (significantly more frequently with mask B). Breathing pattern, sigh frequency and oxygen consumption were not different. CONCLUSIONS In a laboratory setting, breathing through high-end aeronautical full-face crew oxygen masks can induce mild breathing discomfort and activate respiratory-related cortical networks. Whether or not this can occur in real-life conditions and have operational consequences remains to be investigated. Meanwhile, respiratory psychometric and neuroergonomic approaches could be worth integrating to masks development and evaluation processes.
Collapse
Affiliation(s)
- Marie-Cécile Nierat
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - M Raux
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,Département d'Anesthésie-Réanimation, AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Paris, France
| | - S Redolfi
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,Service des Pathologies du Sommeil, Département R3S, AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Paris, France
| | - J Gonzalez-Bermejo
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,Service de Pneumologie, Médecine Intensive et Réanimation, Département R3S, AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Paris, France
| | - G Biondi
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - C Straus
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,Service des Explorations de la Fonction Respiratoire, de l'Exercice et de la Dyspnée, Département R3S, AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Paris, France
| | - I Rivals
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,Equipe de Statistique Appliquée, ESPCI Paris, PSL Research University, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - C Morélot-Panzini
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,Service de Pneumologie, Médecine Intensive et Réanimation, Département R3S, AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Paris, France
| | - T Similowski
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France .,Service de Pneumologie, Médecine Intensive et Réanimation, Département R3S, AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Paris, France
| |
Collapse
|
17
|
The impairing effect of dyspnea on response inhibition. Int J Psychophysiol 2018; 133:41-49. [DOI: 10.1016/j.ijpsycho.2018.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 01/28/2023]
|
18
|
Sucec J, Herzog M, Van Diest I, Van den Bergh O, von Leupoldt A. The impact of dyspnea and threat of dyspnea on error processing. Psychophysiology 2018; 56:e13278. [PMID: 30252140 DOI: 10.1111/psyp.13278] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
Abstract
Dyspnea (breathlessness) is a threatening and aversive bodily sensation and a major symptom of various diseases. It has been suggested to impair several aspects of functioning in affected patients, but experimental proof for this assumption is widely absent. Error processing is an important domain of functioning and has intensively been studied using electrophysiological measures. Specifically, the error-related negativity (ERN) has been suggested to reflect early performance monitoring and error detection, while the error positivity (Pe) has been linked to subsequent error awareness. So far, little is known about the effects of anticipated or perceived dyspnea on error processing. Therefore, in 49 healthy participants, we studied the effects of experimentally induced dyspnea and threat of dyspnea on the ERN/Pe and behavioral task performance. Participants performed the arrowhead version of the flanker task during three experimental conditions: an unloaded baseline condition, a dyspnea condition, and a threat of dyspnea condition. Dyspnea was induced by breathing through inspiratory resistive loads, while high-density EEG was continuously measured. No differences in task performance (reaction times, error rates) and ERN mean amplitudes were found between conditions. However, mean amplitudes for the Pe differed between conditions with smaller Pe amplitudes during threat of dyspnea compared to baseline and dyspnea conditions, with the latter two conditions showing no difference. These results may suggest that threat of dyspnea, but not dyspnea itself, reduces error awareness, while both seem to have no impact on early error processing and related behavioral performance.
Collapse
Affiliation(s)
- Josef Sucec
- Health Psychology, University of Leuven, Leuven, Belgium
| | | | - Ilse Van Diest
- Health Psychology, University of Leuven, Leuven, Belgium
| | | | | |
Collapse
|
19
|
Stoeckel MC, Esser RW, Gamer M, von Leupoldt A. Breathlessness amplifies amygdala responses during affective processing. Psychophysiology 2018; 55:e13092. [PMID: 29667212 DOI: 10.1111/psyp.13092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022]
Abstract
Breathlessness is an aversive symptom in many prevalent somatic and psychiatric diseases and is usually experienced as highly threatening. It is strongly associated with negative affect, but the underlying neural processes remain poorly understood. Therefore, using fMRI, the present study examined the effects of breathlessness on the neural processing of affective visual stimuli within candidate brain areas including the amygdala, insula, and anterior cingulate cortex (ACC). During scanning, 42 healthy volunteers, mean (SD) age: 29.0 (6.0) years, 14 female, were presented with affective picture series of negative, neutral, and positive valence while experiencing either no breathlessness (baseline conditions) or resistive-load induced breathlessness (breathlessness conditions). Respiratory measures and self-reports suggested successful induction of breathlessness and affective experiences. Self-reports of breathlessness intensity and unpleasantness were significantly higher during breathlessness conditions, mean (SD): 45.0 (16.6) and 32.3 (19.8), as compared to baseline conditions, mean (SD): 1.9 (3.0) and 2.9 (5.5). Compared to baseline conditions, stronger amygdala activations were observed during breathlessness conditions for both negative and positive affective picture series relative to neutral picture series, while no such effects were observed in insula and ACC. The present findings demonstrate that breathlessness amplifies amygdala responses during affective processing, suggesting an important role of the amygdala for mediating the interactions between breathlessness and affective states.
Collapse
Affiliation(s)
- M Cornelia Stoeckel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland W Esser
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Gamer
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychology 1, University of Würzburg, Würzburg, Germany
| | - Andreas von Leupoldt
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Health Psychology, University of Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Herzog M, Sucec J, Van Diest I, Van den Bergh O, Chenivesse C, Davenport P, Similowski T, von Leupoldt A. Observing dyspnoea in others elicits dyspnoea, negative affect and brain responses. Eur Respir J 2018; 51:13993003.02682-2017. [DOI: 10.1183/13993003.02682-2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/29/2018] [Indexed: 11/05/2022]
Abstract
Dyspnoea is usually caused by diagnosable cardiorespiratory mechanisms. However, frequently dyspnoea relates only weakly or not at all to cardiorespiratory functioning, suggesting that additional neuropsychosocial processes contribute to its experience. We tested whether the mere observation of dyspnoea in others constitutes such a process and would elicit dyspnoea, negative affect and increased brain responses in the observer.In three studies, series of pictures and videos were presented, which either depicted persons suffering from dyspnoea or nondyspnoeic control stimuli. Self-reports of dyspnoea and affective state were obtained in all studies. Additionally, respiratory variables and brain responses during picture viewing (late positive potentials in electroencephalograms) were measured in one study.In all studies, dyspnoea-related pictures and videos elicited mild-to-moderate dyspnoea and increased negative affect compared to control stimuli. This was paralleled by increased late positive potentials for dyspnoea-related pictures while respiratory variables did not change. Moreover, increased dyspnoea correlated modestly with higher levels of empathy in observers.The present results demonstrate that observing dyspnoea in others elicits mild-to-moderate dyspnoea, negative affect, and increased brain responses in the absence of respiratory changes. This vicarious dyspnoea has clinical relevance, as it might increase suffering in the family and medical caregivers of dyspnoeic patients.
Collapse
|