1
|
Poddighe D, Van Hollebeke M, Rodrigues A, Hermans G, Testelmans D, Kalkanis A, Clerckx B, Gayan-Ramirez G, Gosselink R, Langer D. Respiratory muscle dysfunction in acute and chronic respiratory failure: how to diagnose and how to treat? Eur Respir Rev 2024; 33:240150. [PMID: 39631928 PMCID: PMC11615664 DOI: 10.1183/16000617.0150-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/19/2024] [Indexed: 12/07/2024] Open
Abstract
Assessing and treating respiratory muscle dysfunction is crucial for patients with both acute and chronic respiratory failure. Respiratory muscle dysfunction can contribute to the onset of respiratory failure and may also worsen due to interventions aimed at treatment. Evaluating respiratory muscle function is particularly valuable for diagnosing, phenotyping and assessing treatment efficacy in these patients. This review outlines established methods, such as measuring respiratory pressures, and explores novel techniques, including respiratory muscle neurophysiology assessments using electromyography and imaging with ultrasound.Additionally, we review various treatment strategies designed to support and alleviate the burden on overworked respiratory muscles or to enhance their capacity through training interventions. These strategies range from invasive and noninvasive mechanical ventilation approaches to specialised respiratory muscle training programmes. By summarising both established techniques and recent methodological advancements, this review aims to provide a comprehensive overview of the tools available in clinical practice for evaluating and treating respiratory muscle dysfunction. Our goal is to present a clear understanding of the current capabilities and limitations of these diagnostic and therapeutic approaches. Integrating advanced diagnostic methods and innovative treatment strategies should help improve patient management and outcomes. This comprehensive review serves as a resource for clinicians, equipping them with the necessary knowledge to effectively diagnose and treat respiratory muscle dysfunction in both acute and chronic respiratory failure scenarios.
Collapse
Affiliation(s)
- Diego Poddighe
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, Leuven, Belgium
- D. Poddighe and M. Van Hollebeke contributed equally to the manuscript and are shared first authors
| | - Marine Van Hollebeke
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, Leuven, Belgium
- D. Poddighe and M. Van Hollebeke contributed equally to the manuscript and are shared first authors
| | - Antenor Rodrigues
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Greet Hermans
- University Hospitals Leuven, Department of General Internal Medicine, Medical Intensive Care Unit, Leuven, Belgium
- Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dries Testelmans
- University Hospitals Leuven, Department of Respiratory Medicine, Leuven, Belgium
| | - Alexandros Kalkanis
- University Hospitals Leuven, Department of Respiratory Medicine, Leuven, Belgium
| | - Beatrix Clerckx
- University Hospitals Leuven, Department of General Internal Medicine, Medical Intensive Care Unit, Leuven, Belgium
- Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- KU Leuven, Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Leuven, Belgium
| | - Rik Gosselink
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, Leuven, Belgium
- Department of Health and Rehabilitation Sciences - Faculty of Medicine, Stellenbosch University, South Africa
| | - Daniel Langer
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, Leuven, Belgium
| |
Collapse
|
2
|
Turner G, Sabapathy S, Moore M, Provenzano S, Stroebel A, Cahalin LP. Inspiratory muscle training for diaphragmatic dysfunction: A case series. Respir Med Case Rep 2024; 51:102066. [PMID: 38983243 PMCID: PMC11231743 DOI: 10.1016/j.rmcr.2024.102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
Inspiratory muscle training (IMT) is used across various pathology domains to improve respiratory function. Limited literature exists which demonstrates IMT benefit among patients with Diaphragmatic dysfunction. 7 individuals with a mean age of 59.6yrs had unilateral diaphragmatic dysfunction (UDD) post cardiac surgery and were referred to a cardiac rehab program where an IMT strength based protocol was prescribed. IMT implementation over an average of 13 weeks yielded an average improvement in maximum inspiratory pressure (MIP) of 48 % (p value 0.018), peak inspiratory flow rate (PIFR) of 45 % (p value 0.018), forced expired volume in 1 sec (FEV1) of 15 % (p value 0.028) and forced vital capacity (FVC) of 15 % (p value 0.018). This case series of data adds to the limited evidence that exists currently and outlines the benefits of IMT application within unilateral diaphragmatic dysfunction.
Collapse
Affiliation(s)
- Grant Turner
- Chronic Disease and Post Acute programs, Gold Coast Hospital and Health Service, Queensland Health, USA
| | | | | | - Sylvio Provenzano
- Cardiothoracic Department, Gold Coast Hospital and Health Service, Queensland Health, USA
| | - Andrie Stroebel
- Cardiothoracic Department, Gold Coast Hospital and Health Service, Queensland Health, USA
| | | |
Collapse
|
3
|
Jonkman AH, Warnaar RSP, Baccinelli W, Carbon NM, D'Cruz RF, Doorduin J, van Doorn JLM, Elshof J, Estrada-Petrocelli L, Graßhoff J, Heunks LMA, Koopman AA, Langer D, Moore CM, Nunez Silveira JM, Petersen E, Poddighe D, Ramsay M, Rodrigues A, Roesthuis LH, Rossel A, Torres A, Duiverman ML, Oppersma E. Analysis and applications of respiratory surface EMG: report of a round table meeting. Crit Care 2024; 28:2. [PMID: 38166968 PMCID: PMC10759550 DOI: 10.1186/s13054-023-04779-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Surface electromyography (sEMG) can be used to measure the electrical activity of the respiratory muscles. The possible applications of sEMG span from patients suffering from acute respiratory failure to patients receiving chronic home mechanical ventilation, to evaluate muscle function, titrate ventilatory support and guide treatment. However, sEMG is mainly used as a monitoring tool for research and its use in clinical practice is still limited-in part due to a lack of standardization and transparent reporting. During this round table meeting, recommendations on data acquisition, processing, interpretation, and potential clinical applications of respiratory sEMG were discussed. This paper informs the clinical researcher interested in respiratory muscle monitoring about the current state of the art on sEMG, knowledge gaps and potential future applications for patients with respiratory failure.
Collapse
Affiliation(s)
- A H Jonkman
- Department of Intensive Care Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - R S P Warnaar
- Cardiovascular and Respiratory Physiology, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - W Baccinelli
- Netherlands eScience Center, Amsterdam, The Netherlands
| | - N M Carbon
- Department of Anesthesiology, Friedrich Alexander-Universität Erlangen-Nürnberg, Uniklinikum Erlangen, Erlangen, Germany
| | - R F D'Cruz
- Lane Fox Clinical Respiratory Physiology Research Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - J Doorduin
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J L M van Doorn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Elshof
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - L Estrada-Petrocelli
- Facultad de Ingeniería and Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT) - Sistema Nacional de Investigación (SNI), Universidad Latina de Panamá (ULATINA), Panama, Panama
| | - J Graßhoff
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Lübeck, Germany
| | - L M A Heunks
- Department of Intensive Care, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A A Koopman
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - D Langer
- Research Group for Rehabilitation in Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000, Leuven, Belgium
| | - C M Moore
- Netherlands eScience Center, Amsterdam, The Netherlands
| | - J M Nunez Silveira
- Hospital Italiano de Buenos Aires, Unidad de Terapia Intensiva, Ciudad de Buenos Aires, Argentina
| | - E Petersen
- Technical University of Denmark (DTU), DTU Compute, 2800, Kgs. Lyngby, Denmark
| | - D Poddighe
- Research Group for Rehabilitation in Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000, Leuven, Belgium
| | - M Ramsay
- Lane Fox Clinical Respiratory Physiology Research Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - A Rodrigues
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
| | - L H Roesthuis
- Department of Intensive Care, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Rossel
- Department of Acute Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - A Torres
- Institut de Bioenginyeria de Catalunya (IBEC), Barcelona Institute of Science and Technology (BIST) and Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Politècnica de Catalunya BarcelonaTech (UPC), Barcelona, Spain
| | - M L Duiverman
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - E Oppersma
- Cardiovascular and Respiratory Physiology, TechMed Centre, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
4
|
Zimmermann M, Wollsching-Strobel M, Majorski DS, Kroppen D, Schwarz SB, Berger M, Windisch W, Holle JF. [Neuralgic amyotrophy: a common cause of unilateral and bilateral diaphragmatic pareses]. Pneumologie 2023; 77:814-824. [PMID: 37647918 DOI: 10.1055/a-2113-0385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
There are several causes for unilateral or bilateral diaphragmatic paresis. The most common cause is an (intraoperative) injury to the phrenic nerve.However, in up to 20% of cases, no explanation can be found despite extensive workup. Neuralgic amyotrophy (NA, also known as Parsonage-Turner syndrome) is a common underdiagnosed multifocal autoimmune-inflammatory disease that predominantly affects proximal nerve segments of the upper extremities. Classic symptoms include acute onset of severe pain in the shoulder girdle with delayed onset of paresis of the shoulder and arm muscles. In at least 7% of cases, the phrenic nerve is also affected. Based on the annual incidence of NA of 1:1000, the entity as a cause of diaphragmatic dysfunction is probably not as uncommon as previously thought. However, clinical experience shows that this diagnosis is often not considered, and diaphragmatic paresis gets wrongly classified as idiopathic.This is particularly disastrous because in the early stage of NA, medical therapy with corticosteroids is mostly not considered and the possibility that surgical repair of the diaphragm may be performed prematurely, given that the condition may resolve spontaneously many months after symptom onset.The aim of the present article is to raise awareness of the entity of NA as a cause of diaphragmatic paresis and to establish a standardized approach to diagnosis and treatment.
Collapse
Affiliation(s)
- Maximilian Zimmermann
- Pneumologie, Kliniken der Stadt Köln gGmbH, Köln, Deutschland
- Lehrstuhl für Pneumologie, Universität Witten/Herdecke Fakultät für Gesundheit, Köln, Deutschland
| | - Maximilian Wollsching-Strobel
- Pneumologie, Kliniken der Stadt Köln gGmbH, Köln, Deutschland
- Humanmedizin, Universität Witten/Herdecke Fakultät für Gesundheit, Witten, Deutschland
| | | | - Doreen Kroppen
- Pneumologie, Kliniken der Stadt Köln gGmbH, Universität Witten/Herdecke, Köln, Deutschland
| | - Sarah Bettina Schwarz
- Pneumologie, Kliniken der Stadt Köln gGmbH, Universität Witten/Herdecke, Köln, Deutschland
| | - Melanie Berger
- Pneumologie, Kliniken der Stadt Köln gGmbH, Universität Witten/Herdecke, Köln, Deutschland
| | - Wolfram Windisch
- Pneumologie, Kliniken der Stadt Köln gGmbH, Universität Witten/Herdecke, Köln, Deutschland
| | - Johannes Fabian Holle
- Neurologie, Kliniken der Stadt Köln gGmbH, Köln, Deutschland
- Lehrstuhl für Pneumologie, Universität Witten/Herdecke Fakultät für Gesundheit, Köln, Deutschland
| |
Collapse
|
5
|
Schaeffer MR, Louvaris Z, Rodrigues A, Poddighe D, Gayan-Ramirez G, Gojevic T, Geerts L, Heyndrickx E, Van Hollebeke M, Janssens L, Gosselink R, Testelmans D, Langer D. Effects of inspiratory muscle training on exertional breathlessness in patients with unilateral diaphragm dysfunction: a randomised trial. ERJ Open Res 2023; 9:00300-2023. [PMID: 37868146 PMCID: PMC10588797 DOI: 10.1183/23120541.00300-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/09/2023] [Indexed: 10/24/2023] Open
Abstract
Background Unilateral diaphragm dysfunction (UDD) is an underdiagnosed cause of dyspnoea. Inspiratory muscle training (IMT) is the only conservative treatment for UDD, but the mechanisms of improvement are unknown. We characterised the effects of IMT on dyspnoea, exercise tolerance and respiratory muscle function in people with UDD. Methods 15 people with UDD (73% male, 61±8 years) were randomised to 6 months of IMT (50% maximal inspiratory mouth pressure (PI,max), n=10) or sham training (10% PI,max, n=5) (30 breaths twice per day). UDD was confirmed by phrenic nerve stimulation and persisted throughout the training period. Symptoms were assessed by the transitional dyspnoea index (TDI) and exercise tolerance by constant-load cycle tests performed pre- and post-training. Oesophageal (Pes) and gastric (Pga) pressures were measured with a dual-balloon catheter. Electromyography (EMG) and oxygenation (near-infrared spectroscopy) of respiratory muscles were assessed continuously during exercise. Results The IMT group (from 45±6 to 62±23% PI,max) and sham group (no progression) completed 92 and 86% of prescribed sessions, respectively. PI,max, TDI scores and cycle endurance time improved significantly more after IMT versus sham (mean between-group differences: 28 (95% CI 13-28) cmH2O, 3.0 (95% CI 0.9-5.1) points and 6.0 (95% CI 0.4-11.5) min, respectively). During exercise at iso-time, Pes, Pga and EMG of the scalene muscles were reduced and the oxygen saturation indices of the scalene and abdominal muscles were higher post- versus pre-training only in the IMT group (all p<0.05). Conclusion The effects of IMT on dyspnoea and exercise tolerance in UDD were not mediated by an improvement in isolated diaphragm function, but may reflect improvements in strength, coordination and/or oxygenation of the extra-diaphragmatic respiratory muscles.
Collapse
Affiliation(s)
- Michele R. Schaeffer
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium
| | - Zafeiris Louvaris
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium
| | - Antenor Rodrigues
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
| | - Diego Poddighe
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Tin Gojevic
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium
| | - Linde Geerts
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium
| | - Elise Heyndrickx
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium
| | - Marine Van Hollebeke
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium
| | - Luc Janssens
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium
- Department of Electrical Engineering, Faculty of Engineering Technology, KU Leuven, Leuven, Belgium
| | - Rik Gosselink
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium
| | - Dries Testelmans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Daniel Langer
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Nicolò A, Sacchetti M. Differential control of respiratory frequency and tidal volume during exercise. Eur J Appl Physiol 2023; 123:215-242. [PMID: 36326866 DOI: 10.1007/s00421-022-05077-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
The lack of a testable model explaining how ventilation is regulated in different exercise conditions has been repeatedly acknowledged in the field of exercise physiology. Yet, this issue contrasts with the abundance of insightful findings produced over the last century and calls for the adoption of new integrative perspectives. In this review, we provide a methodological approach supporting the importance of producing a set of evidence by evaluating different studies together-especially those conducted in 'real' exercise conditions-instead of single studies separately. We show how the collective assessment of findings from three domains and three levels of observation support the development of a simple model of ventilatory control which proves to be effective in different exercise protocols, populations and experimental interventions. The main feature of the model is the differential control of respiratory frequency (fR) and tidal volume (VT); fR is primarily modulated by central command (especially during high-intensity exercise) and muscle afferent feedback (especially during moderate exercise) whereas VT by metabolic inputs. Furthermore, VT appears to be fine-tuned based on fR levels to match alveolar ventilation with metabolic requirements in different intensity domains, and even at a breath-by-breath level. This model reconciles the classical neuro-humoral theory with apparently contrasting findings by leveraging on the emerging control properties of the behavioural (i.e. fR) and metabolic (i.e. VT) components of minute ventilation. The integrative approach presented is expected to help in the design and interpretation of future studies on the control of fR and VT during exercise.
Collapse
Affiliation(s)
- Andrea Nicolò
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy.
| | - Massimo Sacchetti
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy
| |
Collapse
|
7
|
Caleffi-Pereira M, Albuquerque ALPD. Measurements of respiratory muscle function as diagnostic criteria for diaphragmatic paralysis. J Bras Pneumol 2021; 47:e20210310. [PMID: 34669841 PMCID: PMC9013532 DOI: 10.36416/1806-3756/e20210310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Mayra Caleffi-Pereira
- . Divisão de Pneumologia, Instituto do Coração - InCor - Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Andre Luiz Pereira de Albuquerque
- . Divisão de Pneumologia, Instituto do Coração - InCor - Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil.,. Instituto de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo (SP) Brasil
| |
Collapse
|
8
|
Abodonya AM, Abdelbasset WK, Awad EA, Elalfy IE, Salem HA, Elsayed SH. Inspiratory muscle training for recovered COVID-19 patients after weaning from mechanical ventilation: A pilot control clinical study. Medicine (Baltimore) 2021; 100:e25339. [PMID: 33787632 PMCID: PMC8021337 DOI: 10.1097/md.0000000000025339] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/09/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND To the best of our knowledge, no studies have evaluated the effects of inspiratory muscle training (IMT) on recovered COVID-19 patients after weaning from mechanical ventilation. Therefore, this study assessed the efficacy of IMT on recovered COVID-19 patients following mechanical ventilation. METHODS Forty-two recovered COVID-19 patients (33 men and 9 women) weaned from mechanical ventilation with a mean age of 48.05 ± 8.85 years were enrolled in this pilot control clinical study. Twenty-one patients were equipped to 2-week IMT (IMT group) and 21 matched peers were recruited as a control (control group). Forced vital capacity (FVC%), forced expiratory volume in 1 second (FEV1%), dyspnea severity index (DSI), quality of life (QOL), and six-minute walk test (6-MWT) were assessed initially before starting the study intervention and immediately after intervention. RESULTS Significant interaction effects were observed in the IMT when compared to control group, FVC% (F = 5.31, P = .041, ηP2 = 0.13), FEV1% (F = 4.91, P = .043, ηP2 = 0.12), DSI (F = 4.56, P = .032, ηP2 = 0.15), QOL (F = 6.14, P = .021, ηP2 = 0.17), and 6-MWT (F = 9.34, P = .028, ηP2 = 0.16). Within-group analysis showed a significant improvement in the IMT group (FVC%, P = .047, FEV1%, P = .039, DSI, P = .001, QOL, P < .001, and 6-MWT, P < .001), whereas the control group displayed nonsignificant changes (P > .05). CONCLUSIONS A 2-week IMT improves pulmonary functions, dyspnea, functional performance, and QOL in recovered intensive care unit (ICU) COVID-19 patients after consecutive weaning from mechanical ventilation. IMT program should be encouraged in the COVID-19 management protocol, specifically with ICU patients.
Collapse
Affiliation(s)
- Ahmed M. Abodonya
- Department of Surgery, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Anesthesia and Intensive Care, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza
| | - Elsayed A. Awad
- Department of Anesthesia and Intensive Care, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ibrahim E. Elalfy
- Department of Anesthesia and Intensive Care, Faculty of Medicine, Al-Azhar University, Damietta
| | - Hosni A. Salem
- Department of Anesthesia and Intensive Care, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Shereen H. Elsayed
- Department of Physical Therapy for Cardiovascular/Respiratory Disorders and Geriatrics, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Caleffi Pereira M, Cardenas LZ, Ferreira JG, Iamonti VC, Santana PV, Apanavicius A, Caruso P, Fernandez A, de Carvalho CRR, Langer D, de Albuquerque ALP. Unilateral diaphragmatic paralysis: inspiratory muscles, breathlessness and exercise capacity. ERJ Open Res 2021; 7:00357-2019. [PMID: 33569499 PMCID: PMC7861029 DOI: 10.1183/23120541.00357-2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/30/2020] [Indexed: 11/29/2022] Open
Abstract
Background Patients with unilateral diaphragmatic paralysis (UDP) may present with dyspnoea without specific cause and limited ability to exercise. We aimed to investigate the diaphragm contraction mechanisms and nondiaphragmatic inspiratory muscle activation during exercise in patients with UDP, compared with healthy individuals. Methods Pulmonary function, as well as volitional and nonvolitional inspiratory muscle strength were evaluated in 35 patients and in 20 healthy subjects. Respiratory pressures and electromyography of scalene and sternocleidomastoid muscles were continuously recorded during incremental maximal cardiopulmonary exercise testing until symptom limitation. Dyspnoea was assessed at rest, every 2 min during exercise and at the end of exercise with a modified Borg scale. Main results Inspiratory muscle strength measurements were significantly lower for patients in comparison to controls (all p<0.05). Patients achieved lower peak of exercise (lower oxygen consumption) compared to controls, with both gastric (−9.8±4.6 cmH2O versus 8.9±6.0 cmH2O) and transdiaphragmatic (6.5±5.5 cmH2O versus 26.9±10.9 cmH2O) pressures significantly lower, along with larger activation of both scalene (40±22% EMGmax versus 18±14% EMGmax) and sternocleidomastoid (34±22% EMGmax versus 14±8% EMGmax). In addition, the paralysis group presented significant differences in breathing pattern during exercise (lower tidal volume and higher respiratory rate) with more dyspnoea symptoms compared to the control group. Conclusion The paralysis group presented with exercise limitation accompanied by impairment in transdiaphragmatic pressure generation and larger accessory inspiratory muscles activation compared to controls, thereby contributing to a neuromechanical dissociation and increased dyspnoea perception. The exercise capacity limitation in patients with unilateral diaphragmatic paralysis is characterised by an inefficient hemidiaphragm contraction. Consequently, there is a neuromechanical dissociation with an overload of inspiratory accessory muscles and higher breathlessness.https://bit.ly/2XxAR4K
Collapse
Affiliation(s)
- Mayra Caleffi Pereira
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Letícia Z Cardenas
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Intensive Care Unit, AC Camargo Cancer Center, São Paulo, Brazil
| | - Jeferson G Ferreira
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Intensive Care Unit, AC Camargo Cancer Center, São Paulo, Brazil
| | - Vinícius C Iamonti
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Pauliane Vieira Santana
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Intensive Care Unit, AC Camargo Cancer Center, São Paulo, Brazil
| | - André Apanavicius
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Pedro Caruso
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Intensive Care Unit, AC Camargo Cancer Center, São Paulo, Brazil
| | - Angelo Fernandez
- Thoracic Surgery Division, InCor, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Carlos R R de Carvalho
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel Langer
- Faculty of Kinesiology and Rehabilitation Sciences, Dept of Rehabilitation Sciences, Research Group for Cardiovascular and Respiratory Rehabilitation, KU Leuven - University of Leuven, and Respiratory Rehabilitation and Respiratory Division, University Hospital Leuven, Leuven, Belgium
| | - André L P de Albuquerque
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Sírio-Libanês Teaching and Research Institute, São Paulo, Brazil
| |
Collapse
|