1
|
Li C, Lian X, He J, Gao X, Liu X, Bao C, Li Z, Cui W, Yu L, Liu J. Association of computed tomography-derived pectoralis muscle area and density with disease severity and respiratory symptoms in patients with chronic obstructive pulmonary disease: A case-control study. Respir Med 2024; 233:107783. [PMID: 39209127 DOI: 10.1016/j.rmed.2024.107783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
RATIONALE AND OBJECTIVES Computed tomography (CT) is commonly used and offers an additional viewpoint for evaluating extrapulmonary symptoms, disease severity, and muscle atrophy. This study assessed whether the pectoralis muscle area (PMA) and pectoralis muscle density (PMD) are lower in patients with chronic obstructive pulmonary disease (COPD) than in healthy controls and elucidated their relationships with these variables. MATERIALS AND METHODS The participants were enrolled in the hospital outpatient clinic between October 2023 and May 2024. Information was obtained from questionnaires, lung function, and CT imaging findings. On full-inspiratory CT, the PMA and PMD were measured at the aortic arch level using predetermined attenuation ranges of -29 and 150 Hounsfield units. We observed lower PMA and PMD and evaluated their associations with lung function, respiratory symptoms, and CT imaging findings in patients with COPD. RESULTS Overall, 120 participants were enrolled at baseline (60 healthy controls and 60 patients with COPD). PMA and PMD were lower with progressive airflow limitation severity in those with COPD. The degree of emphysema and air trapping, as well as lung function, were correlated with PMA and PMD (P < 0.05), although not with the COPD Assessment Test or modified Medical Research Council scores (P > 0.05). CONCLUSION Participants with COPD had smaller PMA and PMD. These measurements were correlated with the severity of airflow limitation, lung function, emphysema, and air trapping, suggesting that these features of the pectoralis muscle obtained from CT are helpful in assessments of patients with COPD.
Collapse
Affiliation(s)
- Can Li
- The Fourth Central Clinical School, Tianjin Medical University, Tianjin, 300140, China
| | - Xinying Lian
- The Fourth Central Clinical School, Tianjin Medical University, Tianjin, 300140, China
| | - Jingchun He
- Department of Respiratory and Critical Care Medicine, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Xiao Gao
- Department of Radiology, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Xuehuan Liu
- Department of Radiology, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Cuiping Bao
- Department of Radiology, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Zuoxi Li
- The Fourth Central Clinical School, Tianjin Medical University, Tianjin, 300140, China
| | - Weiwei Cui
- The Fourth Central Clinical School, Tianjin Medical University, Tianjin, 300140, China
| | - Li Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jun Liu
- The Fourth Central Clinical School, Tianjin Medical University, Tianjin, 300140, China.
| |
Collapse
|
2
|
Finnegan SL, Dearlove DJ, Morris P, Freeman D, Sergeant M, Taylor S, Pattinson KTS. Breathlessness in a virtual world: An experimental paradigm testing how discrepancy between VR visual gradients and pedal resistance during stationary cycling affects breathlessness perception. PLoS One 2023; 18:e0270721. [PMID: 37083693 PMCID: PMC10120935 DOI: 10.1371/journal.pone.0270721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/09/2023] [Indexed: 04/22/2023] Open
Abstract
INTRODUCTION The sensation of breathlessness is often attributed to perturbations in cardio-pulmonary physiology, leading to changes in afferent signals. New evidence suggests that these signals are interpreted in the light of prior "expectations". A misalignment between afferent signals and expectations may underly unexplained breathlessness. Using a novel immersive virtual reality (VR) exercise paradigm, we investigated whether manipulating an individual's expectation of effort (determined by a virtual hill gradient) may alter their perception of breathlessness, independent from actual effort (the physical effort of cycling). METHODS Nineteen healthy volunteers completed a single experimental session where they exercised on a cycle ergometer while wearing a VR headset. We created an immersive virtual cycle ride where participants climbed up 100 m hills with virtual gradients of 4%, 6%, 8%, 10% and 12%. Each virtual hill gradient was completed twice: once with a 4% cycling ergometer resistance and once with a 6% resistance, allowing us to dissociate expected effort (virtual hill gradient) from actual effort (power). At the end of each hill, participants reported their perceived breathlessness. Linear mixed effects models were used to examine the independent contribution of actual effort and expected effort to ratings of breathlessness (0-10 scale). RESULTS Expectation of effort (effect estimate ± std. error, 0.63 ± 0.11, P < 0.001) and actual effort (0.81 ± 0.21, P < 0.001) independently explained subjective ratings of breathlessness, with comparable contributions of 19% and 18%, respectively. Additionally, we found that effort expectation accounted for 6% of participants' power and was a significant, independent predictor (0.09 ± 0.03; P = 0.001). CONCLUSIONS An individuals' expectation of effort is equally important for forming perceptions of breathlessness as the actual effort required to cycle. A new VR paradigm enables this to be experimentally studied and could be used to re-align breathlessness and enhance training programmes.
Collapse
Affiliation(s)
- Sarah L. Finnegan
- Wellcome Centre for Integrative Neuroimaging and Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - David J. Dearlove
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Peter Morris
- Wellcome Centre for Integrative Neuroimaging and Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Daniel Freeman
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Martin Sergeant
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephen Taylor
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Kyle T. S. Pattinson
- Wellcome Centre for Integrative Neuroimaging and Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Volpato E, Farver-Vestergaard I, Brighton LJ, Peters J, Verkleij M, Hutchinson A, Heijmans M, von Leupoldt A. Nonpharmacological management of psychological distress in people with COPD. Eur Respir Rev 2023; 32:32/167/220170. [PMID: 36948501 PMCID: PMC10032611 DOI: 10.1183/16000617.0170-2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/31/2022] [Indexed: 03/24/2023] Open
Abstract
Psychological distress is prevalent in people with COPD and relates to a worse course of disease. It often remains unrecognised and untreated, intensifying the burden on patients, carers and healthcare systems. Nonpharmacological management strategies have been suggested as important elements to manage psychological distress in COPD. Therefore, this review presents instruments for detecting psychological distress in COPD and provides an overview of available nonpharmacological management strategies together with available scientific evidence for their presumed benefits in COPD. Several instruments are available for detecting psychological distress in COPD, including simple questions, questionnaires and clinical diagnostic interviews, but their implementation in clinical practice is limited and heterogeneous. Moreover, various nonpharmacological management options are available for COPD, ranging from specific cognitive behavioural therapy (CBT) to multi-component pulmonary rehabilitation (PR) programmes. These interventions vary substantially in their specific content, intensity and duration across studies. Similarly, available evidence regarding their efficacy varies significantly, with the strongest evidence currently for CBT or PR. Further randomised controlled trials are needed with larger, culturally diverse samples and long-term follow-ups. Moreover, effective nonpharmacological interventions should be implemented more in the clinical routine. Respective barriers for patients, caregivers, clinicians, healthcare systems and research need to be overcome.
Collapse
Affiliation(s)
- Eleonora Volpato
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Shared first authorship
| | | | - Lisa Jane Brighton
- Cicely Saunders Institute of Palliative Care, Policy and Rehabilitation, King's College London, London, UK
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jeannette Peters
- Department of Pulmonary Diseases, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Marieke Verkleij
- Department of Paediatric Psychology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Monique Heijmans
- Netherlands Institute for Health Services Research (Nivel), Utrecht, The Netherlands
| | | |
Collapse
|
4
|
Finnegan SL, Harrison OK, Harmer CJ, Herigstad M, Rahman NM, Reinecke A, Pattinson KTS. Breathlessness in COPD: linking symptom clusters with brain activity. Eur Respir J 2021; 58:13993003.04099-2020. [PMID: 33875493 PMCID: PMC8607925 DOI: 10.1183/13993003.04099-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 04/04/2021] [Indexed: 11/11/2022]
Abstract
Background Current models of breathlessness often fail to explain disparities between patients' experiences of breathlessness and objective measures of lung function. While a mechanistic understanding of this discordance has thus far remained elusive, factors such as mood, attention and expectation have all been implicated as important modulators of breathlessness. Therefore, we have developed a model to better understand the relationships between these factors using unsupervised machine learning techniques. Subsequently we examined how expectation-related brain activity differed between these symptom-defined clusters of participants. Methods A cohort of 91 participants with mild-to-moderate chronic obstructive pulmonary disease (COPD) underwent functional brain imaging, self-report questionnaires and clinical measures of respiratory function. Unsupervised machine learning techniques of exploratory factor analysis and hierarchical cluster modelling were used to model brain–behaviour–breathlessness links. Results We successfully stratified participants across four key factors corresponding to mood, symptom burden and two capability measures. Two key groups resulted from this stratification, corresponding to high and low symptom burden. Compared with the high symptom burden group, the low symptom burden group demonstrated significantly greater brain activity within the anterior insula, a key region thought to be involved in monitoring internal bodily sensations (interoception). Conclusions This is the largest functional neuroimaging study of COPD to date, and is the first to provide a clear model linking brain, behaviour and breathlessness expectation. Furthermore, it was possible to stratify participants into groups, which then revealed differences in brain activity patterns. Together, these findings highlight the value of multimodal models of breathlessness in identifying behavioural phenotypes and for advancing understanding of differences in breathlessness burden. Towards individualised treatments for chronic breathlessness with functional neuroimaging: revealing the factors underlying the breathlessness experience in COPDhttps://bit.ly/3a8fXPt
Collapse
Affiliation(s)
- Sarah L Finnegan
- Wellcome Centre for Integrative Neuroimaging and Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Olivia K Harrison
- Wellcome Centre for Integrative Neuroimaging and Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.,School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Catherine J Harmer
- Department of Psychiatry, Medical Sciences, University of Oxford, Oxford, UK.,Oxford Health NHS foundation Trust, Warneford Hospital, Oxford, UK
| | - Mari Herigstad
- Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, UK
| | - Najib M Rahman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrea Reinecke
- School of Pharmacy, University of Otago, Dunedin, New Zealand.,Department of Psychiatry, Medical Sciences, University of Oxford, Oxford, UK.,Oxford Health NHS foundation Trust, Warneford Hospital, Oxford, UK
| | - Kyle T S Pattinson
- Wellcome Centre for Integrative Neuroimaging and Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|