1
|
Zhang YX, Li LY, Xing Y, Chen AX, Xie ST, Li HZ, Zhang QP, Zhang XY, Yang X, Yung WH, Zhu JN. Glutamatergic synaptic plasticity in medial vestibular nuclei during vestibular compensation. Neuroscience 2025; 576:213-222. [PMID: 40316005 DOI: 10.1016/j.neuroscience.2025.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Vestibular compensation, the spontaneous recovery from vestibular dysfunction following unilateral vestibular loss, serves as a valuable model for investigating post-lesion plasticity in the adult central nervous system. Elucidating the mechanisms underlying vestibular compensation also offers promising therapeutic avenues for treating vestibular disorders. While most studies have focused on the dynamics of GABAergic synaptic plasticity and intrinsic cellular adaptations in the ipsilesional medial vestibular nucleus (MVN) after unilateral labyrinthectomy (UL), the role of glutamatergic synaptic plasticity in this process remains largely unexplored. Here, we employed Golgi staining, immunofluorescence, whole-cell patch-clamp recordings, and behavioral assessments to examine the structural and functional dynamics of glutamatergic synapses during vestibular compensation. Our results reveal rapid structural and functional plasticity of glutamatergic transmission in response to UL. Specifically, dendritic spine density and morphology in the ipsilesional MVN recovered to baseline levels within 6 to 24 h post-UL. Furthermore, UL-induced postsynaptic depression of glutamatergic synaptic strength, reflected by a reduced AMPA/NMDA ratio, was reversed within 24 h, likely due to an upregulation of Ca2+-permeable AMPA receptors. In contrast, presynaptic glutamate release probability, as indicated by a reduced frequency of spontaneous excitatory postsynaptic currents, was not fully compensated during this period. These results suggest that while presynaptic properties recover more slowly in ipsilesional MVN neurons following UL, postsynaptic glutamatergic transmission undergoes rapid structural and functional reorganization. The findings highlight glutamatergic synaptic plasticity as a critical driver for vestibular compensation and suggest that pharmacological interventions targeting these mechanisms may accelerate functional recovery, offering potential therapeutic avenues for vestibular disorders.
Collapse
Affiliation(s)
- Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lu-Yao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yue Xing
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Ao-Xue Chen
- Department of Neurology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qi-Peng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Xu Yang
- Department of Neurology, Peking University First Hospital, Beijing, China.
| | - Wing-Ho Yung
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China; Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Escribano-Colmena G, Rey-Mota J, Clemente-Suárez VJ. Neuropsychophysiological Effects of a Single Functional Neurology Intervention on Semicircular Canals Stimuli Dysfunction. Behav Sci (Basel) 2025; 15:242. [PMID: 40150137 PMCID: PMC11939330 DOI: 10.3390/bs15030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
This exploratory observational study analyzed the neuropsychophysiological effects of Functional Neurology interventions on semicircular canal dysfunction, with a focus on enhancing neuromuscular responses and pain perception. A cohort of 45 healthy volunteers, comprising both males and females with an average age of 26.5 years, participated in this controlled, experimental study. The methodology involved baseline assessments of their psychophysiological state and physical abilities, followed by specific tests to analyze semicircular canal dysfunction. Participants then received customized Functional Neurology treatment aimed at correcting detected neuromuscular imbalances. The effects of Functional Neurology treatment were evaluated comparing variables such as hand strength, blood oxygen saturation, heart rate, and the Critical Flicker Fusion Threshold before and after the intervention. The study found a significant increase in the tolerance to semicircular canal stimuli, from an average of 1.0 ± 0.0 stimuli tolerated before intervention to 21.0 ± 14.0 post-treatment, suggesting that Functional Neurology can markedly improve neuromuscular responses in the context of vestibular dysfunction. However, no significant changes were observed in blood oxygen saturation or cortical arousal, indicating that these specific interventions may not affect all psychophysiological parameters. In conclusion, Functional Neurology interventions show promise in treating vestibular disorders by significantly enhancing neuromuscular response and pain tolerance, despite not impacting other psychophysiological measures. This research underscores the potential of Functional Neurology in improving the quality of life for individuals with vestibular dysfunctions and advocates for further exploration into its comprehensive neurophysiological effects.
Collapse
Affiliation(s)
| | - Jorge Rey-Mota
- Independent Researcher, 28660 Boadilla del Monte, Spain; (G.E.-C.); (J.R.-M.)
| | - Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| |
Collapse
|
3
|
Bonaventurová M, Balatková Z, Červený K, Černý R, Bandúrová V, Koucký V, Peterková L, Fík Z, Komarc M, Mrázková E, Plzák J, Čada Z. The comparison between intratympanic gentamicin prehabilitation and postoperative virtual reality exposure to standard vestibular training in patients with vestibular schwannoma. Eur Arch Otorhinolaryngol 2025; 282:79-89. [PMID: 39127800 PMCID: PMC11735475 DOI: 10.1007/s00405-024-08891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE Resection of the vestibular schwannoma causes acute peripheral vestibular loss. The process of central compensation starts immediately afterward. The rehabilitation goal is to support this process and restore the quality of life. MATERIALS AND METHODS In this prospective single-center study, 67 consecutive patients underwent vestibular schwannoma resection (40 females, mean age 52 ± 12 years). The patients were divided into three groups: the prehabilitation with intratympanic gentamicin group, the virtual reality group (optokinetic stimulation via virtual reality goggles in the first ten days after the surgery), and the control group. All patients were examined with objective methods and completed questionnaires before the prehabilitation, before the surgery, at the hospital discharge, and after three months. RESULTS Intratympanic gentamicin prehabilitation leads ipsilaterally to a significant aVOR reduction in all semicircular canals (p < 0.050), the increase of the unilateral weakness in air calorics (p = 0.026), and loss of cVEMPs responses (p = 0.017). Prehabilitation and postoperative exposure to virtual reality scenes improved the patient's perception of vertigo problems according to Dizziness Handicap Inventory (p = 0.039 and p = 0.076, respectively). These findings conform with the optokinetic testing results, which showed higher slow phase velocities at higher speeds (40 deg/s) in both targeted groups compared to the control group. CONCLUSION Preoperative intratympanic gentamicin positively affects peripheral vestibular function, influencing balance perception after VS resection. In long-term follow-up, prehabilitation and postoperative exposure to virtual reality improve patients' quality of life in the field of vertigo problems.
Collapse
Affiliation(s)
- Markéta Bonaventurová
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Úvalu 84, Prague, 150 06, Czech Republic
| | - Zuzana Balatková
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Úvalu 84, Prague, 150 06, Czech Republic.
| | - Květoslav Červený
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Úvalu 84, Prague, 150 06, Czech Republic
| | - Rudolf Černý
- Department of Neurology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Veronika Bandúrová
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Úvalu 84, Prague, 150 06, Czech Republic
| | - Vladimír Koucký
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Úvalu 84, Prague, 150 06, Czech Republic
| | - Lenka Peterková
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Úvalu 84, Prague, 150 06, Czech Republic
| | - Zdeněk Fík
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Úvalu 84, Prague, 150 06, Czech Republic
| | - Martin Komarc
- Department of Anthropomotorics and Methodology, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Eva Mrázková
- Department of Otorhinolaryngology and Head and Neck Surgery, Havířov Hospital, Havířov, Czech Republic
| | - Jan Plzák
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Úvalu 84, Prague, 150 06, Czech Republic
| | - Zdeněk Čada
- Department of Otorhinolaryngology, The Second Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
4
|
Wu J, Xu X, Zhang S, Li M, Qiu Y, Lu G, Zheng Z, Huang H. Plastic Events of the Vestibular Nucleus: the Initiation of Central Vestibular Compensation. Mol Neurobiol 2024; 61:9680-9693. [PMID: 38689145 DOI: 10.1007/s12035-024-04208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Vestibular compensation is a physiological response of the vestibular organs within the inner ear. This adaptation manifests during consistent exposure to acceleration or deceleration, with the vestibular organs incrementally adjusting to such changes. The molecular underpinnings of vestibular compensation remain to be fully elucidated, yet emerging studies implicate associations with neuroplasticity and signal transduction pathways. Throughout the compensation process, the vestibular sensory neurons maintain signal transmission to the central equilibrium system, facilitating adaptability through alterations in synaptic transmission and neuronal excitability. Notable molecular candidates implicated in this process include variations in ion channels and neurotransmitter profiles, as well as neuronal and synaptic plasticity, metabolic processes, and electrophysiological modifications. This study consolidates the current understanding of the molecular events in vestibular compensation, augments the existing research landscape, and evaluates contemporary therapeutic strategies. Furthermore, this review posits potential avenues for future research that could enhance our comprehension of vestibular compensation mechanisms.
Collapse
Affiliation(s)
- Junyu Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xue Xu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Shifeng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Minping Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yuemin Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Gengxin Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Zhihui Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Haiwei Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Weston AR, Doar G, Dibble LE, Loyd BJ. Vestibular Decompensation Following COVID-19 Infection in a Person With Compensated Unilateral Vestibular Loss: A Rehabilitation Case Study. J Neurol Phys Ther 2024; 48:112-118. [PMID: 38414133 DOI: 10.1097/npt.0000000000000465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
BACKGROUND AND PURPOSE Surgical removal of a vestibular schwannoma (vestibular schwannoma resection; VSR) results in a unilateral vestibular hypofunction with complaints of dizziness and imbalance. Although the anatomic lesion is permanent, recovery of balance and diminution of dizziness occurs through central neurophysiologic compensation. Compensation of the system is maintained through daily activity. Unfortunately, interruption of stimulus, such as decreased activities due to illness, can cause decompensation. Decompensation is described as the return of symptoms consistent with that experienced during the initial insult/injury (eg, dizziness, oscillopsia, balance difficulty). This case study describes a reoccurrence of vestibular dysfunction in a person with a history of VSR following hospitalization and protracted recovery from a COVID-19 infection. It further documents her recovery that may be a result of vestibular rehabilitation. CASE DESCRIPTION A 49-year-old woman (M.W.) with a surgical history of VSR (10 years prior) and a medical history of significant COVID-19 infection, resulting in an intensive care unit stay and prolonged use of supplemental oxygen, presented to physical therapy with persistent dizziness and imbalance. The video head impulse test confirmed unilateral vestibular hypofunction. INTERVENTION M.W. attended biweekly vestibular rehabilitation for 6 weeks and completed daily home exercises. OUTCOMES At discharge, M.W. demonstrated improvements in patient-reported outcomes (Dizziness Handicap Inventory), functional testing (MiniBEST, 2-Minute Walk Test), and gaze stability measures (video head impulse testing, dynamic visual acuity). DISCUSSION Vestibular decompensation preluded by a COVID-19 infection caused a significant decrease in functional mobility. Vestibular rehabilitation targeted at gaze and postural stability effectively reduced symptoms and facilitated recovery to M.W.'s pre-COVID-19 level of function. Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1 available at: http://links.lww.com/JNPT/A458 ).
Collapse
Affiliation(s)
- Angela R Weston
- Department of Physical Therapy and Athletic Training (A.R.W., G.D., L.E.D.), The University of Utah, Salt Lake City; Army Baylor University Doctoral Program in Physical Therapy (A.R.W.), U.S. Army Medical Center of Excellence, San Antonio; and School of Physical Therapy and Rehabilitation Sciences & School of Integrative Physiology and Athletic Training (B.J.L.), University of Montana, Missoula
| | | | | | | |
Collapse
|
6
|
Tighilet B, Trico J, Marouane E, Zwergal A, Chabbert C. Histaminergic System and Vestibular Function in Normal and Pathological Conditions. Curr Neuropharmacol 2024; 22:1826-1845. [PMID: 38504566 PMCID: PMC11284731 DOI: 10.2174/1570159x22666240319123151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 03/21/2024] Open
Abstract
Most neurotransmitter systems are represented in the central and peripheral vestibular system and are thereby involved both in normal vestibular signal processing and the pathophysiology of vestibular disorders. However, there is a special relationship between the vestibular system and the histaminergic system. The purpose of this review is to document how the histaminergic system interferes with normal and pathological vestibular function. In particular, we will discuss neurobiological mechanisms such as neuroinflammation that involve histamine to modulate and allow restoration of balance function in the situation of a vestibular insult. These adaptive mechanisms represent targets of histaminergic pharmacological compounds capable of restoring vestibular function in pathological situations. The clinical use of drugs targeting the histaminergic system in various vestibular disorders is critically discussed.
Collapse
Affiliation(s)
- Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| | - Jessica Trico
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| | - Emna Marouane
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France
| | - Andreas Zwergal
- Department of Neurology, LMU University Hospital, Munich, Germany
- German Center for Vertigo and Balance Disorders, LMU University Hospital, Munich, Germany
| | - Christian Chabbert
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| |
Collapse
|
7
|
Clément G, Kuldavletova O, Macaulay TR, Wood SJ, Navarro Morales DC, Toupet M, Hautefort C, Van Nechel C, Quarck G, Denise P. Cognitive and balance functions of astronauts after spaceflight are comparable to those of individuals with bilateral vestibulopathy. Front Neurol 2023; 14:1284029. [PMID: 37965165 PMCID: PMC10641777 DOI: 10.3389/fneur.2023.1284029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction This study compares the balance control and cognitive responses of subjects with bilateral vestibulopathy (BVP) to those of astronauts immediately after they return from long-duration spaceflight on board the International Space Station. Methods Twenty-eight astronauts and thirty subjects with BVP performed five tests using the same procedures: sit-to-stand, walk-and-turn, tandem walk, duration judgment, and reaction time. Results Compared to the astronauts' preflight responses, the BVP subjects' responses were impaired in all five tests. However, the BVP subjects' performance during the walk-and-turn and the tandem walk tests were comparable to the astronauts' performance on the day they returned from space. Moreover, the BVP subjects' time perception and reaction time were comparable to those of the astronauts during spaceflight. The BVP subjects performed the sit-to-stand test at a level that fell between the astronauts' performance on the day of landing and 1 day later. Discussion These results indicate that the alterations in dynamic balance control, time perception, and reaction time that astronauts experience after spaceflight are likely driven by central vestibular adaptations. Vestibular and somatosensory training in orbit and vestibular rehabilitation after spaceflight could be effective countermeasures for mitigating these post-flight performance decrements.
Collapse
Affiliation(s)
- Gilles Clément
- Université de Caen Normandie, INSERM, COMETE U1075, CYCERON, CHU de Caen, Normandie Université, Caen, France
- KBR, Houston, TX, United States
| | - Olga Kuldavletova
- Université de Caen Normandie, INSERM, COMETE U1075, CYCERON, CHU de Caen, Normandie Université, Caen, France
| | | | - Scott J. Wood
- NASA Johnson Space Center, Houston, TX, United States
| | - Deborah C. Navarro Morales
- Université de Caen Normandie, INSERM, COMETE U1075, CYCERON, CHU de Caen, Normandie Université, Caen, France
| | - Michel Toupet
- Centre d'Explorations Fonctionnelles Oto-Neurologiques, Paris, France
| | - Charlotte Hautefort
- Université de Paris Cité, INSERM U1141, Paris, France
- Department of Otorhinolaryngology, Assistance Publique, Hôpitaux de Paris, Lariboisière Hospital, Paris, France
| | | | - Gaëlle Quarck
- Université de Caen Normandie, INSERM, COMETE U1075, CYCERON, CHU de Caen, Normandie Université, Caen, France
| | - Pierre Denise
- Université de Caen Normandie, INSERM, COMETE U1075, CYCERON, CHU de Caen, Normandie Université, Caen, France
| |
Collapse
|
8
|
Effects of Gaze Stabilization Exercises on Gait, Plantar Pressure, and Balance Function in Post-Stroke Patients: A Randomized Controlled Trial. Brain Sci 2022; 12:brainsci12121694. [PMID: 36552154 PMCID: PMC9775540 DOI: 10.3390/brainsci12121694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
This study aims to explore the effects of gaze stabilization exercises (GSEs) on gait, plantar pressure, and balance function in post-stroke patients (≤6 months). Forty post-stroke patients were randomly divided into an experimental group (n = 20) and a control group (n = 20). The experimental group performed GSEs combined with physical therapy, while the control group only performed physical therapy, once a day, 5 days a week, for 4 weeks. The Berg Balance Scale (BBS) was used to test the balance function and the risk of falling, which was the primary outcome. The Timed Up and Go test (TUGT) evaluated the walking ability and the fall risk. The envelope ellipse area and the plantar pressure proportion of the affected side were used to measure the patient’s supporting capacity and stability in static standing. The anterior−posterior center of pressure displacement velocity was used to test the weight-shifting capacity. Compared to the control group, the swing phase of the affected side, swing phase’s absolute symmetric index, envelope ellipse area when eyes closed, and TUGT of the experimental group had significantly decreased after GSEs (p < 0.05); the BBS scores, TUGT, the anterior−posterior COP displacement velocity, and the plantar pressure proportion of the affected side had significantly increased after 4 weeks of training (p < 0.05). In conclusion, GSEs combined with physical therapy can improve the gait and balance function of people following stroke. Furthermore, it can enhance the weight-shifting and one-leg standing capacity of the affected side, thus reducing the risk of falling.
Collapse
|
9
|
Soriano-Reixach MM, Rey-Martínez J, Altuna X, Perez-Fernandez N. Synchronized refixation saccades in enhanced VVOR test. A new application for PR score. J Vestib Res 2022; 32:443-451. [PMID: 35124630 DOI: 10.3233/ves-210127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Main objectives for this study were to develop a quantification method to obtain a Perez-Rey (PR) score adapted to the VVOR test and to evaluate the correlation of the PR score obtained with quantified VVOR with the PR score of the vHIT test. METHODS A new PR score calculation method for quantified VVOR test was developed using the MATLAB computational software based on saccadic response time latency variability between each head oscillation cycle of the VVOR test. Retrospective correlation between PR scores in VVOR and vHIT tests, performed in the same vHIT testing session for patients with vestibular neuritis and vestibular neurectomy, was performed to correlate new PR (VVOR) score with the classic PR (vHIT) score. RESULTS Thirty patients were included: 11 post-neurectomy and 19 subacute vestibular neuritis. Pearson's correlation coefficient (R2) for the overall sample was 0.92 (p < 0.001) and 95% confidence interval was 0.85 -0.96. In the linear mixed-effects statistical model developed, only PRVHIT and PRVVOR scores showed statistical association in Wald X2 test (p = 0.008). CONCLUSION The new developed PR score for synchronization measurement of saccadic responses in VVOR testing is a valid method that outputs synchronization values and highly correlates with PR score in vHIT test.
Collapse
Affiliation(s)
- Maria Montserrat Soriano-Reixach
- Neurotology Unit, Department of Otorhinolaryngology Head and Neck Surgery, Hospital Universitario Donostia, Donostia-San Sebastian, Basque Country, Spain.,Biodonostia Health Research Institute, Otorhinolaryngology Area, Osakidetza Basque Health Service, Donostia-San Sebastián, Spain
| | - Jorge Rey-Martínez
- Neurotology Unit, Department of Otorhinolaryngology Head and Neck Surgery, Hospital Universitario Donostia, Donostia-San Sebastian, Basque Country, Spain.,Biodonostia Health Research Institute, Otorhinolaryngology Area, Osakidetza Basque Health Service, Donostia-San Sebastián, Spain
| | - Xabier Altuna
- Neurotology Unit, Department of Otorhinolaryngology Head and Neck Surgery, Hospital Universitario Donostia, Donostia-San Sebastian, Basque Country, Spain.,Biodonostia Health Research Institute, Otorhinolaryngology Area, Osakidetza Basque Health Service, Donostia-San Sebastián, Spain
| | | |
Collapse
|
10
|
Tang L, Jiang W, Wang X. New onset episodic vertigo as a presentation of vestibular neuritis. Front Neurol 2022; 13:984865. [PMID: 36313510 PMCID: PMC9596811 DOI: 10.3389/fneur.2022.984865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Vestibular neuritis (VN) is a common peripheral cause of acute vestibular syndrome, characterized by sustained vertigo and gait instability, persisting from 1 day to several weeks. With the widespread use of comprehensive vestibular function tests, patients with VN and non-sustained vertigo have drawn attention. In this study, we retrospectively analyzed the clinical presentation of patients with VN and episodic vertigo, aiming to expand the atypical clinical features of VN. Methods This retrospective study enrolled 58 patients with VN. Among them, 11 patients with more than 3 remissions per day, each lasting over 1 h were assigned to the episodic vertigo (EV) group, and 47 subjects without significant relief into the sustained vertigo (SV) group. Demographic information, clinical manifestations and data of supplementary examinations were collected and statistically analyzed. These patients were followed up 1 year after discharge to gather prognostic information. Results The incidence of spontaneous nystagmus (SN) and proportion of severe vertigo (Dizziness Handicap Inventory questionnaire score >60) in the SV group were significantly higher than those in the EV group. Spearman correlation showed that with a longer disease course, the velocity of overt saccade was smaller (p < 0.05, Rs = −0.263) in all patients with VN. Conclusion The non-sustained manifestations in VN overlap with a wider spectrum of other vestibular disorders and stroke-related vertigo, which add an additional layer of complexity to the differential diagnosis of new onset episodic vertigo. By retrospectively analyzing the clinical characteristics and vHIT parameters, our study has expounded on the atypical features and potential pathophysiological mechanism of episodic syndromes in VN. VOR gain and saccades measured by vHIT could be reliable indicators for vestibular rehabilitation process.
Collapse
|
11
|
Schöne CG, Rebsamen M, Wyssen G, Rummel C, Wagner F, Vibert D, Mast FW. Hippocampal volume in patients with bilateral and unilateral peripheral vestibular dysfunction. Neuroimage Clin 2022; 36:103212. [PMID: 36209619 PMCID: PMC9668627 DOI: 10.1016/j.nicl.2022.103212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Previous studies have found that peripheral vestibular dysfunction is associated with altered volumes in different brain structures, especially in the hippocampus. However, published evidence is conflicting. Based on previous findings, we compared hippocampal volume, as well as supramarginal, superior temporal, and postcentral gyrus in a sample of 55 patients with different conditions of peripheral vestibular dysfunction (bilateral, chronic unilateral, acute unilateral) to 39 age- and sex-matched healthy controls. In addition, we explored deviations in gray-matter volumes in hippocampal subfields. We also analysed correlations between morphometric data and visuo-spatial performance. Patients with vestibular dysfunction did not differ in total hippocampal volume from healthy controls. However, a reduced volume in the right presubiculum of the hippocampus and the left supramarginal gyrus was observed in patients with chronic and acute unilateral vestibular dysfunction, but not in patients with bilateral vestibular dysfunction. No association of altered volumes with visuo-spatial performance was found. An asymmetric vestibular input due to unilateral vestibular dysfunction might lead to reduced central brain volumes that are involved in vestibular processing.
Collapse
Affiliation(s)
- Corina G. Schöne
- Department of Psychology, University of Bern, Bern, Switzerland,Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland,Doctoral Program for Brain and Behavioral Sciences, University of Bern, Bern, Switzerland,Corresponding author.
| | - Michael Rebsamen
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Gerda Wyssen
- Department of Psychology, University of Bern, Bern, Switzerland
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Franca Wagner
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Dominique Vibert
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Fred W. Mast
- Department of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Rosenberg MJ, Reschke MF, Tomilovskaya ES, Wood SJ. Multiple field tests on landing day: Early mobility may improve postural recovery following spaceflight. Front Physiol 2022; 13:921368. [PMID: 36187781 PMCID: PMC9515505 DOI: 10.3389/fphys.2022.921368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Adaptation to microgravity causes astronauts to experience sensorimotor disturbances during return to Earth leading to functional difficulties. Recently, the Field Test (FT) study involving an incrementally demanding sensorimotor functional test battery has allowed for an unprecedented view into early decrements and recovery from multiple tests conducted on the landing day following 6-months International Space Station missions. Although the protocol was challenging and temporarily increased motion sickness symptoms, there were anecdotal reports that performing these tasks within the first few hours of landing accelerated their recovery. Therefore, results from computerized dynamic posturography (CDP) following return to Houston were used to compare recovery between crewmembers that participated in FT (n = 18) with those that did not (controls, n = 11). While there were significant decrements in postural performance for both groups, some FT participants tended to perform closer to their preflight baseline in the most challenging condition of the CDP sensitive to vestibular function—eyes closed, unstable support and head movements. However, the distribution of difference scores appeared bimodal with other FT participants in the lower range of performance. We attribute these observations to the manner in which the field tests were implemented—some benefitted by encouraging early movement to drive adaptation when performed in a constrained incremental fashion; however, movements above aversive thresholds may have impaired adaptation in others. Challenging the sensorimotor system with increasingly provocative movements performed as close to landing as possible, as long as within individual thresholds, could be a useful intervention to accelerate astronaut’s sensorimotor readaptation that deserves further study.
Collapse
Affiliation(s)
| | - Millard F. Reschke
- Neurosciences Laboratory, NASA Johnson Space Center, Houston, TX, United States
| | | | - Scott J. Wood
- Neurosciences Laboratory, NASA Johnson Space Center, Houston, TX, United States
- *Correspondence: Scott J. Wood,
| |
Collapse
|
13
|
Van Laer L, Hallemans A, Van Rompaey V, De Valck C, Van de Heyning P, Vereeck L. Subjective perception of activity level: A prognostic factor for developing chronic dizziness after vestibular schwannoma resection? Front Neurol 2022; 13:925801. [PMID: 36062005 PMCID: PMC9437514 DOI: 10.3389/fneur.2022.925801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction A vestibular schwannoma (VS) resection causes an acute unilateral vestibular deafferentation resulting in acute postoperative symptoms. Despite the expected resolution of most of the symptoms, due to central vestibular compensation, more than one out of four patients develop chronic dizziness. Several predictive factors, such as age and tumor size, have been suggested. Despite its potential effect on the process of central vestibular compensation, the level of physical activity after VS resection was not yet considered. Therefore, the association between the level of physical activity and chronic dizziness after VS resection will be investigated. Methods This retrospective cohort study included 66 patients who underwent a retro-sigmoid VS resection between October 2001 and February 2007. Patients were assessed before surgery and at 9 weeks and 6 months postoperatively. At 9 weeks, patients were asked to report their level of physical activity (PA) during the past week by using a visual analogue scale and their balance performance was assessed by four standing balance conditions with eyes closed and the Timed Up and Go test (TUG). Based on the Dizziness Handicap Inventory (DHI) score at 6 months, patients were divided in a chronic dizziness group (DHI > 30) and non-chronic dizziness group (DHI-score ≤ 30). Age, sex, Koos classification, preoperative vestibular function, treatment group, balance performance, and level of PA were compared between both groups and used as independent variables in linear regression analyses with the DHI score at 6 months as dependent variable. Results The chronic dizzy patients revealed to have significantly lower levels of PA (p < 0.001) and worse static and dynamic balance performance (p = 0.023 and p = 0.041, respectively) 9 weeks after surgery. After elimination, the multiple regression analysis resulted in a model with two variables (PA level, TUG) which significantly predicted the DHI score (F2,42 = 6.581; R2 = 0.239; p = 0.003). Conclusion This study revealed associations between (1) the level of PA and balance performance in the subacute phase and (2) chronic dizziness after VS resection. Assessment of the level of PA and balance performance during the subacute phase, which can be performed in a non-invasive and non-time-consuming way, might therefore provide prognostic information after VS resection.
Collapse
Affiliation(s)
- Lien Van Laer
- Department of Rehabilitation Sciences and Physiotherapy/Movant, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Multidisciplinary Motor Centre Antwerp (MOCEAN), University of Antwerp, Antwerp, Belgium
- *Correspondence: Lien Van Laer
| | - Ann Hallemans
- Department of Rehabilitation Sciences and Physiotherapy/Movant, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Multidisciplinary Motor Centre Antwerp (MOCEAN), University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty University Hospital of Antwerp of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Claudia De Valck
- Department of Otorhinolaryngology and Head and Neck Surgery, General Hospital Turnhout, Turnhout, Belgium
| | - Paul Van de Heyning
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty University Hospital of Antwerp of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Luc Vereeck
- Department of Rehabilitation Sciences and Physiotherapy/Movant, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Multidisciplinary Motor Centre Antwerp (MOCEAN), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
14
|
Zhang S, Liu D, Tian E, Wang J, Guo Z, Kong W. Central vestibular dysfunction: don't forget vestibular rehabilitation. Expert Rev Neurother 2022; 22:669-680. [PMID: 35912850 DOI: 10.1080/14737175.2022.2106129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Vestibular rehabilitation (VR) is now a subject of active studies and has been shown to be effective for multiple vestibular disorders, peripheral or central. VR is a physical therapy that helps train the central nervous system to compensate for vestibular dysfunction. There is moderate to strong evidence that VR is safe and effective for the management of peripheral vestibular dysfunction. Nonetheless, the studies on how VR works on central vestibular dysfunction remains scanty. AREAS COVERED This article addressed the rehabilitation strategies and possible mechanisms, including how central vestibular function might improve upon rehabilitation. In addition, it provides some examples concerning the effect of VR on central vestibular dysfunction. EXPERT OPINION VR works on the vestibular system through repetition of specific physical exercises that activate central neuroplastic mechanisms to achieve adaptive compensation of the impaired functions. VR has become a mainstay in the management of patients with dizziness and balance dysfunction. Individualized VR programs are a safe and effective treatment option for a large percentage of patients with central vestibular disease reporting imbalance and dizziness. Exploration of various treatment strategies and possible mechanisms will help develop the best and personalized VR treatment for patients with central vestibular dysfunction.
Collapse
Affiliation(s)
- Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.,Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Dan Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jun Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.,Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.,Key Laboratory of Neurological Disorders of Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| |
Collapse
|
15
|
Change of gait after unilateral vestibular neuritis: a prospective longitudinal observation study. Sci Rep 2021; 11:21579. [PMID: 34732769 PMCID: PMC8566561 DOI: 10.1038/s41598-021-00665-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 10/14/2021] [Indexed: 12/04/2022] Open
Abstract
Although symptoms of unilateral vestibular neuritis (uVN) resolve spontaneously within several weeks, recovery of gait function has unclearness in gait parameter changes and mediolateral stability improvements. In addition, prospective longitudinal studies on gait parameters after uVN are lacking. This study was conducted to reveal longitudinal change of gait function after acute uVN and to help the precise rehabilitation planning. Twenty three participants with uVN and 20 controls were included. 3D gait analyses were conducted three times after uVN onset at monthly intervals. From the gait analysis data, spatio-temporal parameters, inclination angle (IA) representing the relationship between center of mass (CoM) and center of pressure (CoP) in the frontal plane, and IA variability were obtained. Time effects on gait metrics were tested. Walking speed of participants with uVN improved significantly between the 1st and 3rd tests, but they were not significantly different to that of control, even in the 1st test. The step width of participants with uVN was significantly larger than that of control in the 1st test and improved significantly in the 2nd test. Variability of IA in affected side was significantly larger than that in controls in the 1st test and improved significantly in the 3rd test compared to the 1st test. Improvement of overall gait function and mediolateral stability during gait continued after acute stage of uVN (two months from onset in this study). Rehabilitation intervention should be continued after the acute stage of uVN to enhance appropriate adaptation in gait.
Collapse
|
16
|
Nam GS, Nguyen TT, Kang JJ, Han GC, Oh SY. Effects of Galvanic Vestibular Stimulation on Vestibular Compensation in Unilaterally Labyrinthectomized Mice. Front Neurol 2021; 12:736849. [PMID: 34539564 PMCID: PMC8446527 DOI: 10.3389/fneur.2021.736849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/02/2021] [Indexed: 12/01/2022] Open
Abstract
Objectives: To investigate the ameliorating effects of sinusoidal galvanic vestibular stimulation (GVS) on vestibular compensation from unilateral vestibular deafferentation (UVD) using a mouse model of unilateral labyrinthectomy (UL). Methods: Sixteen male C57BL/6 mice were allocated into two groups that comprise UL groups with GVS (GVS group, n = 9) and without GVS intervention (non-GVS group, n = 7). In the experimental groups, we assessed vestibulo-ocular reflex (VOR) recovery before (baseline) and at 3, 7, and 14 days after surgical unilateral labyrinthectomy. In the GVS group, stimulation was applied for 30 min daily from postoperative days (PODs) 0–4 via electrodes inserted subcutaneously next to both bony labyrinths. Results: Locomotion and VOR were significantly impaired in the non-GVS group compared to baseline. The mean VOR gain of the non-GVS group was attenuated to 0.23 at POD 3 and recovered continuously to the value of 0.54 at POD 14, but did not reach the baseline values at any frequency. GVS intervention significantly accelerated recovery of locomotion, as assessed by the amount of circling and total path length in the open field tasks compared to the non-GVS groups on PODs 3 (p < 0.001 in both amount of circling and total path length) and 7 (p < 0.01 in amount of circling and p < 0.001 in total path length, Mann–Whitney U-test). GVS also significantly improved VOR gain compared to the non-GVS groups at PODs 3 (p < 0.001), 7 (p < 0.001), and 14 (p < 0.001, independent t-tests) during sinusoidal rotations. In addition, the recovery of the phase responses and asymmetry of the VOR was significantly better in the GVS group than in the non-GVS group until 2 weeks after UVD (phase, p = 0.001; symmetry, p < 0.001 at POD 14). Conclusion: Recoveries for UVD-induced locomotion and VOR deficits were accelerated by an early intervention with GVS, which implies that GVS has the potential to improve vestibular compensation in patients with acute unilateral vestibular failure.
Collapse
Affiliation(s)
- Gi-Sung Nam
- Jeonbuk National University College of Medicine, Jeonju, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Gwangju, South Korea
| | - Thanh Tin Nguyen
- Jeonbuk National University College of Medicine, Jeonju, South Korea.,Department of Neurology, Jeonbuk National University Hospital & School of Medicine, Jeonju, South Korea.,Department of Pharmacology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Jin-Ju Kang
- Jeonbuk National University College of Medicine, Jeonju, South Korea.,Department of Neurology, Jeonbuk National University Hospital & School of Medicine, Jeonju, South Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Jeonbuk National University Hospital, Jeonju, South Korea
| | - Gyu Cheol Han
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Gachon University of Medicine and Science, Incheon, South Korea
| | - Sun-Young Oh
- Jeonbuk National University College of Medicine, Jeonju, South Korea.,Department of Neurology, Jeonbuk National University Hospital & School of Medicine, Jeonju, South Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Jeonbuk National University Hospital, Jeonju, South Korea
| |
Collapse
|
17
|
Herdman D, Norton S, Pavlou M, Murdin L, Moss-Morris R. Protocol for a randomised controlled feasibility study of psychologically informed vestibular rehabilitation for people with persistent dizziness: INVEST trial. Pilot Feasibility Stud 2021; 7:156. [PMID: 34399847 PMCID: PMC8364941 DOI: 10.1186/s40814-021-00896-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/30/2021] [Indexed: 12/23/2022] Open
Abstract
Background Dizziness is a common complaint that often persists and leads to disability and distress. Several cognitive and behavioural responses may contribute to the neurobiological adaptations that maintain persistent vestibular symptoms. This paper will present the protocol of a two-arm parallel group feasibility randomised controlled trial designed to determine whether a fully powered efficacy trial is achievable by examining the feasibility of recruitment, acceptability and potential benefits of an integrated cognitive behavioural therapy and vestibular rehabilitation (CBT-VR) treatment for people with persistent dizziness. Methods Forty adult patients will be recruited from a tertiary vestibular clinic with persistent movement–triggered dizziness for 3 months or longer who have moderate–high levels of dizziness handicap. Participants will be 1:1 randomised, using a minimisation procedure, to six sessions of either CBT-VR (intervention arm) or VR only (control arm). Measures will be collected at baseline and 4 months post randomisation. The primary feasibility outcomes include descriptive data on numbers meeting eligibility criteria, rates of recruitment, numbers retained post randomisation, treatment adherence and an acceptability questionnaire. Treatment effects on self-report outcomes will be estimated to determine that 95% confidence intervals for the effects are consistent with anticipated effects and minimum clinically important differences, and to provide information needed for the power calculation of an efficacy trial. A nested qualitative study will be conducted post-intervention (intervention group only) to explore the acceptability of the intervention and identify any areas in need of improvement. Discussion If a trial of CBT-VR is feasible, acceptability data will be used to enhance the intervention if needed and refine the multicentre RCT protocol. Future studies will need to consider the training required for other physiotherapists to deliver the intervention. Trial registration ClinicalTrials.gov, ISRCTN 10420559 Supplementary Information The online version contains supplementary material available at 10.1186/s40814-021-00896-y.
Collapse
Affiliation(s)
- David Herdman
- Health Psychology Section, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK.,St George's University Hospitals NHS Foundation Trust, London, UK
| | - Sam Norton
- Health Psychology Section, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Marousa Pavlou
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK
| | - Louisa Murdin
- Guy's and St. Thomas' NHS Foundation Trust, London, UK.,Ear Institute, University College London, London, UK
| | - Rona Moss-Morris
- Health Psychology Section, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
18
|
Samartsev IN, Zhivolupov SA. [The significance of neuroplastic mechanisms in compensation of statodynamic impairments during vestibular disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:165-172. [PMID: 34184494 DOI: 10.17116/jnevro2021121051165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The process of balance restoration in patients with the vestibular disorders is known as «vestibular compensation». It is obvious nowadays that this phenomenon is very complex and is associated with the deep brain neuroplastic changes involving reinnervation, habituation and adaptation. The research of the last decades has shown some fundamental physiologic mechanisms that form the basis of neuroplasticity, establish the staging of ongoing transformations and analyze the opportunity to improve and/or accelerate vestibular compensation with the help of vestibular rehabilitation and contemporary medications such as betaserc long.
Collapse
Affiliation(s)
- I N Samartsev
- Kirov Military Medical Academy, St. Petersburg, Russia
| | | |
Collapse
|
19
|
Lacour M, Thiry A, Tardivet L. Two conditions to fully recover dynamic canal function in unilateral peripheral vestibular hypofunction patients. J Vestib Res 2021; 31:407-421. [PMID: 33749626 DOI: 10.3233/ves-201557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The crucial role of early vestibular rehabilitation (VR) to recover a dynamic semicircular canal function was recently highlighted in patients with unilateral vestibular hypofunction (UVH). However, wide inter-individual differences were observed, suggesting that parameters other than early rehabilitation are involved. OBJECTIVE The aim of the study was to determine to what extent the degree of vestibular loss assessed by the angular vestibulo-ocular reflex (aVOR) gain could be an additional parameter interfering with rehabilitation in the recovery process. And to examine whether different VR protocols have the same effectiveness with regard to the aVOR recovery. METHODS The aVOR gain and the percentage of compensatory saccades were recorded in 81 UVH patients with the passive head impulse test before and after early VR (first two weeks after vertigo onset: N = 43) or late VR (third to sixth week after onset: N = 38) performed twice a week for four weeks. VR was performed either with the unidirectional rotation paradigm or gaze stability exercises. Supplementary outcomes were the dizziness handicap inventory (DHI) score, and the static and dynamic subjective visual vertical. RESULTS The cluster analysis differentiated two distinct populations of UVH patients with pre-rehab aVOR gain values on the hypofunction side below 0.20 (N = 42) or above 0.20 (N = 39). The mean gain values were respectively 0.07±0.05 and 0.34±0.12 for the lateral canal (p < 0.0001), 0.09±0.06 and 0.44±0.19 for the anterior canal (p < 0.0001). Patients with aVOR gains above 0.20 and early rehab fully recovered dynamic horizontal canal function (0.84±0.14) and showed very few compensatory saccades (18.7% ±20.1%) while those with gains below 0.20 and late rehab did not improve their aVOR gain value (0.16±0.09) and showed compensatory saccades only (82.9% ±23.7%). Similar results were found for the anterior canal function. Recovery of the dynamic function of the lateral canal was found with both VR protocols while it was observed with the gaze stability exercises only for the anterior canal. All the patients reduced their DHI score, normalized their static SVV, and exhibited uncompensated dynamic SVV. CONCLUSIONS Early rehab is a necessary but not sufficient condition to fully recover dynamic canal function. The degree of vestibular loss plays a crucial role too, and to be effective rehabilitation protocols must be carried out in the plane of the semicircular canals.
Collapse
Affiliation(s)
- Michel Lacour
- Neurosciences Department, Aix-Marseille University, CNRS, Marseille, France
| | - Alain Thiry
- Physiotherapist, Bd Dubouchage, Nice, France
| | - Laurent Tardivet
- Otorhinolaryngology Department, CHU Nice, Voie Romaine, Nice, France
| |
Collapse
|
20
|
Zobeiri OA, Mischler GM, King SA, Lewis RF, Cullen KE. Effects of vestibular neurectomy and neural compensation on head movements in patients undergoing vestibular schwannoma resection. Sci Rep 2021; 11:517. [PMID: 33436776 PMCID: PMC7804855 DOI: 10.1038/s41598-020-79756-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
The vestibular system is vital for maintaining balance and stabilizing gaze and vestibular damage causes impaired postural and gaze control. Here we examined the effects of vestibular loss and subsequent compensation on head motion kinematics during voluntary behavior. Head movements were measured in vestibular schwannoma patients before, and then 6 weeks and 6 months after surgical tumor removal, requiring sectioning of the involved vestibular nerve (vestibular neurectomy). Head movements were recorded in six dimensions using a small head-mounted sensor while patients performed the Functional Gait Assessment (FGA). Kinematic measures differed between patients (at all three time points) and normal subjects on several challenging FGA tasks, indicating that vestibular damage (caused by the tumor or neurectomy) alters head movements in a manner that is not normalized by central compensation. Kinematics measured at different time points relative to vestibular neurectomy differed substantially between pre-operative and 6-week post-operative states but changed little between 6-week and > 6-month post-operative states, demonstrating that compensation affecting head kinematics is relatively rapid. Our results indicate that quantifying head kinematics during self-generated gait tasks provides valuable information about vestibular damage and compensation, suggesting that early changes in patient head motion strategy may be maladaptive for long-term vestibular compensation.
Collapse
Affiliation(s)
- Omid A Zobeiri
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Gavin M Mischler
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | - Susan A King
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Departments of Otolaryngology and Neurology, Harvard Medical School, Boston, MA, USA
| | - Richard F Lewis
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Departments of Otolaryngology and Neurology, Harvard Medical School, Boston, MA, USA
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA.
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, USA.
| |
Collapse
|
21
|
Efficacy of Vestibular Rehabilitation in Patients With Neurologic Disorders: A Systematic Review. Arch Phys Med Rehabil 2020; 102:1379-1389. [PMID: 33383031 DOI: 10.1016/j.apmr.2020.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 11/10/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this systematic review is to critically assess the effectiveness of vestibular rehabilitation (VR) administered either alone or in combination with other neurorehabilitation strategies in patients with neurologic disorders. DATA SOURCES An electronic search was conducted by 2 independent reviewers in the following databases: MEDLINE (PubMed), the Physiotherapy Evidence Database, and the Cochrane Database of Systematic Reviews. STUDY SELECTION All clinical studies carried out on adult patients with a diagnosis of neurologic disorders who performed VR provided alone or in combination with other therapies were included. DATA EXTRACTION Screening of titles, abstracts, and full texts and data extraction were undertaken independently by pairs of reviewers. Included studies were quality appraised using a modified version of the Newcastle-Ottawa Scale. DATA SYNTHESIS The summary of results was reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Twelve studies were included in the review. All the included studies, with 1 exception, report that improvements provided by customized VR in subject affected by a central nervous system diseases are greater than traditional rehabilitation programs alone. CONCLUSIONS Because of the lack of high-quality studies and heterogeneity of treatments protocols, clinical practice recommendations on the efficacy of VR cannot be made. Results show that VR programs are safe and could easily be implemented with standard neurorehabilitation protocols in patients affected by neurologic disorders. Hence, more high-quality randomized controlled trials of VR in patients with neurologic disorders are needed.
Collapse
|
22
|
Ma CZH, Lam WK, Chang BC, Lee WCC. Can Insoles Be Used to Improve Static and Dynamic Balance of Community-Dwelling Older Adults? A Systematic Review on Recent Advances and Future Perspectives. J Aging Phys Act 2020; 28:971-986. [PMID: 32498037 DOI: 10.1123/japa.2019-0293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 11/18/2022]
Abstract
This systematic review investigated the effects of orthopedic, vibrating, and textured insoles on the postural balance of community-dwelling older adults. Articles published in English from 1999 to 2019 investigating the effects of (a) orthopedic, (b) vibrating, and (c) textured insoles on static and dynamic balance in community-dwelling older adults were considered. Twenty-four trials with a total of 634 older adults were identified. The information gathered generally supported the balance-improving effects of orthopedic, vibrating, and textured insoles in both static and dynamic conditions among community-dwelling older adults. Further examination found that rigidity, texture patterns, vibration thresholds, and components like arch supports and heel cups are important factors in determining whether insoles can improve balance. This review highlights the potential of insoles for improving the static and dynamic balance of community-dwelling older adults. Good knowledge in insole designs and an understanding of medical conditions of older adults are required when attempts are made to improve postural balance using insoles.
Collapse
|
23
|
Huang R, Bi G. MicroRNA-219a-5p-mediated inhibition of CaMKIIγ facilitates vestibular compensation in acute vertigo by promoting protein kinase C expression. Ann N Y Acad Sci 2020; 1475:78-88. [PMID: 32645222 DOI: 10.1111/nyas.14376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/16/2020] [Accepted: 04/30/2020] [Indexed: 11/27/2022]
Abstract
Vestibular compensation (VC) refers to a behavioral recovery process in which firing rates of bilateral vestibular nuclei neurons are rebalanced. Our study aimed to investigate the underlying mechanism by which miR-219a-5p regulates Ca2+ /calmodulin-dependent protein kinase II γ isoform (CaMKIIγ) and protein kinase C (PKC) in VC. A unilateral vestibular deafferentation rat model was established by unilateral labyrinthectomy (UL), after which VC was evaluated in rats with UL-induced vertigo-like behavior by measuring vestibular defect behavior and performing rotarod tests, as well as by BrdU immunohistochemistry on medial vestibular nuclei. We found that miR-219a-5p was increased while CaMKIIγ was decreased during VC in the medial vestibular nucleus of rats that had undergone UL. Next, gain- and loss-of-function assays were conducted to evaluate the effects of miR-219a-5p and CaMKIIγ on the vestibular defect behaviors and VC, the results of which suggested that in rats after UL overexpression of CaMKIIγ inhibited VC, while overexpression of miR-219a-5p facilitated VC. A dual-luciferase reporter gene assay identified that miR-219a-5p targeted CaMKIIγ. This led to additional experiments showing that miR-219a-5p aptomir expression downregulated CaMKIIγ in cortical cells with a concomitant increase in PKC expression, which were verified further in vivo. In summary, in rats with acute vertigo, miR-219a-5p overexpression inhibits CaMKIIγ and elevates PKC, thereby facilitating VC. Our study offers possible targets for further evaluation as treatment of acute vertigo in humans.
Collapse
Affiliation(s)
- Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Guorong Bi
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
24
|
Tanıgör G, Aydin İ, Gökçay F, Karapolat H, Eraslan S, Bilgen C, Kirazli T, Köse T, Çelebisoy N. Effects of vestibular rehabilitation and pharmacological therapy in patients with vestibular migraine. NEUROL SCI NEUROPHYS 2020. [DOI: 10.4103/nsn.nsn_41_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
25
|
Ito T, Tatsumi K, Takimoto Y, Nishimura T, Imai T, Yamanaka T, Takeda N, Wanaka A, Kitahara T. Vestibular Compensation after Vestibular Dysfunction Induced by Arsanilic Acid in Mice. Brain Sci 2019; 9:brainsci9110329. [PMID: 31752103 PMCID: PMC6896078 DOI: 10.3390/brainsci9110329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/10/2019] [Accepted: 11/15/2019] [Indexed: 11/16/2022] Open
Abstract
When vestibular function is lost, vestibular compensation works for the reacquisition of body balance. For the study of vestibular dysfunction and vestibular compensation, surgical or chemical labyrinthectomy has been performed in various animal species. In the present study, we performed chemical labyrinthectomy using arsanilic acid in mice and investigated the time course of vestibular compensation through behavioral observations and histological studies. The surgical procedures required only paracentesis and storage of 50 µL of p-arsanilic acid sodium salt solution in the tympanic cavity for 5 min. From behavioral observations, vestibular functions were worst at 2 days and recovered by 7 days after surgery. Spontaneous nystagmus appeared at 1 day after surgery with arsanilic acid and disappeared by 2 days. Histological studies revealed specific damage to the vestibular endorgans. In the ipsilateral spinal vestibular nucleus, the medial vestibular nucleus, and the contralateral prepositus hypoglossal nucleus, a substantial number of c-Fos-immunoreactive cells appeared by 1 day after surgery with arsanilic acid, with a maximum increase in number by 2 days and complete disappearance by 7 days. Taken together, these findings indicate that chemical labyrinthectomy with arsanilic acid and the subsequent observation of vestibular compensation is a useful strategy for elucidation of the molecular mechanisms underlying vestibular pathophysiologies.
Collapse
Affiliation(s)
- Taeko Ito
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara 634-8522, Japan; (T.N.); (T.Y.); (T.K.)
- Correspondence:
| | - Kouko Tatsumi
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara 634-8521, Japan; (K.T.); (A.W.)
| | - Yasumitsu Takimoto
- Department of Otolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (Y.T.); (T.I.)
| | - Tadashi Nishimura
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara 634-8522, Japan; (T.N.); (T.Y.); (T.K.)
| | - Takao Imai
- Department of Otolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (Y.T.); (T.I.)
| | - Toshiaki Yamanaka
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara 634-8522, Japan; (T.N.); (T.Y.); (T.K.)
| | - Noriaki Takeda
- Department of Otolaryngology, University of Tokushima School of Medicine, Tokushima 770-8503, Japan;
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara 634-8521, Japan; (K.T.); (A.W.)
| | - Tadashi Kitahara
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara 634-8522, Japan; (T.N.); (T.Y.); (T.K.)
| |
Collapse
|
26
|
Michel L, Laurent T, Alain T. Rehabilitation of dynamic visual acuity in patients with unilateral vestibular hypofunction: earlier is better. Eur Arch Otorhinolaryngol 2019; 277:103-113. [PMID: 31637477 DOI: 10.1007/s00405-019-05690-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/08/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE Patients with acute peripheral unilateral hypofunction (UVH) complain of vertigo and dizziness and show posture imbalance and gaze instability. Vestibular rehabilitation therapy (VR) enhances the functional recovery and it has been shown that gaze stabilization exercises improved the dynamic visual acuity (DVA). Whether the effects of VR depend or not on the moment when it is applied remains however unknown, and investigation on how the recovery mechanisms could depend or not on the timing of VR has not yet been tested. METHODS Our study investigated the recovery of DVA in 28 UVH patients whose unilateral deficit was attested by clinical history and video head impulse test (vHIT). Patients were tested under passive conditions before (pre-tests) and after (post-tests) being subjected to an active DVA rehabilitation protocol. The DVA protocol consisted in active gaze stabilization exercises with two training sessions per week, each lasting 30 min, during four weeks. Patients were sub-divided into three groups depending on the time delay between onset of acute UVH and beginning of VR. The early DVA group (N = 10) was composed of patients receiving the DVA protocol during the first 2 weeks after onset (mean = 8.9 days), the late group 1 (N = 9) between the 3rd and the 4th week (mean = 27.5 days after) and the late group 2 (N = 9) after the 1st month (mean: 82.5 days). We evaluated the DVA score, the angular aVOR gain, the directional preponderance and the percentage of compensatory saccades during the HIT, and the subjective perception of dizziness with the Dizziness Handicap Inventory (DHI). The pre- and post-VR tests were performed with passive head rotations done by the physiotherapist in the plane of the horizontal and vertical canals. RESULTS The results showed that patients submitted to an early DVA rehab improved significantly their DVA score by increasing their passive aVOR gain and decreasing the percentage of compensatory saccades, while the late 1 and late 2 DVA groups 1 and 2 showed less DVA improvement and an inverse pattern, with no change in the aVOR gain and an increase in the percentage of compensatory saccades. All groups of patients exhibited significant reductions of the DHI score, with higher improvement in subjective perception of dizziness handicap in the patients receiving the DVA rehab protocol in the first month. CONCLUSION Our data provide the first demonstration in UVH patients that earlier is better to improve DVA and passive aVOR gain. Gaze stabilization exercises would benefit from the plastic events occurring in brain structures during a sensitive period or opportunity time window to elaborate optimal functional reorganizations. This result is potentially very important for the VR programs to restore the aVOR gain instead of recruiting compensatory saccades assisting gaze stability.
Collapse
Affiliation(s)
- Lacour Michel
- Neurosciences Department, Aix-Marseille University/CNRS, Marseille, France.
- , 21 Impasse Des Vertus,, 13710, Fuveau, France.
| | - Tardivet Laurent
- Otorhinolaryngology Department, CHU Nice, 30 Voie Romaine, 06000, Nice, France
| | | |
Collapse
|
27
|
Sorokina ND, Pertsov SS, Selitsky GV, Tsagashek AV. [Neurophysiological approaches to the diagnosis and treatment of vestibular disorders in migraine and epilepsy]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:128-136. [PMID: 31407693 DOI: 10.17116/jnevro2019119061128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The review considers the results of domestic and foreign studies of modern neurophysiological diagnosis of vestibular disorders in migraine and epilepsy. Currently, there is a large number of physiological and clinical methods to evaluate the functions of the peripheral and central parts of the vestibular sensory system. However, among the tests, the samples for the assessment of the physiological state of horizontal semicircular canals and associated stem canals predominate. In recent years, neurophysiological techniques that reflect the work of the structures of the nervous system, previously inaccessible to direct study, are being actively introduced. Modern effective neurophysiological methods of rehabilitation of patients with migraine-associated and other various vestibular disorders have been developed. Further study of neurophysiological approaches to the diagnosis of vestibular disorders in migraine and epilepsy will significantly expands the current understanding of neurophysiological mechanisms of brain functions.
Collapse
Affiliation(s)
- N D Sorokina
- Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - S S Pertsov
- Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia; Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - G V Selitsky
- Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - A V Tsagashek
- Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| |
Collapse
|
28
|
Kinne BL, Owens KJ, Rajala BA, Ticknor SK. Effectiveness of home-based virtual reality on vestibular rehabilitation outcomes: a systematic review. PHYSICAL THERAPY REVIEWS 2019. [DOI: 10.1080/10833196.2019.1647382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Bonni Lynn Kinne
- Department of Physical Therapy, Grand Valley State University, Grand Rapids, MI, USA
| | - Katelynn Jo Owens
- Department of Physical Therapy, Grand Valley State University, Grand Rapids, MI, USA
| | - Brittany Ann Rajala
- Department of Physical Therapy, Grand Valley State University, Grand Rapids, MI, USA
| | - Stephanie Kay Ticknor
- Department of Physical Therapy, Grand Valley State University, Grand Rapids, MI, USA
| |
Collapse
|
29
|
Cullen KE. Vestibular processing during natural self-motion: implications for perception and action. Nat Rev Neurosci 2019; 20:346-363. [PMID: 30914780 PMCID: PMC6611162 DOI: 10.1038/s41583-019-0153-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
How the brain computes accurate estimates of our self-motion relative to the world and our orientation relative to gravity in order to ensure accurate perception and motor control is a fundamental neuroscientific question. Recent experiments have revealed that the vestibular system encodes this information during everyday activities using pathway-specific neural representations. Furthermore, new findings have established that vestibular signals are selectively combined with extravestibular information at the earliest stages of central vestibular processing in a manner that depends on the current behavioural goal. These findings have important implications for our understanding of the brain mechanisms that ensure accurate perception and behaviour during everyday activities and for our understanding of disorders of vestibular processing.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
30
|
The balance of sleep: Role of the vestibular sensory system. Sleep Med Rev 2018; 42:220-228. [DOI: 10.1016/j.smrv.2018.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022]
|
31
|
Cassel R, Wiener-Vacher S, El Ahmadi A, Tighilet B, Chabbert C. Reduced Balance Restoration Capacities Following Unilateral Vestibular Insult in Elderly Mice. Front Neurol 2018; 9:462. [PMID: 29988508 PMCID: PMC6026628 DOI: 10.3389/fneur.2018.00462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/30/2018] [Indexed: 11/16/2022] Open
Abstract
Acute vestibular syndrome (AVS) is characterized by severe posturo-locomotor and vestibulo-oculomotor impairment and accompanies several types of peripheral vestibulopathies (PVP). We know very little about its etiology, how its various symptoms are expressed and how it evolves with age. Robust repair capabilities of primary vestibular synapses have recently been shown to restore behavioral functionality. In this study, we used a mouse model of an excitotoxically induced unilateral vestibular lesion to compare the ability to restore balance and posture between old and young adult mice. We compared the temporal evolution of the evoked vestibular syndrome using a battery of behavioral tests to follow the evolution of postural-locomotor alterations and equilibrium. For the first time, we show that young adult (3 months) and elderly (22 months) mice are together able to restore normal postural-locomotor function following transient unilateral excitotoxic vestibular insult, though with different time courses. This animal study paves way for future, more detailed studies of how the early postural and locomotor disturbances following a unilateral insult are compensated for by various plasticity mechanisms, and in particular how age influences these mechanisms.
Collapse
Affiliation(s)
- Raphaelle Cassel
- Laboratoire de Neurosciences Sensorielles et Cognitives - Equipe physiopathologie et Thérapie des Désordres Vestibulaire, Centre National de la Recherche Scientifique, Aix Marseille Université, UMR 7260, Marseille, France
| | - Sylvette Wiener-Vacher
- Laboratoire d'Exploration Fonctionnel de l'Équilibre chez l'Enfant, APHP, Université Paris VII, Paris, France
| | - A El Ahmadi
- Laboratoire de Neurosciences Sensorielles et Cognitives - Equipe physiopathologie et Thérapie des Désordres Vestibulaire, Centre National de la Recherche Scientifique, Aix Marseille Université, UMR 7260, Marseille, France
| | - Brahim Tighilet
- Laboratoire de Neurosciences Sensorielles et Cognitives - Equipe physiopathologie et Thérapie des Désordres Vestibulaire, Centre National de la Recherche Scientifique, Aix Marseille Université, UMR 7260, Marseille, France
| | - Christian Chabbert
- Laboratoire de Neurosciences Sensorielles et Cognitives - Equipe physiopathologie et Thérapie des Désordres Vestibulaire, Centre National de la Recherche Scientifique, Aix Marseille Université, UMR 7260, Marseille, France
| |
Collapse
|
32
|
Joshua J, Scholten E, Schaerer D, Mafee MF, Alexander TH, Crotty Alexander LE. Otolaryngology in Critical Care. Ann Am Thorac Soc 2018; 15:643-654. [PMID: 29565639 PMCID: PMC6207134 DOI: 10.1513/annalsats.201708-695fr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/22/2018] [Indexed: 01/02/2023] Open
Abstract
Diseases affecting the ear, nose, and throat are prevalent in intensive care settings and often require combined medical and surgical management. Upper airway occlusion can occur as a result of malignant tumor growth, allergic reactions, and bleeding events and may require close monitoring and interventions by intensivists, sometimes necessitating surgical management. With the increased prevalence of immunocompromised patients, aggressive infections of the head and neck likewise require prompt recognition and treatment. In addition, procedure-specific complications of major otolaryngologic procedures can be highly morbid, necessitating vigilant postoperative monitoring. For optimal outcomes, intensivists need a broad understanding of the pathophysiology and management of life-threatening otolaryngologic disease.
Collapse
Affiliation(s)
- Jisha Joshua
- Pulmonary and Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California; and
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Eric Scholten
- Pulmonary and Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California; and
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | | | - Mahmood F. Mafee
- Division of Neuroradiology, Department of Radiology, University of California–San Diego, San Diego, California
| | | | - Laura E. Crotty Alexander
- Pulmonary and Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California; and
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| |
Collapse
|
33
|
Colnaghi S, Rezzani C, Gnesi M, Manfrin M, Quaglieri S, Nuti D, Mandalà M, Monti MC, Versino M. Validation of the Italian Version of the Dizziness Handicap Inventory, the Situational Vertigo Questionnaire, and the Activity-Specific Balance Confidence Scale for Peripheral and Central Vestibular Symptoms. Front Neurol 2017; 8:528. [PMID: 29066999 PMCID: PMC5641311 DOI: 10.3389/fneur.2017.00528] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/22/2017] [Indexed: 11/24/2022] Open
Abstract
Neurophysiological measurements of the vestibular function for diagnosis and follow-up evaluations provide an objective assessment, which, unfortunately, does not necessarily correlate with the patients' self-feeling. The literature provides many questionnaires to assess the outcome of rehabilitation programs for disequilibrium, but only for the Dizziness Handicap Inventory (DHI) is an Italian translation available, validated on a small group of patients suffering from a peripheral acute vertigo. We translated and validated the reliability and validity of the DHI, the Situational Vertigo Questionnaire (SVQ), and the Activities-Specific Balance Confidence Scale (ABC) in 316 Italian patients complaining of dizziness due either to a peripheral or to a central vestibular deficit, or in whom vestibular signs were undetectable by means of instrumental testing or clinical evaluation. Cronbach's coefficient alpha, the homogeneity index, and test-retest reproducibility, confirmed reliability of the Italian version of the three questionnaires. Validity was confirmed by correlation test between questionnaire scores. Correlations with clinical variables suggested that they can be used as a complementary tool for the assessment of vestibular symptoms. In conclusion, the Italian versions of DHI, SVQ, and ABC are reliable and valid questionnaires for assessing the impact of dizziness on the quality of life of Italian patients with peripheral or central vestibular deficit.
Collapse
Affiliation(s)
- Silvia Colnaghi
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Laboratory of Neuro-otology and Neuro-ophthalmology, C. Mondino National Neurological Institute, Pavia, Italy
| | - Cristiana Rezzani
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Marco Gnesi
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Marco Manfrin
- ENT Unit, Policlinico San Matteo Fondazione (IRCCS), Pavia, Italy
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Silvia Quaglieri
- ENT Unit, Policlinico San Matteo Fondazione (IRCCS), Pavia, Italy
| | - Daniele Nuti
- Department of Otology and Skull Base, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Marco Mandalà
- Department of Otology and Skull Base, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Maria Cristina Monti
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Maurizio Versino
- Laboratory of Neuro-otology and Neuro-ophthalmology, C. Mondino National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
34
|
Dutheil S, Watabe I, Sadlaoud K, Tonetto A, Tighilet B. BDNF Signaling Promotes Vestibular Compensation by Increasing Neurogenesis and Remodeling the Expression of Potassium-Chloride Cotransporter KCC2 and GABAA Receptor in the Vestibular Nuclei. J Neurosci 2016; 36:6199-212. [PMID: 27277799 PMCID: PMC6604891 DOI: 10.1523/jneurosci.0945-16.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Reactive cell proliferation occurs rapidly in the cat vestibular nuclei (VN) after unilateral vestibular neurectomy (UVN) and has been reported to facilitate the recovery of posturo-locomotor functions. Interestingly, whereas animals experience impairments for several weeks, extraordinary plasticity mechanisms take place in the local microenvironment of the VN: newborn cells survive and acquire different phenotypes, such as microglia, astrocytes, or GABAergic neurons, whereas animals eventually recover completely from their lesion-induced deficits. Because brain-derived neurotrophic factor (BDNF) can modulate vestibular functional recovery and neurogenesis in mammals, in this study, we examined the effect of BDNF chronic intracerebroventricular infusion versus K252a (a Trk receptor antagonist) in our UVN model. Results showed that long-term intracerebroventricular infusion of BDNF accelerated the restoration of vestibular functions and significantly increased UVN-induced neurogenesis, whereas K252a blocked that effect and drastically delayed and prevented the complete restoration of vestibular functions. Further, because the level of excitability in the deafferented VN is correlated with behavioral recovery, we examined the state of neuronal excitability using two specific markers: the cation-chloride cotransporter KCC2 (which determines the hyperpolarizing action of GABA) and GABAA receptors. We report for the first time that, during an early time window after UVN, significant BDNF-dependent remodeling of excitability markers occurs in the brainstem. These data suggest that GABA acquires a transient depolarizing action during recovery from UVN, which potentiates the observed reactive neurogenesis and accelerates vestibular functional recovery. These findings suggest that BDNF and/or KCC2 could represent novel treatment strategies for vestibular pathologies. SIGNIFICANCE STATEMENT In this study, we report for the first time that brain-derived neurotrophic factor potentiates vestibular neurogenesis and significantly accelerates functional recovery after unilateral vestibular injury. We also show that specific markers of excitability, the potassium-chloride cotransporter KCC2 and GABAA receptors, undergo remarkable fluctuations within vestibular nuclei (VN), strongly suggesting that GABA acquires a transient depolarizing action in the VN during the recovery period. This novel plasticity mechanism could explain in part how the system returns to electrophysiological homeostasis between the deafferented and intact VN, considered in the literature to be a key parameter of vestibular compensation. In this context, our results open new perspectives for the development of therapeutic approaches to alleviate the vestibular symptoms and favor vestibular function recovery.
Collapse
Affiliation(s)
- Sophie Dutheil
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519
| | - Isabelle Watabe
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260 Aix-Marseille Université-CNRS, Fédération de Recherche 3C, 13331 Marseille Cedex 03, France, and
| | - Karina Sadlaoud
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260 Aix-Marseille Université-CNRS, Fédération de Recherche 3C, 13331 Marseille Cedex 03, France, and
| | - Alain Tonetto
- Fédération de Recherche Sciences Chimiques Marseille FR 1739, Pôle PRATIM, 13331 Marseille Cedex 03, France
| | - Brahim Tighilet
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260 Aix-Marseille Université-CNRS, Fédération de Recherche 3C, 13331 Marseille Cedex 03, France, and
| |
Collapse
|
35
|
Lacour M, Helmchen C, Vidal PP. Vestibular compensation: the neuro-otologist's best friend. J Neurol 2016; 263 Suppl 1:S54-64. [PMID: 27083885 PMCID: PMC4833803 DOI: 10.1007/s00415-015-7903-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 02/05/2023]
Abstract
Why vestibular compensation (VC) after an acute unilateral vestibular loss is the neuro-otologist’s best friend is the question at the heart of this paper. The different plasticity mechanisms underlying VC are first reviewed, and the authors present thereafter the dual concept of vestibulo-centric versus distributed learning processes to explain the compensation of deficits resulting from the static versus dynamic vestibular imbalance. The main challenges for the plastic events occurring in the vestibular nuclei (VN) during a post-lesion critical period are neural protection, structural reorganization and rebalance of VN activity on both sides. Data from animal models show that modulation of the ipsilesional VN activity by the contralateral drive substitutes for the normal push–pull mechanism. On the other hand, sensory and behavioural substitutions are the main mechanisms implicated in the recovery of the dynamic functions. These newly elaborated sensorimotor reorganizations are vicarious idiosyncratic strategies implicating the VN and multisensory brain regions. Imaging studies in unilateral vestibular loss patients show the implication of a large neuronal network (VN, commissural pathways, vestibulo-cerebellum, thalamus, temporoparietal cortex, hippocampus, somatosensory and visual cortical areas). Changes in gray matter volume in these multisensory brain regions are structural changes supporting the sensory substitution mechanisms of VC. Finally, the authors summarize the two ways to improve VC in humans (neuropharmacology and vestibular rehabilitation therapy), and they conclude that VC would follow a “top-down” strategy in patients with acute vestibular lesions. Future challenges to understand VC are proposed.
Collapse
Affiliation(s)
- Michel Lacour
- Université Aix-Marseille/CNRS, UMR 7260, Fédération de Recherche 3C, Centre de St Charles, 3 Place Victor Hugo, 13331, Marseille Cedex 03, France. .,, 21 Impasse des Vertus, 13710, Fuveau, France.
| | - Christoph Helmchen
- Department of Neurology, University Hospitals Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Pierre-Paul Vidal
- Université Paris Descartes/CNRS, UMR-MD-SSA, COGNAC-G (COGNition and Action Group), 45 Rue des Saints Pères, 75270, Paris Cedex 06, France
| |
Collapse
|
36
|
Associations between Tactile Sensory Threshold and Postural Performance and Effects of Healthy Aging and Subthreshold Vibrotactile Stimulation on Postural Outcomes in a Simple Dual Task. Curr Gerontol Geriatr Res 2016; 2016:9797369. [PMID: 27143967 PMCID: PMC4842039 DOI: 10.1155/2016/9797369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/22/2016] [Indexed: 11/17/2022] Open
Abstract
Specific activities that require concurrent processing of postural and cognitive tasks may increase the risk for falls in older adults. We investigated whether peripheral receptor sensitivity was associated with postural performance in a dual-task and whether an intervention in form of subthreshold vibration could affect performance. Ten younger (age: 20–35 years) and ten older adults (70–85 years) performed repeated auditory-verbal 1-back tasks while standing quietly on a force platform. Foot sole vibration was randomly added during several trials. Several postural control and performance measures were assessed and statistically analyzed (significance set to α-levels of .05). There were moderate correlations between peripheral sensitivity and several postural performance and control measures (r = .45 to .59). Several postural performance measures differed significantly between older and younger adults (p < 0.05); addition of vibration did not affect outcome measures. Aging affects healthy older adults' performance in dual-tasks, and peripheral sensitivity may be a contributor to the observed differences. A vibration intervention may only be useful when there are more severe impairments of the sensorimotor system. Hence, future research regarding the efficacy of sensorimotor interventions in the form of vibrotactile stimulation should focus on older adults whose balance is significantly affected.
Collapse
|
37
|
Scheltinga A, Honegger F, Timmermans DPH, Allum JHJ. The Effect of Age on Improvements in Vestibulo-Ocular Reflexes and Balance Control after Acute Unilateral Peripheral Vestibular Loss. Front Neurol 2016; 7:18. [PMID: 26925031 PMCID: PMC4757818 DOI: 10.3389/fneur.2016.00018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/05/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND An acute unilateral peripheral vestibular loss (aUVL) initially causes severe gaze and balance control problems. However, vestibulo-ocular reflexes (VOR) and balance control are nearly normal 3 months later as a result of peripheral recovery and/or central compensation. As pre-existing vestibular sensory loss is assumed to be greater in the healthy elderly, this study investigated whether improvements in VOR and balance function over time after aUVL are different for the elderly than for the young. METHODS Thirty aUVL patients divided into three age-groups were studied (8 age range 23-35, 10 with range 43-58, and 12 with range 60-74 years). To measure VOR function eye movements were recorded during caloric irrigation, rotating chair (ROT), and head impulse tests. Balance control during stance and gait was recorded as lower trunk angular velocity in the pitch and roll planes. Measurements were taken at deficit onset, and 3, 6, and 13 weeks later. RESULTS There was one difference in VOR improvements over time between the age-groups: Low acceleration ROT responses were less at onset in the elderly group. Deficit side VOR responses and asymmetries in each group improved to within ranges of healthy controls at 13 weeks. Trunk sway of the elderly was greater for stance and gait at onset when compared to healthy age-matched controls and the young and greater than that of the young and controls during gait tasks at 13 weeks. The sway of the young was not different from controls at either time point. Balance control for the elderly improved slower than for the young. CONCLUSION These results indicate that VOR improvement after an aUVL does not differ with age, except for low accelerations. Recovery rates are different between age-groups for balance control tests. Balance control in the elderly is more abnormal at aUVL onset for stance and gait tasks with the gait abnormalities remaining after 13 weeks. Thus, we conclude that balance control in the elderly is more affected by the UVL than for the young, and the young overcome balance deficits more rapidly. These differences with age should be taken into account when planning rehabilitation.
Collapse
Affiliation(s)
- Alja Scheltinga
- Division of Audiology and Neurootology, Department of ORL, University Hospital of Basel, Basel, Switzerland
- Radboud University, Nijmegen, Netherlands
| | - Flurin Honegger
- Division of Audiology and Neurootology, Department of ORL, University Hospital of Basel, Basel, Switzerland
| | - Dionne P. H. Timmermans
- Division of Audiology and Neurootology, Department of ORL, University Hospital of Basel, Basel, Switzerland
- Radboud University, Nijmegen, Netherlands
| | - John H. J. Allum
- Division of Audiology and Neurootology, Department of ORL, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
38
|
Abstract
Neuronal networks that are linked to the peripheral vestibular system contribute to gravitoinertial sensation, balance control, eye movement control, and autonomic function. Ascending connections to the limbic system and cerebral cortex are also important for motion perception and threat recognition, and play a role in comorbid balance and anxiety disorders. The vestibular system also shows remarkable plasticity, termed vestibular compensation. Activity in these networks is regulated by an interaction between: (1) intrinsic neurotransmitters of the inner ear, vestibular nerve, and vestibular nuclei; (2) neurotransmitters associated with thalamocortical and limbic pathways that receive projections originating in the vestibular nuclei; and (3) locus coeruleus and raphe (serotonergic and nonserotonergic) projections that influence the latter components. Because the ascending vestibular interoceptive and thalamocortical pathways include networks that influence a broad range of stress responses (endocrine and autonomic), memory consolidation, and cognitive functions, common transmitter substrates provide a basis for understanding features of acute and chronic vestibular disorders.
Collapse
Affiliation(s)
- C D Balaban
- Departments of Otolaryngology, Neurobiology, Communication Sciences and Disorders, and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
39
|
Tighilet B, Leonard J, Bernard-Demanze L, Lacour M. Comparative analysis of pharmacological treatments with N-acetyl-DL-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat. Eur J Pharmacol 2015; 769:342-9. [PMID: 26607469 DOI: 10.1016/j.ejphar.2015.11.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 01/01/2023]
Abstract
Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only.
Collapse
Affiliation(s)
- Brahim Tighilet
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260; FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Aix-Marseille Université - CNRS, Centre Saint-Charles, Case B, 3 Place Victor Hugo, 13331 Marseille cedex 03, France.
| | - Jacques Leonard
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260; FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Aix-Marseille Université - CNRS, Centre Saint-Charles, Case B, 3 Place Victor Hugo, 13331 Marseille cedex 03, France
| | - Laurence Bernard-Demanze
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260; FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Aix-Marseille Université - CNRS, Centre Saint-Charles, Case B, 3 Place Victor Hugo, 13331 Marseille cedex 03, France; Service ORL et de Chirurgie cervico-faciale Hôpital de la Conception Marseille, 147 Boulevard Baille, 13005 Marseille, France
| | - Michel Lacour
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260; FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Aix-Marseille Université - CNRS, Centre Saint-Charles, Case B, 3 Place Victor Hugo, 13331 Marseille cedex 03, France
| |
Collapse
|
40
|
Yu L, Zhang XY, Cao SL, Peng SY, Ji DY, Zhu JN, Wang JJ. Na(+) -Ca(2+) Exchanger, Leak K(+) Channel and Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel Comediate the Histamine-Induced Excitation on Rat Inferior Vestibular Nucleus Neurons. CNS Neurosci Ther 2015; 22:184-93. [PMID: 26387685 DOI: 10.1111/cns.12451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 12/11/2022] Open
Abstract
AIMS Antihistaminergic drugs have traditionally been used to treat vestibular disorders in the clinic. As a potential central target for antihistaminergic drugs, the inferior vestibular nucleus (IVN) is the largest subnucleus of the central vestibular nuclear complex and is considered responsible for vestibular-autonomic responses and integration of vestibular, cerebellar, and multisensory signals. However, the role of histamine on the IVN, particularly the underlying mechanisms, is still not clear. METHODS Using whole-cell patch-clamp recordings on rat brain slices, histamine-induced effect on IVN neurons and the underlying receptor and ionic mechanisms were investigated. RESULTS We found that histamine remarkably depolarized both spontaneous firing neurons and silent neurons in IVN via both histamine H1 and histamine H2 receptors. Furthermore, Na(+) -Ca(2+) exchangers (NCXs) and background leak K(+) channels linked to H1 receptors and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to H2 receptors comediate the histamine-induced depolarization on IVN neurons. CONCLUSION These results demonstrate the multiple ionic mechanisms underlying the excitatory modulation of histamine/central histaminergic system on IVN neurons and the related vestibular reflexes and functions. The findings also suggest potential targets for the treatment of vestibular disorders in the clinic, at the level of ionic channels in central vestibular nuclei.
Collapse
Affiliation(s)
- Lei Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shu-Liang Cao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shi-Yu Peng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Deng-Yu Ji
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
41
|
Effects of microvascular decompression surgery on posture control: A case report in an elderly patient. Neurophysiol Clin 2015; 45:191-201. [PMID: 26297294 DOI: 10.1016/j.neucli.2015.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 04/23/2015] [Indexed: 11/22/2022] Open
Abstract
AIMS OF THE STUDY We report the case of an 84-year-old woman with neurovascular conflict of the left cochleovestibular nerve. Prior to surgery, the patient complained of positional vertigo and dizziness for the past two years, and marked instability. Hearing loss and tinnitus were reported on the left side. The aim of this study was to investigate the effects of microvascular decompression of the cochleovestibular nerve on posture control. MATERIALS AND METHODS Evaluation of cochleovestibular function and posture control was performed before and after surgery. Postural performance was analyzed in static and dynamic conditions, with and without vision, and with optokinetic stimulation. Perception of the static visual vertical (SVV) was recorded in darkness. RESULTS Positional vertigo and tinnitus disappeared immediately after the decompression. The SVV remained unchanged one week after the surgery. Speech intelligibility of the left ear was improved (30 dB), and the vestibular deficit on this side was also significantly reduced (54% versus 18%). However, the more spectacular result was the effect on postural control. This elderly patient improved her postural balance in both static and dynamic conditions, and became able to maintain her equilibrium in the more challenging dynamic conditions, with and without vision, as early as one week after the surgery, a postural performance that she had been unable to do preoperatively. CONCLUSION This work is the first to show that the postural deficits resulting from neurovascular conflict of the cochleovestibular nerve are strongly improved after microvascular decompression.
Collapse
|
42
|
Abramides PA, Bittar RSM, Tsuji RK, Bento RF. Caloric test as a predictor tool of postural control in CI users. Acta Otolaryngol 2015; 135:685-91. [PMID: 25812584 DOI: 10.3109/00016489.2015.1020395] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CONCLUSIONS Balance was improved at 365 days after CI in all patients. Caloric test findings were important determinants of balance outcomes over a year after CI. Pre-operative vestibular assessment findings should be documented because postural recovery over time depends on this information. OBJECTIVE To verify the importance of the caloric test as a pre-operative predictor tool of postural control after CI surgery. METHODS Prospective observational study made with 24 post-lingual deafness patients who underwent unilateral CI surgery. Vestibular assessments: questionnaire assessing vertigo, caloric tests, rotary chair (RC) testing, and computerized dynamic posturography (CDP), were sequentially performed for all patients before and 60, 120, 180, and 365 days after CI. RESULTS Thirteen patients (54.2%) reported dizziness before CI. At the end of the study, dizziness remained unchanged in one (7.7%) patient, ameliorated in 11 (84.6%), and worsened in one (7.7%). Baseline caloric tests identified 29.2% patients with normal reflexes, 33.3% with unilateral areflexia or hyporeflexia, 12.5% with bilateral hyporeflexia, and 25% with bilateral vestibular loss (BVL). Most patients exhibited objective improvements in postural stability. At 365 days, the CDP condition (particularly C5) and CS were higher for caloric tests responders at baseline than for those with BVL at baseline.
Collapse
Affiliation(s)
- Patricia A Abramides
- ENT Department, Hospital das Clínicas, University of São Paulo School of Medicine , São Paulo , Brazil
| | | | | | | |
Collapse
|
43
|
Effects of haptic supplementation on postural stability in unilateral vestibular loss patients. Neurosci Lett 2015; 592:70-5. [DOI: 10.1016/j.neulet.2015.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/02/2015] [Indexed: 11/20/2022]
|
44
|
Lacour M, Bernard-Demanze L. Interaction between Vestibular Compensation Mechanisms and Vestibular Rehabilitation Therapy: 10 Recommendations for Optimal Functional Recovery. Front Neurol 2015; 5:285. [PMID: 25610424 PMCID: PMC4285093 DOI: 10.3389/fneur.2014.00285] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/15/2014] [Indexed: 12/30/2022] Open
Abstract
This review questions the relationships between the plastic events responsible for the recovery of vestibular function after a unilateral vestibular loss (vestibular compensation), which has been well described in animal models in the last decades, and the vestibular rehabilitation (VR) therapy elaborated on a more empirical basis for vestibular loss patients. The main objective is not to propose a catalog of results but to provide clinicians with an understandable view on when and how to perform VR therapy, and why VR may benefit from basic knowledge and may influence the recovery process. With this perspective, 10 major recommendations are proposed as ways to identify an optimal functional recovery. Among them are the crucial role of active and early VR therapy, coincidental with a post-lesion sensitive period for neuronal network remodeling, the instructive role that VR therapy may play in this functional reorganization, the need for progression in the VR therapy protocol, which is based mainly on adaptation processes, the necessity to take into account the sensorimotor, cognitive, and emotional profile of the patient to propose individual or "à la carte" VR therapies, and the importance of motivational and ecologic contexts. More than 10 general principles are very likely, but these principles seem crucial for the fast recovery of vestibular loss patients to ensure good quality of life.
Collapse
Affiliation(s)
- Michel Lacour
- Laboratoire de Neurobiologie Intégrative et Adaptative, UMR 7260 CNRS/Université Aix-Marseille, Fédération de Recherche 3C, Centre de St Charles, Marseille, France
| | - Laurence Bernard-Demanze
- Laboratoire de Neurobiologie Intégrative et Adaptative, UMR 7260 CNRS/Université Aix-Marseille, Fédération de Recherche 3C, Centre de St Charles, Marseille, France
- Service d’otorhinolaryngologie et d’otoneurologie, CHU Nord, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
45
|
Beck R, Günther L, Xiong G, Potschka H, Böning G, Bartenstein P, Brandt T, Jahn K, Dieterich M, Strupp M, la Fougère C, Zwergal A. The mixed blessing of treating symptoms in acute vestibular failure — Evidence from a 4-aminopyridine experiment. Exp Neurol 2014; 261:638-45. [DOI: 10.1016/j.expneurol.2014.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/07/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
|
46
|
Zhang XY, Yu L, Zhuang QX, Peng SY, Zhu JN, Wang JJ. Postsynaptic mechanisms underlying the excitatory action of histamine on medial vestibular nucleus neurons in rats. Br J Pharmacol 2014; 170:156-69. [PMID: 23713466 DOI: 10.1111/bph.12256] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/06/2013] [Accepted: 05/15/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Anti-histaminergic drugs have been widely used in the clinical treatment of vestibular disorders and most studies concentrate on their presynaptic actions. The present study investigated the postsynaptic effect of histamine on medial vestibular nucleus (MVN) neurons and the underlying mechanisms. EXPERIMENTAL APPROACH Histamine-induced postsynaptic actions on MVN neurons and the corresponding receptor and ionic mechanisms were detected by whole-cell patch-clamp recordings on rat brain slices. The distribution of postsynaptic histamine H₁, H₂ and H₄ receptors was mapped by double and single immunostaining. Furthermore, the expression of mRNAs for H₁, H₂ and H₄ receptors and for subtypes of Na⁺ -Ca²⁺ exchangers (NCXs) and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels was assessed by quantitative real-time RT-PCR. KEY RESULTS A marked postsynaptic excitatory effect, co-mediated by histamine H₁ and H₂ receptors, was involved in the histamine-induced depolarization of MVN neurons. Postsynaptic H₁ and H₂ rather than H₄ receptors were co-localized in the same MVN neurons. NCXs contributed to the inward current mediated by H₁ receptors, whereas HCN channels were responsible for excitation induced by activation of H₂ receptors. Moreover, NCX1 and NCX3 rather than NCX2, and HCN1 rather than HCN2-4 mRNAs, were abundantly expressed in MVN. CONCLUSION AND IMPLICATIONS NCXs coupled to H₁ receptors and HCN channels linked to H₂ receptors co-mediate the strong postsynaptic excitatory action of histamine on MVN neurons. These results highlight an active role of postsynaptic mechanisms in the modulation by central histaminergic systems of vestibular functions and suggest potential targets for clinical treatment of vestibular disorders.
Collapse
Affiliation(s)
- Xiao-Yang Zhang
- Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | | | | | | | | | | |
Collapse
|
47
|
Catanzariti JF, Agnani O, Guyot MA, Wlodyka-Demaille S, Khenioui H, Donze C. Does adolescent idiopathic scoliosis relate to vestibular disorders? A systematic review. Ann Phys Rehabil Med 2014; 57:465-79. [DOI: 10.1016/j.rehab.2014.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/18/2014] [Accepted: 04/19/2014] [Indexed: 10/25/2022]
|
48
|
Angeli SI, Telischi FF, Eshraghi AA. Middle fossa vestibular neurectomy for refractory vertigo: less is more. Ann Otol Rhinol Laryngol 2014; 123:359-64. [PMID: 24769882 DOI: 10.1177/0003489414526684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE This study aimed to evaluate outcomes of the middle fossa (MF) superior vestibular neurectomy in unilateral Ménière's disease. PATIENTS AND METHODS Case series with preoperative and postoperative analysis of the 1995 American Academy of Otolaryngology hearing stage and vertigo class, gait instability, and results of vestibular-evoked myogenic potentials (VEMP). RESULTS Four out of the 5 patients had total vertigo control (class A) and 1 had near total control (class B) by the last visit (mean follow-up, 23.6 months). There were no changes in hearing thresholds and hearing stage. Four patients had resolution of their gait instability by 2 months after surgery. Postoperative VEMP responses were preserved in all 3 patients with positive VEMP preoperatively. CONCLUSION This is the first report of the anatomical and functional preservation of the inferior vestibular nerve in vestibular neurectomy for the treatment of refractory vertigo in unilateral Ménière's disease, with VEMP testing before and after vestibular neurectomy. The modified technique limits the surgical dissection and may help avoid complications such as postoperative hearing loss and persistent gait instability. This approach is indicated when other more conservative measures have failed, and patient selection is paramount to avoid long-term complications.
Collapse
Affiliation(s)
- Simon I Angeli
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | |
Collapse
|
49
|
Bernard-Demanze L, Léonard J, Dumitrescu M, Meller R, Magnan J, Lacour M. Static and dynamic posture control in postlingual cochlear implanted patients: effects of dual-tasking, visual and auditory inputs suppression. Front Integr Neurosci 2014; 7:111. [PMID: 24474907 PMCID: PMC3893730 DOI: 10.3389/fnint.2013.00111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/27/2013] [Indexed: 11/30/2022] Open
Abstract
Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions, a result they have to be awarded of particularly when getting older.
Collapse
Affiliation(s)
- Laurence Bernard-Demanze
- Integrative and Adaptive Neurosciences Laboratory, UMR 7260 CNRS/Aix-Marseille University Marseille, France ; Service d'ORL et Chirurgie de la Face et du Cou, Assistance Publique Hopitaux de marseille, CHU Nord Marseille, France
| | - Jacques Léonard
- Integrative and Adaptive Neurosciences Laboratory, UMR 7260 CNRS/Aix-Marseille University Marseille, France
| | - Michel Dumitrescu
- Integrative and Adaptive Neurosciences Laboratory, UMR 7260 CNRS/Aix-Marseille University Marseille, France
| | - Renaud Meller
- Service d'ORL et Chirurgie de la Face et du Cou, Assistance Publique Hopitaux de marseille, CHU Nord Marseille, France
| | - Jacques Magnan
- Service d'ORL et Chirurgie de la Face et du Cou, Assistance Publique Hopitaux de marseille, CHU Nord Marseille, France
| | - Michel Lacour
- Integrative and Adaptive Neurosciences Laboratory, UMR 7260 CNRS/Aix-Marseille University Marseille, France
| |
Collapse
|
50
|
Tighilet B, Mourre C, Lacour M. Plasticity of the histamine H3 receptors after acute vestibular lesion in the adult cat. Front Integr Neurosci 2014; 7:87. [PMID: 24427120 PMCID: PMC3879797 DOI: 10.3389/fnint.2013.00087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/16/2013] [Indexed: 11/13/2022] Open
Abstract
After unilateral vestibular neurectomy (UVN) many molecular and neurochemical mechanisms underlie the neurophysiological reorganizations occurring in the vestibular nuclei (VN) complex, as well as the behavioral recovery process. As a key regulator, the histaminergic system appears to be a likely candidate because drugs interfering with histamine (HA) neurotransmission facilitate behavioral recovery after vestibular lesion. This study aimed at analyzing the post-lesion changes of the histaminergic system by quantifying binding to histamine H3 receptors (H3R; mediating namely histamine autoinhibition) using a histamine H3 receptor agonist ([3H]N-α-methylhistamine). Experiments were done in brain sections of control cats (N = 6) and cats submitted to UVN and killed 1 (N = 6) or 3 (N = 6) weeks after the lesion. UVN induced a bilateral decrease in binding density of the agonist [3H]N-α-methylhistamine to H3R in the tuberomammillary nuclei (TMN) at 1 week post-lesion, with a predominant down-regulation in the ipsilateral TMN. The bilateral decrease remained at the 3 weeks survival time and became symmetric. Concerning brainstem structures, binding density in the VN, the prepositus hypoglossi, the subdivisions of the inferior olive decreased unilaterally on the ipsilateral side at 1 week and bilaterally 3 weeks after UVN. Similar changes were observed in the subdivisions of the solitary nucleus only 1 week after the lesion. These findings indicate vestibular lesion induces plasticity of the histamine H3R, which could contribute to vestibular function recovery.
Collapse
Affiliation(s)
- Brahim Tighilet
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260, FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Centre Saint-Charles, Case B, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Christiane Mourre
- Laboratoire de Neurosciences Cognitives, UMR 7291, Centre Saint-Charles, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Michel Lacour
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260, FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Centre Saint-Charles, Case B, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| |
Collapse
|