1
|
Bobtina N, Alhawamdeh M, Habas K, Isreb M, Aburas B, Harris AT, Najafzadeh M, Anderson D. Genoprotective role of pembrolizumab liposome in isolated lymphocytes from head and neck squamous cell carcinoma patients compared to those from healthy individuals in vitro. Nanotoxicology 2024; 18:55-68. [PMID: 38449434 DOI: 10.1080/17435390.2024.2314464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
Pembrolizumab has shown significant anticancer effects against various human cancers. The present study investigated the effects of pembrolizumab liposome and nano (naked) forms in treated lymphocytes from head and neck squamous cell carcinoma (HNSCC) patients compared to healthy individuals. The level of oxidative DNA damage induced by hydrogen peroxide (H2O2) was also investigated. A concentration of 10 µg/ml of pembrolizumab liposome was used to treat the lymphocytes in the Comet and micronucleus assays based on the preliminary dosage optimization tests. To determine the cellular pathways involved in the protective role of pembrolizumab against H2O2, several proteins involved in apoptosis (P53, P21 and Bcl-2) were assessed. Pembrolizumab significantly reduced DNA damage and decreased the number of micronuclei in lymphocytes from HNSCC patients (p < 0.01) compared with healthy individuals. The 10 µg/ml of pembrolizumab liposome significantly reduced the oxidative stress induced by H2O2 and was effective in healthy and HNSCC groups using the Comet and micronucleus assays (p < 0.001). To our knowledge, this is the first report of pembrolizumab in liposome and naked forms exhibiting a protective effect on DNA damage in the treatment of HNSCC patients.
Collapse
Affiliation(s)
- Nagah Bobtina
- School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | - Maysa Alhawamdeh
- Department of Medical Laboratory Sciences, Faculty of Allied medical Sciences, Mutah University, Alkarak, Jordan
| | - Khaled Habas
- School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | - Mohamed Isreb
- Faculty of Life Sciences, School of Pharmacy, University of Bradford, Bradford, UK
| | - Bayan Aburas
- Faculty of Life Sciences, School of Pharmacy, University of Bradford, Bradford, UK
| | - Andrew T Harris
- Ear, Nose and Throat Department, Bradford Royal Infirmary, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Mojgan Najafzadeh
- School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | - Diana Anderson
- School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| |
Collapse
|
2
|
Qazi S, Talebi Z, Trieu V. Transforming Growth Factor Beta 2 (TGFB2) and Interferon Gamma Receptor 2 (IFNGR2) mRNA Levels in the Brainstem Tumor Microenvironment (TME) Significantly Impact Overall Survival in Pediatric DMG Patients. Biomedicines 2024; 12:191. [PMID: 38255296 PMCID: PMC10813255 DOI: 10.3390/biomedicines12010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
This hypothesis-generating study characterized the mRNA expression profiles and prognostic impacts of antigen-presenting cell (APC) markers (CD14, CD163, CD86, and ITGAX/CD11c) in pediatric brainstem diffuse midline glioma (pbDMG) tumors. We also assessed the mRNA levels of two therapeutic targets, transforming growth factor beta 2 (TGFB2) and interferon gamma receptor 2 (IFNGR2), for their biomarker potentials in these highly aggressive pbDMG tumors. The expressions of CD14, CD163, and ITGAX/CD11c mRNAs exhibited significant decreases of 1.64-fold (p = 0.037), 1.75-fold (p = 0.019), and 3.33-fold (p < 0.0001), respectively, in pbDMG tumors relative to those in normal brainstem/pons samples. The pbDMG samples with high levels of TGFB2 in combination with low levels of APC markers, reflecting the cold immune state of pbDMG tumors, exhibited significantly worse overall survival outcomes at low expression levels of CD14, CD163, and CD86. The expression levels of IFNGR2 and TGFB2 (1.51-fold increase (p = 0.002) and 1.58-fold increase (p = 5.5 × 10-4), respectively) were significantly upregulated in pbDMG tumors compared with normal brainstem/pons samples. We performed multivariate Cox proportional hazards modelling that showed TGFB2 was a prognostic indicator (HR for patients in the TGFB2high group of pbDMG patients = 2.88 (1.12-7.39); p = 0.028) for poor overall survival (OS) and was independent of IFNGR2 levels, the age of the patient, and the significant interaction effect observed between IFNGR2 and TGFB2 (p = 0.015). Worse survival outcomes in pbDMG patients when comparing high versus low TGFB2 levels in the context of low IFNGR2 levels suggest that the abrogation of the TGFB2 mRNA expression in the immunologically cold tumor microenvironment can be used to treat pbDMG patients. Furthermore, pbDMG patients with low levels of JAK1 or STAT1 mRNA expression in combination with high levels of TGFB2 also exhibited poor OS outcomes, suggesting that the inclusion of (interferon-gamma) IFN-γ to stimulate and activate JAK1 and STAT1 in anti-tumor APC cells present the brainstem TME can enhance the effect of the TGFB2 blockade.
Collapse
Affiliation(s)
- Sanjive Qazi
- Oncotelic Therapeutics, 29397 Agoura Road, Suite 107, Agoura Hills, CA 91301, USA; (Z.T.); (V.T.)
| | | | | |
Collapse
|
3
|
Alhawamdeh M, Almajali B, Hourani W, Al-Jamal HAN, Al-Wajeeh AS, Mwafi NR, Al-Hajaya Y, Saad HKM, Anderson D, Odeh M, Tarawneh IA. Effect of IFN‑γ encapsulated liposomes on major signal transduction pathways in the lymphocytes of patients with lung cancer. Oncol Lett 2024; 27:8. [PMID: 38028180 PMCID: PMC10664063 DOI: 10.3892/ol.2023.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Globally, lung cancer affected 2.2 million individuals and caused 1.8 million deaths in 2021. Lung cancer is caused by smoking, genetics and other factors. IFN-γ has anticancer activity. However, the mechanism by which IFN-γ has an effect on lung cancer is not fully understood. The present study aimed to assess the effect of IFN-γ on the peripheral lymphocytes of patients with lung cancer compared with healthy controls. The efficacy of IFN-γ against oxidative stress was assessed using a comet repair assay and the effects of IFN-γ on p53, PARP1 and OGG1 genes and protein levels in lymphocytes was evaluated by RT-qPCR and western blotting. DNA damage was significantly reduced in the lymphocytes of patients treated with IFN-γ. However, there was no effect in the cells of healthy individuals after treatment with naked IFN-γ [IFN-γ (N)] and liposomal IFN-γ [IFN-γ (L)]. Following treatment with IFN-γ (N) and IFN-γ (L), the p53, PARP1 and OGG1 protein and gene expression levels were significantly increased (P<0.001). It has been suggested that IFN-γ may induce p53-mediated cell cycle arrest and DNA repair in patients. These findings supported the idea that IFN-γ (N) and IFN-γ (L) may serve a significant role in the treatment of lung cancer, via cell cycle arrest of cancer cells and repair mechanisms.
Collapse
Affiliation(s)
- Maysa Alhawamdeh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Mutah University, Al-Karak 61710, Jordan
| | - Belal Almajali
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19111, Jordan
| | - Wafa Hourani
- Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus, Terengganu 21300, Malaysia
| | | | - Nesrin Riad Mwafi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, Al-Karak 61710, Jordan
| | - Yousef Al-Hajaya
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Mutah University, Al-Karak 61710, Jordan
| | - Hanan Kamel M. Saad
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus, Terengganu 21300, Malaysia
| | - Diana Anderson
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Mahmoud Odeh
- Business Faculty, Zarqa University, Zarqa 13110, Jordan
| | - Ibraheam A. Tarawneh
- School of Graduate Studies, Management and Science University, Shah Alam, Selangor 40100, Malaysia
| |
Collapse
|
4
|
Taghavizadeh Yazdi ME, Qayoomian M, Beigoli S, Boskabady MH. Recent advances in nanoparticle applications in respiratory disorders: a review. Front Pharmacol 2023; 14:1059343. [PMID: 37538179 PMCID: PMC10395100 DOI: 10.3389/fphar.2023.1059343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 05/30/2023] [Indexed: 08/05/2023] Open
Abstract
Various nanoparticles are used in the discovery of new nanomedicine to overcome the shortages of conventional drugs. Therefore, this article presents a comprehensive and up-to-date review of the effects of nanoparticle-based drugs in the treatment of respiratory disorders, including both basic and clinical studies. Databases, including PubMed, Web of Knowledge, and Scopus, were searched until the end of August 2022 regarding the effect of nanoparticles on respiratory diseases. As a new tool, nanomedicine offered promising applications for the treatment of pulmonary diseases. The basic composition and intrinsic characteristics of nanomaterials showed their effectiveness in treating pulmonary diseases. The efficiency of different nanomedicines has been demonstrated in experimental animal models of asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer, lung infection, and other lung disorders, confirming their function in the improvement of respiratory disorders. Various types of nanomaterials, such as carbon nanotubes, dendrimers, polymeric nanomaterials, liposomes, quantum dots, and metal and metal oxide nanoparticles, have demonstrated therapeutic effects on respiratory disorders, which may lead to new possible remedies for various respiratory illnesses that could increase drug efficacy and decrease side effects.
Collapse
Affiliation(s)
| | - Mohsen Qayoomian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Beigoli
- Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Han J, Wu M, Liu Z. Dysregulation in IFN-γ signaling and response: the barricade to tumor immunotherapy. Front Immunol 2023; 14:1190333. [PMID: 37275859 PMCID: PMC10233742 DOI: 10.3389/fimmu.2023.1190333] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 06/07/2023] Open
Abstract
Interferon-gamma (IFN-γ) has been identified as a crucial factor in determining the responsiveness to immunotherapy. Produced primarily by natural killer (NK) and T cells, IFN-γ promotes activation, maturation, proliferation, cytokine expression, and effector function in immune cells, while simultaneously inducing antigen presentation, growth arrest, and apoptosis in tumor cells. However, tumor cells can hijack the IFN-γ signaling pathway to mount IFN-γ resistance: rather than increasing antigenicity and succumbing to death, tumor cells acquire stemness characteristics and express immunosuppressive molecules to defend against antitumor immunity. In this review, we summarize the potential mechanisms of IFN-γ resistance occurring at two critical stages: disrupted signal transduction along the IFNG/IFNGR/JAK/STAT pathway, or preferential expression of specific interferon-stimulated genes (ISGs). Elucidating the molecular mechanisms through which tumor cells develop IFN-γ resistance help identify promising therapeutic targets to improve immunotherapy, with broad application value in conjugation with targeted, antibody or cellular therapies.
Collapse
Affiliation(s)
- Jiashu Han
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| |
Collapse
|