1
|
Kim D, Roy S, McBeth P, Lee J. Quantitative Comparison of Ventilation Parameters of Different Approaches to Ventilator Splitting and Multiplexing. Crit Care Explor 2024; 6:e1113. [PMID: 38916647 PMCID: PMC11208113 DOI: 10.1097/cce.0000000000001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
CONTEXT Amid the COVID-19 pandemic, this study delves into ventilator shortages, exploring simple split ventilation (SSV), simple differential ventilation (SDV), and differential multiventilation (DMV). The knowledge gap centers on understanding their performance and safety implications. HYPOTHESIS Our hypothesis posits that SSV, SDV, and DMV offer solutions to the ventilator crisis. Rigorous testing was anticipated to unveil advantages and limitations, aiding the development of effective ventilation approaches. METHODS AND MODELS Using a specialized test bed, SSV, SDV, and DMV were compared. Simulated lungs in a controlled setting facilitated measurements with sensors. Statistical analysis honed in on parameters like peak inspiratory pressure (PIP) and positive end-expiratory pressure. RESULTS Setting target PIP at 15 cm H2O for lung 1 and 12.5 cm H2O for lung 2, SSV revealed a PIP of 15.67 ± 0.2 cm H2O for both lungs, with tidal volume (Vt) at 152.9 ± 9 mL. In SDV, lung 1 had a PIP of 25.69 ± 0.2 cm H2O, lung 2 at 24.73 ± 0.2 cm H2O, and Vts of 464.3 ± 0.9 mL and 453.1 ± 10 mL, respectively. DMV trials showed lung 1's PIP at 13.97 ± 0.06 cm H2O, lung 2 at 12.30 ± 0.04 cm H2O, with Vts of 125.8 ± 0.004 mL and 104.4 ± 0.003 mL, respectively. INTERPRETATION AND CONCLUSIONS This study enriches understanding of ventilator sharing strategy, emphasizing the need for careful selection. DMV, offering individualization while maintaining circuit continuity, stands out. Findings lay the foundation for robust multiplexing strategies, enhancing ventilator management in crises.
Collapse
Affiliation(s)
- Doowon Kim
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, Canada
| | - Steven Roy
- Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada
- O’Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada
| | - Paul McBeth
- Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada
| | - Jihyun Lee
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Zieliński K, Lisowska B, Siewruk K, Sady M, Ferenc K, Barwijuk M, Olszewski J, Anusz K, Jabłoński A, Gajewska M, Okrzeja P, Michnikowski M, Pijanowska DG, Pluta K, Remiszewska E, Darowski M, Zabielski R, Liebert A, Kramek-Romanowska K, Stecka A, Kozarski M, Pasledni R, Gajewski Z, Ładyżyński P. Automatic air volume control system for ventilation of two patients using a single ventilator: a large animal model study. Sci Rep 2022; 12:22591. [PMID: 36585425 PMCID: PMC9801355 DOI: 10.1038/s41598-022-26922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
The COVID-19 pandemic outbreak led to a global ventilator shortage. Hence, various strategies for using a single ventilator to support multiple patients have been considered. A device called Ventil previously validated for independent lung ventilation was used in this study to evaluate its usability for shared ventilation. We performed experiments with a total number of 16 animals. Eight pairs of pigs were ventilated by a ventilator or anesthetic machine and by Ventil for up to 27 h. In one experiment, 200 ml of saline was introduced to one subject's lungs to reduce their compliance. The experiments were analyzed in terms of arterial blood gases and respiratory parameters. In addition to the animal study, we performed a series of laboratory experiments with artificial lungs (ALs). The resistance and compliance of one AL (affected) were altered, while the tidal volume (TV) and peak pressure (Ppeak) in the second (unaffected) AL were analyzed. In addition, to assess the risk of transmission of pathogens between AL respiratory tracts, laboratory tests were performed using phantoms of virus particles. The physiological level of analyzed parameters in ventilated animals was maintained, except for CO2 tension, for which a permissive hypercapnia was indicated. Experiments did not lead to injuries in the animal's lungs except for one subject, as indicated by CT scan analysis. In laboratory experiments, changes in TV and Ppeak in the unaffected AL were less than 11%, except for 2 cases where the TV change was 20%. No cross-contamination was found in simulations of pathogen transmission. We conclude that ventilation using Ventil can be considered safe in patients undergoing deep sedation without spontaneous breathing efforts.
Collapse
Affiliation(s)
- Krzysztof Zieliński
- grid.413454.30000 0001 1958 0162Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena Str. 02109, Warsaw, Poland
| | - Barbara Lisowska
- Department of Anesthesiology and Intensive Medical Care, National Geriatrics, Rheumatology and Rehabilitation Institute, Warsaw, Poland
| | - Katarzyna Siewruk
- grid.13276.310000 0001 1955 7966Veterinary Research Center, Center for Biomedical Research and Research Center for Regenerative Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Maria Sady
- grid.13276.310000 0001 1955 7966Veterinary Research Center, Center for Biomedical Research and Research Center for Regenerative Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland ,grid.13276.310000 0001 1955 7966Center of Translational Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Karolina Ferenc
- grid.13276.310000 0001 1955 7966Veterinary Research Center, Center for Biomedical Research and Research Center for Regenerative Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland ,grid.13276.310000 0001 1955 7966Center of Translational Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Maciej Barwijuk
- grid.13339.3b0000000113287408I Department of Anesthesiology and Intensive Care, Medical University of Warsaw, Warsaw, Poland
| | - Jarosław Olszewski
- grid.13276.310000 0001 1955 7966Veterinary Research Center, Center for Biomedical Research and Research Center for Regenerative Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland ,grid.13276.310000 0001 1955 7966Center of Translational Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Krzysztof Anusz
- grid.13276.310000 0001 1955 7966Veterinary Research Center, Center for Biomedical Research and Research Center for Regenerative Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Artur Jabłoński
- grid.13276.310000 0001 1955 7966Veterinary Research Center, Center for Biomedical Research and Research Center for Regenerative Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland ,grid.13276.310000 0001 1955 7966Center of Translational Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Magdalena Gajewska
- grid.13276.310000 0001 1955 7966Veterinary Research Center, Center for Biomedical Research and Research Center for Regenerative Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland ,grid.13339.3b0000000113287408Medical University of Warsaw, Warsaw, Poland
| | - Piotr Okrzeja
- grid.413454.30000 0001 1958 0162Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena Str. 02109, Warsaw, Poland
| | - Marcin Michnikowski
- grid.413454.30000 0001 1958 0162Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena Str. 02109, Warsaw, Poland
| | - Dorota G. Pijanowska
- grid.413454.30000 0001 1958 0162Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena Str. 02109, Warsaw, Poland
| | - Krzysztof Pluta
- grid.413454.30000 0001 1958 0162Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena Str. 02109, Warsaw, Poland
| | - Elżbieta Remiszewska
- grid.413454.30000 0001 1958 0162Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena Str. 02109, Warsaw, Poland
| | - Marek Darowski
- grid.413454.30000 0001 1958 0162Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena Str. 02109, Warsaw, Poland
| | - Romuald Zabielski
- grid.13276.310000 0001 1955 7966Veterinary Research Center, Center for Biomedical Research and Research Center for Regenerative Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland ,grid.13276.310000 0001 1955 7966Center of Translational Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Adam Liebert
- grid.413454.30000 0001 1958 0162Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena Str. 02109, Warsaw, Poland
| | - Katarzyna Kramek-Romanowska
- grid.1035.70000000099214842Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Anna Stecka
- grid.413454.30000 0001 1958 0162Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena Str. 02109, Warsaw, Poland
| | - Maciej Kozarski
- grid.413454.30000 0001 1958 0162Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena Str. 02109, Warsaw, Poland
| | - Raman Pasledni
- grid.413454.30000 0001 1958 0162Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena Str. 02109, Warsaw, Poland
| | - Zdzisław Gajewski
- grid.13276.310000 0001 1955 7966Veterinary Research Center, Center for Biomedical Research and Research Center for Regenerative Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland ,grid.13276.310000 0001 1955 7966Center of Translational Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Piotr Ładyżyński
- grid.413454.30000 0001 1958 0162Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena Str. 02109, Warsaw, Poland
| |
Collapse
|
3
|
Wong JW, Chiew YS, Desaive T, Chase JG. Model-based patient matching for in-parallel pressure-controlled ventilation. Biomed Eng Online 2022; 21:11. [PMID: 35139858 PMCID: PMC8826717 DOI: 10.1186/s12938-022-00983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/24/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Surges of COVID-19 infections have led to insufficient supply of mechanical ventilators (MV), resulting in rationing of MV care. In-parallel, co-mechanical ventilation (Co-MV) of multiple patients is a potential solution. However, due to lack of testing, there is currently no means to match ventilation requirements or patients, with no guidelines to date. In this research, we have developed a model-based method for patient matching for pressure control mode MV. METHODS The model-based method uses a single-compartment lung model (SCM) to simulate the resultant tidal volume of patient pairs at a set ventilation setting. If both patients meet specified safe ventilation criteria under similar ventilation settings, the actual mechanical ventilator settings for Co-MV are determined via simulation using a double-compartment lung model (DCM). This method allows clinicians to analyse Co-MV in silico, before clinical implementation. RESULTS The proposed method demonstrates successful patient matching and MV setting in a model-based simulation as well as good discrimination to avoid mismatched patient pairs. The pairing process is based on model-based, patient-specific respiratory mechanics identified from measured data to provide useful information for guiding care. Specifically, the matching is performed via estimation of MV delivered tidal volume (mL/kg) based on patient-specific respiratory mechanics. This information can provide insights for the clinicians to evaluate the subsequent effects of Co-MV. In addition, it was also found that Co-MV patients with highly restrictive respiratory mechanics and obese patients must be performed with extra care. CONCLUSION This approach allows clinicians to analyse patient matching in a virtual environment without patient risk. The approach is tested in simulation, but the results justify the necessary clinical validation in human trials.
Collapse
Affiliation(s)
- Jin Wai Wong
- School of Engineering, Monash University Malaysia, Selangor, Malaysia
| | | | - Thomas Desaive
- GIGA-In Silico Medicine, University of Liege, Liege, Belgium
| | - J. Geoffrey Chase
- Centre for Bioengineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|