1
|
Hou XF, Hou CG. Association between acute tobacco exposure and fractional exhaled nitric oxide in patients with chronic obstructive pulmonary disease: National health and Nutrition Examination Survey (NHANES) 2007-2012. Respir Med 2024; 234:107831. [PMID: 39419295 DOI: 10.1016/j.rmed.2024.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/29/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Fractional exhaled nitric oxide (FeNO) is a marker of type 2 airway inflammation. Tobacco exposure can lower FeNO levels. However, the effect of acute tobacco exposure on FeNO in patients with chronic obstructive pulmonary disease (COPD) is unclear. This study aimed to investigate the relationship of acute tobacco exposure with FeNO and eosinophils in COPD patients. METHODS This retrospective cohort study included 445 patients with COPD based on the 2007-2012 National Health and Nutrition Examination Survey. Serum cotinine levels were examined to assess environmental tobacco smoke exposure. The patients were divided into five groups based on cotinine levels: Q1 (first quintile), Q2 (second quintile), Q3 (third quintile), Q4 (fourth quintile) and Q5 (fifth quintile). Logistic regression models and linear logistic regression models were used to evaluate the relationship between serum cotinine and FeNO and EOS levels. RESULTS Approximately 16.5 % (75/445) of the participants had elevated FeNO (>25 bbp). In the unadjusted model, COPD patients with the lowest quintile of serum cotinine levels (0.011-0.0185 ng/mL) had higher FeNO levels compared to those with the highest quintile (≥309 ng/mL) (odds ratios (OR), 5.86 [2.11-16.20]). These findings remained consistent even after adjusting for covariates of demographics, lifestyle, diabetes, coronary heart disease, tumours, hypertension, using oral or inhaled steroids within 2 days, asthma and respiratory symptoms within 7 days. Furthermore, a standard deviation increase of ln-transformed cotinine levels was associated with decreased FeNO levels (OR, 0.45 [0.33, 0.60]). No significant correlation was observed betweenserum cotinine and blood eosinophils. After high extents of tobacco exposure, no correlation was found between FeNO and eosinophils. Our findings indicate that high cotinine levels are associated with decreased FeNO in COPD patients but not with blood eosinophils. This reveals that smoking may affect FeNO levels in patients with COPD, whereas it does not appear to influence blood eosinophil levels.
Collapse
Affiliation(s)
- Xing Fang Hou
- Department of Respiratory and Critical Care Medicine, The First Hospital of Changsha, Changsha, 410000, China.
| | - Cheng Gou Hou
- Medical Imaging Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Mycroft K, Proboszcz M, Paplińska‐Goryca M, Krenke R, Górska K. Transcriptional profiles of peripheral eosinophils in chronic obstructive pulmonary disease and asthma-An exploratory study. J Cell Mol Med 2024; 28:e70110. [PMID: 39422548 PMCID: PMC11487681 DOI: 10.1111/jcmm.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/12/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
The role of eosinophilic inflammation in the pathogenesis of chronic obstructive pulmonary disease (COPD) remains ambiguous and likely differs from its role in asthma. The molecular processes underlying the differences between eosinophils from asthma and COPD have not been sufficiently studied. The objective of this study was to compare the transcriptomic profiles of blood eosinophils in COPD and asthma. Eosinophils were isolated from peripheral blood drawn from stable mild-to-moderate COPD and asthma patients. RNA was isolated from eosinophils and sequenced using an NGSelect RNA. The prepared libraries were sequenced on an Illumina platform. The study group included five patients with asthma and four patients with COPD. The RNA-Seq data analysis identified 26 differentially expressed genes between COPD and asthma (according to adjusted p-value). In total, 6 genes were upregulated (e.g. CCL3L1, CCL4L2, GPR82) and 20 were downregulated (e.g. JUN, IFITM3, DUSP1, GNG7) in peripheral eosinophils of COPD patients compared to asthma. The genes associated with signalling of IL-4 and IL-13 pathways were downregulated in COPD eosinophils compared to asthma. In conclusion, blood eosinophils from COPD and asthma patients present different transcriptomic profiles suggesting their different function in pathobiology of both obstructive airway diseases. These differences might indicate the direction of the search of targeted therapy in COPD.
Collapse
Affiliation(s)
- Katarzyna Mycroft
- Department of Internal Medicine, Pulmonary Diseases and AllergyMedical University of WarsawWarsawPoland
| | - Małgorzata Proboszcz
- Department of Internal Medicine, Pulmonary Diseases and AllergyMedical University of WarsawWarsawPoland
| | | | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases and AllergyMedical University of WarsawWarsawPoland
| | - Katarzyna Górska
- Department of Internal Medicine, Pulmonary Diseases and AllergyMedical University of WarsawWarsawPoland
| |
Collapse
|
3
|
Qiu S, Zhou G, Ke J, Zhou J, Zhang H, Jin Z, Xie W, Huang S, He Z, Qin H, Huang H, Li Q, Huang H, Tang H, Liang Y, Duan M. Impairment of Gal-9 and Tim-3 crosstalk between Tregs and Th17 cells drives tobacco smoke-induced airway inflammation. Immunology 2024; 173:152-171. [PMID: 38829009 DOI: 10.1111/imm.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Overexpression of T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) on T cells has been observed in smokers. However, whether and how galectin-9 (Gal-9)/TIM-3 signal between T-regulatory cells (Tregs) and type 17 helper (Th17) cells contributes to tobacco smoke-induced airway inflammation remains unclear. Here, we aimed to explore the role of the Gal-9/TIM-3 signal between Tregs and Th17 cells during chronic tobacco smoke exposure. Tregs phenotype and the expression of TIM-3 on CD4+ T cells were detected in a mouse model of experimental emphysema. The role of TIM-3 in CD4+ T cells was explored in a HAVCR2-/- mouse model and in mice that received recombinant anti-TIM3. The crosstalk between Gal-9 and Tim-3 was evaluated by coculture Tregs with effector CD4+ T cells. We also invested the expression of Gal-9 in Tregs in patients with COPD. Our study revealed that chronic tobacco smoke exposure significantly reduces the frequency of Tregs in the lungs of mice and remarkably shapes the heterogeneity of Tregs by downregulating the expression of Gal-9. We observed a pro-inflammatory but restrained phenotypic transition of CD4+ T cells after tobacco smoke exposure, which was maintained by TIM-3. The restrained phenotype of CD4+ T cells was perturbed when TIM-3 was deleted or neutralised. Tregs from the lungs of mice with emphysema displayed a blunt ability to inhibit the differentiation and proliferation of Th17 cells. The inhibitory function of Tregs was partially restored by using recombinant Gal-9. The interaction between Gal-9 and TIM-3 inhibits the differentiation of Th17 cells and promotes apoptosis of CD4+ T cells, possibly by interfering with the expression of retinoic acid receptor-related orphan receptor gamma t. The expression of Gal-9 in Tregs was reduced in patients with COPD, which was associated with Th17 response and lung function. These findings present a new paradigm that impairment of Gal-9/Tim-3 crosstalk between Tregs and Th17 cells during chronic tobacco smoke exposure promotes tobacco smoke-induced airway/lung inflammation.
Collapse
Affiliation(s)
- Shilin Qiu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guang Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Junyi Ke
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jianpeng Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhitao Jin
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wenli Xie
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shu Huang
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zaiqin He
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Huajiao Qin
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Huang
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiuming Li
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hongchun Huang
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haijuan Tang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yi Liang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Minchao Duan
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Wechsler ME, Wells JM. What every clinician should know about inflammation in COPD. ERJ Open Res 2024; 10:00177-2024. [PMID: 39319045 PMCID: PMC11417604 DOI: 10.1183/23120541.00177-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 09/26/2024] Open
Abstract
Inflammation drives COPD pathogenesis and exacerbations. Although the conceptual framework and major players in the inflammatory milieu of COPD have been long established, the nuances of cellular interactions and the etiological differences that create heterogeneity in inflammatory profiles and treatment response continue to be revealed. This wealth of data and understanding is not only a boon to the researcher but also provides guidance to the clinician, moving the field closer to precision medicine. It is through this lens that this review seeks to describe the inflammatory processes at play in COPD, relating inflammation to pathological and functional changes, identifying patient-specific and disease-related factors that may influence clinical observations, and providing current insights on existing and emerging anti-inflammatory treatments and treatment targets, including biological therapies and phosphodiesterase (PDE) inhibitors.
Collapse
Affiliation(s)
- Michael E. Wechsler
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - J. Michael Wells
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Sweef O, Mahfouz R, Taşcıoğlu T, Albowaidey A, Abdelmonem M, Asfar M, Zaabout E, Corcino YL, Thomas V, Choi ES, Furuta S. Decoding LncRNA in COPD: Unveiling Prognostic and Diagnostic Power and Their Driving Role in Lung Cancer Progression. Int J Mol Sci 2024; 25:9001. [PMID: 39201688 PMCID: PMC11354875 DOI: 10.3390/ijms25169001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer represent formidable challenges in global health, characterized by intricate pathophysiological mechanisms and multifaceted disease progression. This comprehensive review integrates insights from diverse perspectives to elucidate the intricate roles of long non-coding RNAs (lncRNAs) in the pathogenesis of COPD and lung cancer, focusing on their diagnostic, prognostic, and therapeutic implications. In the context of COPD, dysregulated lncRNAs, such as NEAT1, TUG1, MALAT1, HOTAIR, and GAS5, emerge as pivotal regulators of genes involved in the disease pathogenesis and progression. Their identification, profiling, and correlation with the disease severity present promising avenues for prognostic and diagnostic applications, thereby shaping personalized disease interventions. These lncRNAs are also implicated in lung cancer, underscoring their multifaceted roles and therapeutic potential across both diseases. In the domain of lung cancer, lncRNAs play intricate modulatory roles in disease progression, offering avenues for innovative therapeutic approaches and prognostic indicators. LncRNA-mediated immune responses have been shown to drive lung cancer progression by modulating the tumor microenvironment, influencing immune cell infiltration, and altering cytokine production. Their dysregulation significantly contributes to tumor growth, metastasis, and chemo-resistance, thereby emphasizing their significance as therapeutic targets and prognostic markers. This review summarizes the transformative potential of lncRNA-based diagnostics and therapeutics for COPD and lung cancer, offering valuable insights into future research directions for clinical translation and therapeutic development.
Collapse
Affiliation(s)
- Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Reda Mahfouz
- Core Laboratory, University Hospital Cleveland Medical Center, Department of Pathology, School of Medicine, Case Western Reserve University, 1100 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Clinical Pathology, Faculty of Medicine, Menofia University, Shebin-Elkom 32511, Egypt
| | - Tülin Taşcıoğlu
- Department of Molecular Biology and Genetics, Demiroglu Bilim University, Esentepe Central Campus, Besiktas, 34394 Istanbul, Turkey
| | - Ali Albowaidey
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Mohamed Abdelmonem
- Department of Pathology, Transfusion Medicine Service, Stanford Healthcare, Stanford, CA 94305, USA
| | - Malek Asfar
- Department of Pathology, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Elsayed Zaabout
- Department of Therapeutics & Pharmacology, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
| | - Yalitza Lopez Corcino
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Venetia Thomas
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Eun-Seok Choi
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Saori Furuta
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| |
Collapse
|
6
|
Xu J, Zeng Q, Li S, Su Q, Fan H. Inflammation mechanism and research progress of COPD. Front Immunol 2024; 15:1404615. [PMID: 39185405 PMCID: PMC11341368 DOI: 10.3389/fimmu.2024.1404615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease characterized by irreversible progressive airflow limitation, often manifested by persistent cough, sputum production and other respiratory symptoms that pose a serious threat to human health and affect the quality of life of patients. The disease is associated with chronic inflammation, which is associated with the onset and progression of COPD, but anti-inflammatory therapy is not first-line treatment. Inflammation has multiple manifestations and phenotypes, and this heterogeneity reveals different patterns of inflammation, making treatment difficult. This paper aims to explore the direction of more effective anti-inflammatory treatment by analyzing the nature of inflammation and the molecular mechanism of disease occurrence and development in COPD patients, and to provide new ideas for the treatment of COPD patients.
Collapse
Affiliation(s)
- Jiao Xu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qingyue Zeng
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiaoli Su
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Zhu H, Zhou X, Ju R, Leng J, Tian J, Qu S, Tao S, Lyu Y, Zhang N. Challenges in clinical practice, biological mechanism and prospects of physical ablation therapy for COPD. Life Sci 2024; 349:122718. [PMID: 38754815 DOI: 10.1016/j.lfs.2024.122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is projected to become the third leading cause of death globally by 2030. Despite the limited treatment options available for advanced COPD, which are mostly restricted to costly lung transplants, physical ablation therapy offers promising alternatives. This technique focuses on ablating lesioned airway epithelium, reducing secretions and obstructions, and promoting normal epithelial regeneration, demonstrating significant therapeutic potential. Physical ablation therapy primarily involves thermal steam ablation, cryoablation, targeted lung denervation, and high-voltage pulsed electric field ablation. These methods help transform the hypersecretory phenotype, alleviate airway inflammation, and decrease the volume of emphysematous lung segments by targeting goblet cells and damaged lung areas. Compared to traditional treatments, endoscopic physical ablation offers fewer injuries, quicker recovery, and enhanced safety. However, its application in COPD remains limited due to inconsistent clinical outcomes, a lack of well-understood mechanisms, and the absence of standardized guidelines. This review begins by exploring the development of these ablation techniques and their current clinical uses in COPD treatment. It then delves into the therapeutic effects reported in recent clinical studies and discusses the underlying mechanisms. Finally, the review assesses the future prospects and challenges of employing ablation technology in COPD clinical practice, aiming to provide a practical reference and a theoretical basis for its use and inspire further research.
Collapse
Affiliation(s)
- Haoyang Zhu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyu Zhou
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ran Ju
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jing Leng
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiawei Tian
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shenao Qu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shiran Tao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yi Lyu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
8
|
Pang X, Liu X. Immune Dysregulation in Chronic Obstructive Pulmonary Disease. Immunol Invest 2024; 53:652-694. [PMID: 38573590 DOI: 10.1080/08820139.2024.2334296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease whose incidence increase with age and is characterised by chronic inflammation and significant immune dysregulation. Inhalation of toxic substances cause oxidative stress in the lung tissue as well as airway inflammation, under the recruitment of chemokines, immune cells gathered and are activated to play a defensive role. However, persistent inflammation damages the immune system and leads to immune dysregulation, which is mainly manifested in the reduction of the body's immune response to antigens, and immune cells function are impaired, further destroy the respiratory defensive system, leading to recurrent lower respiratory infections and progressive exacerbation of the disease, thus immune dysregulation play an important role in the pathogenesis of COPD. This review summarizes the changes of innate and adaptive immune-related cells during the pathogenesis of COPD, aiming to control COPD airway inflammation and improve lung tissue remodelling by regulating immune dysregulation, for further reducing the risk of COPD progression and opening new avenues of therapeutic intervention in COPD.
Collapse
Affiliation(s)
- Xichen Pang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoju Liu
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Higham A, Beech A, Singh D. Exhaled nitric oxide levels in COPD patients who use electronic cigarettes. Nitric Oxide 2024; 145:57-59. [PMID: 38428515 DOI: 10.1016/j.niox.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Emerging data from clinical studies have shown pro-inflammatory effects associated with e-cigarette use. Fractional exhaled nitric oxide (FeNO) is a biomarker of pulmonary type 2 (T2) inflammation. The effect of chronic e-cigarette use on FeNO is unclear. The aim of this study was to compare FeNO levels in COPD ex-smokers who use e-cigarettes (COPDE + e-cig) to COPDE ex-smokers (COPDE) and COPD current smokers (COPDS). FeNO levels were significantly higher in COPDE + e-cig (median 16.2 ppb) and COPDE (median 18.0 ppb) compared to COPDS (median 7.6 ppb) (p = 0.0003 and p < 0.0001 respectively). There was no difference in FeNO levels between COPDE + e-cig compared to COPDE (p > 0.9). The importance of our results is that electronic cigarette use does not alter the interpretation of FeNO results, and so does not interfere with the use of FeNO as a practical biomarker of T2 inflammation, unlike current cigarette smoking in COPD. Whilst the effect of electronic cigarette use on FeNO levels is not the same as cigarette smoke, this cannot be taken as evidence that electronic cigarettes are harmless. These differential pulmonary effects can be attributed to differences in the chemical composition of the two products.
Collapse
Affiliation(s)
- Andrew Higham
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK.
| | - Augusta Beech
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK; Medicines Evaluation Unit, The Langley Building, Southmoor Road, Manchester, UK
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK; Medicines Evaluation Unit, The Langley Building, Southmoor Road, Manchester, UK
| |
Collapse
|
10
|
Melani AS, Croce S, Fabbri G, Messina M, Bargagli E. Inhaled Corticosteroids in Subjects with Chronic Obstructive Pulmonary Disease: An Old, Unfinished History. Biomolecules 2024; 14:195. [PMID: 38397432 PMCID: PMC10887366 DOI: 10.3390/biom14020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the major causes of disability and death. Maintenance use of inhaled bronchodilator(s) is the cornerstone of COPD pharmacological therapy, but inhaled corticosteroids (ICSs) are also commonly used. This narrative paper reviews the role of ICSs as maintenance treatment in combination with bronchodilators, usually in a single inhaler, in stable COPD subjects. The guidelines strongly recommend the addition of an ICS in COPD subjects with a history of concomitant asthma or as a step-up on the top of dual bronchodilators in the presence of hospitalization for exacerbation or at least two moderate exacerbations per year plus high blood eosinophil counts (≥300/mcl). This indication would only involve some COPD subjects. In contrast, in real life, triple inhaled therapy is largely used in COPD, independently of symptoms and in the presence of exacerbations. We will discuss the results of recent randomized controlled trials that found reduced all-cause mortality with triple inhaled therapy compared with dual inhaled long-acting bronchodilator therapy. ICS use is frequently associated with common local adverse events, such as dysphonia, oral candidiasis, and increased risk of pneumonia. Other side effects, such as systemic toxicity and unfavorable changes in the lung microbiome, are suspected mainly at higher doses of ICS in elderly COPD subjects with comorbidities, even if not fully demonstrated. We conclude that, contrary to real life, the use of ICS should be carefully evaluated in stable COPD patients.
Collapse
Affiliation(s)
- Andrea S. Melani
- Respiratory Diseases Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (S.C.); (G.F.); (M.M.); (E.B.)
| | | | | | | | | |
Collapse
|
11
|
Nair P. Eosinophils and therapeutic responses to steroids and biologics in COPD: a complex relationship. J Bras Pneumol 2023; 49:e20230360. [PMID: 38126684 PMCID: PMC10760421 DOI: 10.36416/1806-3756/e20230360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Parameswaran Nair
- . Firestone Institute for Respiratory Health, St Joseph's Healthcare & McMaster University, Hamilton (ON) Canada
| |
Collapse
|