1
|
Klubdaeng A, Tovichien P. Clinical approach for pulmonary alveolar proteinosis in children. World J Clin Cases 2024; 12:6339-6345. [PMID: 39464322 PMCID: PMC11438685 DOI: 10.12998/wjcc.v12.i30.6339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
In this editorial, we discuss the clinical implications of the article by Zhang et al. Pulmonary alveolar proteinosis (PAP) is a rare lung disease characterized by excessive surfactant accumulation in the alveoli. It is classified into four categories: Primary, secondary, congenital, and unclassified forms. Primary PAP is caused by the disruption of granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor signaling, which is necessary for the clearance of surfactant by alveolar macrophages. It is further divided into autoimmune PAP, caused by anti-GM-CSF antibodies blocking alveolar macrophage activation, and hereditary PAP, resulting from mutations in genes encoding GM-CSF receptors. Secondary PAP develops due to conditions affecting the number or function of alveolar macrophages, such as infections, immunodeficiency, hematological disorders, or exposure to inhaled toxins. Congenital PAP is linked to mutations in genes involved in surfactant protein production. Notably, the causes of PAP differ between children and adults. Diagnostic features include a characteristic "crazy-paving" pattern on high-resolution computed tomography, accompanied by diffuse ground-glass opacities and interlobular septal thickening. The presence of PAP can be identified by the milky appearance of bronchoalveolar lavage fluid and histological evaluation. However, these methods cannot definitively determine the cause of PAP. Whole lung lavage remains the standard treatment, often combined with specific therapies based on the underlying cause.
Collapse
Affiliation(s)
- Anuvat Klubdaeng
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Prakarn Tovichien
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
2
|
Borie R, Berteloot L, Kannengiesser C, Griese M, Cazes A, Crestani B, Hadchouel A, Debray MP. Rare genetic interstitial lung diseases: a pictorial essay. Eur Respir Rev 2024; 33:240101. [PMID: 39537246 PMCID: PMC11558537 DOI: 10.1183/16000617.0101-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024] Open
Abstract
The main monogenic causes of pulmonary fibrosis in adults are mutations in telomere-related genes. These mutations may be associated with extrapulmonary signs (hepatic, haematological and dermatological) and typically present radiologically as usual interstitial pneumonia or unclassifiable fibrosis. In children, the monogenic causes of pulmonary fibrosis are dominated by mutations in surfactant-related genes. These mutations are not associated with extrapulmonary signs and often manifest radiologically as unclassifiable fibrosis with cysts that can lead to chest wall deformities in adults. This review discusses these mutations, along with most of the monogenic causes of interstitial lung disease, including interferon-related genes, mutations in genes causing cystic lung disease, Hermansky-Pudlak syndrome, pulmonary alveolar proteinosis, lysinuric protein intolerance and lysosomal storage disorders, and their pulmonary and extrapulmonary manifestations.
Collapse
Affiliation(s)
- Raphael Borie
- Université Paris Cité, Inserm, PHERE, Paris, France
- Hôpital Bichat, APHP, Service de Pneumologie A, Centre constitutif du centre de référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| | - Laureline Berteloot
- Service d'Imagerie Pédiatrique, Hôpital universitaire Necker-Enfants malades, Paris, France
- INSERM U1163, Paris, France
| | | | - Matthias Griese
- Department of Pediatric Pneumology, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Aurelie Cazes
- Département d'Anatomo-Pathologie, Hôpital Bichat, AP-HP, Paris, France
| | - Bruno Crestani
- Université Paris Cité, Inserm, PHERE, Paris, France
- Hôpital Bichat, APHP, Service de Pneumologie A, Centre constitutif du centre de référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| | - Alice Hadchouel
- AP-HP, Hôpital Universitaire Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
- INSERM U1151, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Marie Pierre Debray
- Service de Radiologie, Hopital Bichat, APHP, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Borie R, Ba I, Debray MP, Kannengiesser C, Crestani B. Syndromic genetic causes of pulmonary fibrosis. Curr Opin Pulm Med 2024; 30:473-483. [PMID: 38896087 DOI: 10.1097/mcp.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
PURPOSE OF REVIEW The identification of extra-pulmonary symptoms plays a crucial role in diagnosing interstitial lung disease (ILD). These symptoms not only indicate autoimmune diseases but also hint at potential genetic disorders, suggesting a potential overlap between genetic and autoimmune origins. RECENT FINDINGS Genetic factors contributing to ILD are predominantly associated with telomere (TRG) and surfactant-related genes. While surfactant-related gene mutations typically manifest with pulmonary involvement alone, TRG mutations were initially linked to syndromic forms of pulmonary fibrosis, known as telomeropathies, which may involve hematological and hepatic manifestations with variable penetrance. Recognizing extra-pulmonary signs indicative of telomeropathy should prompt the analysis of TRG mutations, the most common genetic cause of familial pulmonary fibrosis. Additionally, various genetic diseases causing ILD, such as alveolar proteinosis, alveolar hemorrhage, or unclassifiable pulmonary fibrosis, often present as part of syndromes that include hepatic, hematological, or skin disorders. SUMMARY This review explores the main genetic conditions identified over the past two decades.
Collapse
Affiliation(s)
- Raphaël Borie
- Service de Pneumologie A Hôpital Bichat, APHP, Paris, France, Université Paris Cité, Inserm, PHERE, Université Paris Cité
| | | | | | | | - Bruno Crestani
- Service de Pneumologie A Hôpital Bichat, APHP, Paris, France, Université Paris Cité, Inserm, PHERE, Université Paris Cité
| |
Collapse
|
4
|
Giunta-Stibb H, Hackett B. Interstitial lung disease in the newborn. J Perinatol 2024:10.1038/s41372-024-02036-9. [PMID: 38956315 DOI: 10.1038/s41372-024-02036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Although relatively rare, interstitial lung diseases may present with respiratory distress in the newborn period. Most commonly these include developmental and growth disorders, disorders of surfactant synthesis and homeostasis, pulmonary interstitial glycogenosis, and neuroendocrine cell hyperplasia of infancy. Although the diagnosis of these disorders is sometimes made based on clinical presentation and imaging, due to the significant overlap between disorders and phenotypic variability, lung biopsy or, increasingly genetic testing is needed for diagnosis. These diseases may result in significant morbidity and mortality. Effective medical treatment options are in some cases limited and/or invasive. The genetic basis for some of these disorders has been identified, and with increased utilization of exome and whole genome sequencing even before lung biopsy, further insights into their genetic etiologies should become available.
Collapse
Affiliation(s)
- Hannah Giunta-Stibb
- Divisions of Neonatology and Pulmonology, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.
| | - Brian Hackett
- Mildred Stahlman Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
5
|
Lettieri S, Bonella F, Marando VA, Franciosi AN, Corsico AG, Campo I. Pathogenesis-driven treatment of primary pulmonary alveolar proteinosis. Eur Respir Rev 2024; 33:240064. [PMID: 39142709 PMCID: PMC11322829 DOI: 10.1183/16000617.0064-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/28/2024] [Indexed: 08/16/2024] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a syndrome that results from the accumulation of lipoproteinaceous material in the alveolar space. According to the underlying pathogenetic mechanisms, three different forms have been identified, namely primary, secondary and congenital. Primary PAP is caused by disruption of granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling due to the presence of neutralising autoantibodies (autoimmune PAP) or GM-CSF receptor genetic defects (hereditary PAP), which results in dysfunctional alveolar macrophages with reduced phagocytic clearance of particles, cholesterol and surfactant. The serum level of GM-CSF autoantibody is the only disease-specific biomarker of autoimmune PAP, although it does not correlate with disease severity. In PAP patients with normal serum GM-CSF autoantibody levels, elevated serum GM-CSF levels is highly suspicious for hereditary PAP. Several biomarkers have been correlated with disease severity, although they are not specific for PAP. These include lactate dehydrogenase, cytokeratin 19 fragment 21.1, carcinoembryonic antigen, neuron-specific enolase, surfactant proteins, Krebs von Lungen 6, chitinase-3-like protein 1 and monocyte chemotactic proteins. Finally, increased awareness of the disease mechanisms has led to the development of pathogenesis-based treatments, such as GM-CSF augmentation and cholesterol-targeting therapies.
Collapse
Affiliation(s)
- Sara Lettieri
- Pneumology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Francesco Bonella
- Center for interstitial and rare lung diseases, Ruhrlandklinik, University of Essen, Essen, Germany
| | | | | | - Angelo Guido Corsico
- Pneumology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Ilaria Campo
- Pneumology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| |
Collapse
|
6
|
Roy C, Allou N, Coulomb A, Grenet D, Borie R, Zuber B, Hamid A, Glorion M, Brun AL, Longchamps E, Hadchouel A, Brugiere O. Successful lung transplantation in genetic methionyl-tRNA synthetase-related alveolar proteinosis/lung fibrosis without recurrence under methionine supplementation: Medium-term outcome in 4 cases. Am J Transplant 2024; 24:1317-1322. [PMID: 38461880 DOI: 10.1016/j.ajt.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Pulmonary alveolar proteinosis (PAP) results from the accumulation of lipoproteinaceous material in the alveoli and alveolar macrophages, and can be associated with pulmonary fibrosis, with a need for lung transplantation (LTx). Causes of PAP are autoimmune (90%-95%), secondary (5%), or hereditary (<1%). Patients with hereditary PAP are generally not considered for isolated LTx, due to the high probability of recurrence after LTx, and only a challenging scenario with sequential LTx followed by hematopoietic stem cell transplantation (HSCT) was reported as successful. Recently, a new genetic cause of PAP linked to mutations in the methionyl-tRNA synthetase (MARS) gene has been reported, with a highly variable clinical presentation. Because clinical correction of the defective MARS activity with methionine supplementation has been reported in nontransplanted children, we reassessed the feasibility of LTx for candidates with MARS-related PAP/fibrosis. We report 3 cases of LTx performed for MARS-related pulmonary alveolar proteinosis-pulmonary fibrosis without recurrence under methionine supplementation, whereas another fourth case transplanted without supplementation had fatal PAP recurrence. These results suggest the effectiveness of methionine in correcting defective MARS activity and also looking for this very rare diagnosis in case of unclassified PAP/fibrosis. It argues for not excluding the feasibility of isolated LTx in patients with MARS mutation.
Collapse
Affiliation(s)
- Charlotte Roy
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France; Service de Pneumologie pédiatrique, Hôpital Necker, Paris, France
| | - Nathalie Allou
- Service de Pneumologie, Hôpital CHU Felix Guyon, La Réunion
| | - Aurore Coulomb
- Service d'Anatomopathologie, Hôpital Armand Trousseau, Paris, France
| | - Dominique Grenet
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
| | - Raphaël Borie
- Service de Pneumologie, Hôpital Bichat, Paris, France
| | | | - Abdulmonem Hamid
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France; Collège de Médecine des hôpitaux de Paris (CMHP)
| | | | | | | | - Alice Hadchouel
- Service de Pneumologie pédiatrique, Hôpital Necker, Paris, France
| | - Olivier Brugiere
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France; CEA/DRF/Institut de Biologie François Jacob/Service de Recherches en Hémato-Immunologie Hôpital St-Louis, Paris, France.
| |
Collapse
|
7
|
Cheng A, Holland SM. Anti-cytokine autoantibodies: mechanistic insights and disease associations. Nat Rev Immunol 2024; 24:161-177. [PMID: 37726402 DOI: 10.1038/s41577-023-00933-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
Anti-cytokine autoantibodies (ACAAs) are increasingly recognized as modulating disease severity in infection, inflammation and autoimmunity. By reducing or augmenting cytokine signalling pathways or by altering the half-life of cytokines in the circulation, ACAAs can be either pathogenic or disease ameliorating. The origins of ACAAs remain unclear. Here, we focus on the most common ACAAs in the context of disease groups with similar characteristics. We review the emerging genetic and environmental factors that are thought to drive their production. We also describe how the profiling of ACAAs should be considered for the early diagnosis, active monitoring, treatment or sub-phenotyping of diseases. Finally, we discuss how understanding the biology of naturally occurring ACAAs can guide therapeutic strategies.
Collapse
Affiliation(s)
- Aristine Cheng
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Papiris SA, Louvrier C, Fabre A, Kaklamanis L, Tsangaris I, Frantzeskaki F, Dimeas IE, Debray MP, Karakontaki F, Kallieri M, Kolilekas L, Daniil Z, Giatromanolaki A, Kannengiesser C, Borie R, Nathan N, Griese M, Manali ED. CSF2RB mutation-related hereditary pulmonary alveolar proteinosis: the "long and winding road" into adulthood. ERJ Open Res 2023; 9:00703-2023. [PMID: 38111540 PMCID: PMC10726220 DOI: 10.1183/23120541.00703-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 12/20/2023] Open
Abstract
Genetic analysis pre-lung transplantation diagnosed a case of hereditary pulmonary alveolar proteinosis (PAP) complicated by fibrosis in adulthood. The need for genetic testing in GM-CSF autoantibody negative and unclassifiable PAP is highlighted. https://bit.ly/3QcsYwM.
Collapse
Affiliation(s)
- Spyros A. Papiris
- 2nd Pulmonary Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- These authors contributed equally to this work
| | - Camille Louvrier
- Sorbonne Université, Inserm, Laboratory of Childhood Genetic Disorders, UMR S933, Hôpital Armand-Trousseau, Paris, France
- Département de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Armand-Trousseau, Paris, France
- These authors contributed equally to this work
| | - Aurélie Fabre
- Department of Pathology, St Vincent's University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Loukas Kaklamanis
- Heart Failure and Transplant Units, Onassis Cardiac Surgery Center, Athens, Greece
| | - Iraklis Tsangaris
- 2nd Department of Critical Care Medicine, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Frantzeska Frantzeskaki
- 2nd Department of Critical Care Medicine, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ilias E. Dimeas
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, Greece
| | - Marie-Pierre Debray
- Service de Radiologie, Hôpital Bichat, APHP, Paris, France
- INSERM, Unité 1152, Université de Paris, Paris, France
| | - Foteini Karakontaki
- 1st Respiratory Medicine Department, National and Kapodistrian University of Athens, Medical School, “Sotiria” Chest Hospital, Athens, Greece
| | - Maria Kallieri
- 2nd Pulmonary Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Zoe Daniil
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, Greece
| | - Alexandra Giatromanolaki
- Department of Pathology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Caroline Kannengiesser
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, Paris, France
- INSERM UMR 1152, Université de Paris, Paris, France
| | - Raphael Borie
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, Paris, France
| | - Nadia Nathan
- Pediatric Pulmonology Department and Reference Centre for Rare Lung Diseases RespiRare, INSERM UMR_S933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Sorbonne University and APHP, Paris, France
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Effrosyni D. Manali
- 2nd Pulmonary Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
韩 俊, 张 蓉, 周 建, 胡 黎, 钱 莉, 陆 爱, 杨 琳, 马 阳, 乔 中, 张 澜. [Congenital pulmonary alveolar proteinosis in a neonate]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:1089-1094. [PMID: 37905769 PMCID: PMC10621054 DOI: 10.7499/j.issn.1008-8830.2307035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 11/02/2023]
Abstract
The male patient was referred to the hospital at 44 days old due to dyspnea after birth and inability to wean off oxygen. His brother died three days after birth due to respiratory failure. The main symptoms observed were respiratory failure, dyspnea, and hypoxemia. A chest CT scan revealed characteristic reduced opacity in both lungs with a "crazy-paving" appearance. The bronchoalveolar lavage fluid (BALF) showed periodic acid-Schiff positive proteinaceous deposits. Genetic testing indicated a compound heterozygous mutation in the ABCA3 gene. The diagnosis for the infant was congenital pulmonary alveolar proteinosis (PAP). Congenital PAP is a significant cause of challenging-to-treat respiratory failure in full-term infants. Therefore, congenital PAP should be considered in infants experiencing persistently difficult-to-treat dyspnea shortly after birth. Early utilization of chest CT scans, BALF pathological examination, and genetic testing may aid in early diagnosis.
Collapse
Affiliation(s)
| | | | | | | | - 莉玲 钱
- 复旦大学附属儿科医院呼吸科/国家儿童医学中心上海201102
| | - 爱珍 陆
- 复旦大学附属儿科医院呼吸科/国家儿童医学中心上海201102
| | - 琳 杨
- 复旦大学附属儿科医院 内分泌遗传代谢科上海201102
| | - 阳阳 马
- 复旦大学附属儿科医院病理科/国家儿童医学中心上海201102
| | - 中伟 乔
- 复旦大学附属儿科医院影像科/国家儿童医学中心上海201102
| | | |
Collapse
|
10
|
Buschulte K, Cottin V, Wijsenbeek M, Kreuter M, Diesler R. The world of rare interstitial lung diseases. Eur Respir Rev 2023; 32:32/167/220161. [PMID: 36754433 PMCID: PMC9910344 DOI: 10.1183/16000617.0161-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/21/2022] [Indexed: 02/10/2023] Open
Abstract
The world of rare interstitial lung diseases (ILDs) is diverse and complex. Diagnosis and therapy usually pose challenges. This review describes a selection of rare and ultrarare ILDs including pulmonary alveolar proteinosis, pulmonary alveolar microlithiasis and pleuroparenchymal fibroelastosis. In addition, monogenic ILDs or ILDs in congenital syndromes and various multiple cystic lung diseases will be discussed. All these conditions are part of the scope of the European Reference Network on rare respiratory diseases (ERN-LUNG). Epidemiology, pathogenesis, diagnostics and treatment of each disease are presented.
Collapse
Affiliation(s)
- Katharina Buschulte
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, German Center for Lung Research (DZL), ERN-LUNG, Heidelberg, Germany
| | - Vincent Cottin
- National Reference Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, UMR 754, Claude Bernard University Lyon 1, ERN-LUNG, Lyon, France
| | - Marlies Wijsenbeek
- Center for Interstitial Lung Diseases and Sarcoidosis, Department of Respiratory Medicine, Erasmus MC-University Medical Center, ERN-LUNG, Rotterdam, The Netherlands
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, German Center for Lung Research (DZL), ERN-LUNG, Heidelberg, Germany
| | - Rémi Diesler
- National Reference Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, UMR 754, Claude Bernard University Lyon 1, ERN-LUNG, Lyon, France
| |
Collapse
|
11
|
Beeckmans H, Ambrocio GPL, Bos S, Vermaut A, Geudens V, Vanstapel A, Vanaudenaerde BM, De Baets F, Malfait TLA, Emonds MP, Van Raemdonck DE, Schoemans HM, Vos R. Allogeneic Hematopoietic Stem Cell Transplantation After Prior Lung Transplantation for Hereditary Pulmonary Alveolar Proteinosis: A Case Report. Front Immunol 2022; 13:931153. [PMID: 35928826 PMCID: PMC9344132 DOI: 10.3389/fimmu.2022.931153] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare, diffuse lung disorder characterized by surfactant accumulation in the small airways due to defective clearance by alveolar macrophages, resulting in impaired gas exchange. Whole lung lavage is the current standard of care treatment for PAP. Lung transplantation is an accepted treatment option when whole lung lavage or other experimental treatment options are ineffective, or in case of extensive pulmonary fibrosis secondary to PAP. A disadvantage of lung transplantation is recurrence of PAP in the transplanted lungs, especially in hereditary PAP. The hereditary form of PAP is an ultra-rare condition caused by genetic mutations in genes encoding for the granulocyte macrophage-colony stimulating factor (GM-CSF) receptor, and intrinsically affects bone marrow derived-monocytes, which differentiate into macrophages in the lung. Consequently, these macrophages typically display disrupted GM-CSF receptor-signaling, causing defective surfactant clearance. Bone marrow/hematopoietic stem cell transplantation may potentially reverse the lung disease in hereditary PAP. In patients with hereditary PAP undergoing lung transplantation, post-lung transplant recurrence of PAP may theoretically be averted by subsequent hematopoietic stem cell transplantation, which results in a graft-versus-disease (PAP) effect, and thus could improve long-term outcome. We describe the successful long-term post-transplant outcome of a unique case of end-stage respiratory failure due to hereditary PAP-induced pulmonary fibrosis, successfully treated by bilateral lung transplantation and subsequent allogeneic hematopoietic stem cell transplantation. Our report supports treatment with serial lung and hematopoietic stem cell transplantation to improve quality of life and prolong survival, without PAP recurrence, in selected patients with end-stage hereditary PAP.
Collapse
Affiliation(s)
- Hanne Beeckmans
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Gene P. L. Ambrocio
- Department of Internal Medicine, Division of Pulmonary Medicine, University of the Philippines – Philippine General Hospital, Manila, Philippines
| | - Saskia Bos
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Astrid Vermaut
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Vincent Geudens
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Arno Vanstapel
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Bart M. Vanaudenaerde
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Frans De Baets
- Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | | | - Marie-Paule Emonds
- Histocompatibility and Immunogenetics Laboratory, Red Cross-Flanders, Mechelen, Belgium
| | - Dirk E. Van Raemdonck
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Hélène M. Schoemans
- Department of Hematology, Bone Marrow Transplant Unit, University Hospitals Leuven, Leuven, Belgium
- Department of Public Health and Primary Care, Academic Centre for Nursing and Midwifery, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
- *Correspondence: Robin Vos,
| |
Collapse
|
12
|
Bonella F, Borie R. Targeted therapy for pulmonary alveolar proteinosis: the time is now. Eur Respir J 2022; 59:59/4/2102971. [PMID: 35450922 DOI: 10.1183/13993003.02971-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Pneumology Dept, Ruhrlandklinik, University Hospital, University of Essen, European Reference Network (ERN)-LUNG, ILD Core Network, Essen, Germany
| | - Raphael Borie
- Université de Paris, Inserm, U1152, laboratoire d'excellence INFLAMEX, Paris, France.,Hôpital Bichat, APHP, Service de Pneumologie A, Centre constitutif du centre de référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| |
Collapse
|
13
|
Incidence and Prevalence of Children's Diffuse Lung Disease in Spain. Arch Bronconeumol 2022; 58:22-29. [DOI: 10.1016/j.arbres.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/15/2021] [Accepted: 06/02/2021] [Indexed: 02/03/2023]
|