1
|
Roveta C, Calcinai B, Girolametti F, Fernandes Couceiro J, Puce S, Annibaldi A, Costa R. The prokaryotic community of Chondrosia reniformis Nardo, 1847: from diversity to mercury detection. ZOOLOGY 2023; 158:126091. [PMID: 37003141 DOI: 10.1016/j.zool.2023.126091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
Microbial communities inhabiting sponges are known to take part in many metabolic pathways, including nutrient cycles, and possibly also in the bioaccumulation of trace elements (TEs). Here, we used high-throughput, Illumina sequencing of 16S rRNA genes to characterize the prokaryotic communities present in the cortex and choanosome, respectively the external and internal body region of Chondrosia reniformis, and in the surrounding seawater. Furthermore, we estimated the total mercury content (THg) in these body regions of the sponge and in the corresponding microbial cell pellets. Fifteen prokaryotic phyla were detected in association with C. reniformis, 13 belonging to the domain Bacteria and two to the Archaea. No significant differences between the prokaryotic community composition of the two regions were found. Three lineages of ammonium-oxidizing organisms (Cenarchaeum symbiosum, Nitrosopumilus maritimus, and Nitrosococcus sp.) co-dominated the prokaryotic community, suggesting ammonium oxidation/nitrification as a key metabolic pathway within the microbiome of C. reniformis. In the sponge fractions, higher THg levels were found in the choanosome compared to the cortex. In contrast, comparable THg levels found in the microbial pellets obtained from both regions were significantly lower than those observed in the corresponding sponge fractions. Our work provides new insights into the prokaryotic communities and TEs distribution in different body parts of a model organism relevant for marine conservation and biotechnology. In this sense, this study paves the way for scientists to deepen the possible application of sponges not only as bioindicators, but also as bioremediation tools of metal polluted environments.
Collapse
Affiliation(s)
- Camilla Roveta
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Barbara Calcinai
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Federico Girolametti
- Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Joana Fernandes Couceiro
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Stefania Puce
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Anna Annibaldi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Centre of Marine Sciences (CCMAR), University of Algarve, Portugal
| |
Collapse
|
2
|
Indraningrat AAG, Steinert G, Becking LE, Mueller B, de Goeij JM, Smidt H, Sipkema D. Sponge holobionts shift their prokaryotic communities and antimicrobial activity from shallow to lower mesophotic depths. Antonie Van Leeuwenhoek 2022; 115:1265-1283. [PMID: 35998007 PMCID: PMC9534810 DOI: 10.1007/s10482-022-01770-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/07/2022] [Indexed: 11/05/2022]
Abstract
In this study, we used 16S rRNA gene amplicon sequencing to investigate prokaryotic community composition of the Caribbean sponges Xestospongia muta and Agelas sventres from three depth ranges: < 30 m (shallow), 30–60 m (upper mesophotic), and 60–90 m (lower mesophotic). The prokaryotic community in shallow samples of X. muta was enriched in Cyanobacteria, Chloroflexota, and Crenarchaeota compared to samples from mesophotic depths, while mesophotic samples of X. muta were enriched in Acidobacteriota. For A. sventres, relative abundance of Acidobacteriota, Chloroflexota, and Gammaproteobacteria was higher in shallow samples, while Proteobacteria and Crenarchaeota were enriched in mesophotic A. sventres samples. Antimicrobial activity was evaluated by screening crude extracts of sponges against a set of Gram-positive and Gram-negative bacteria, a yeast, and an oomycete. Antibacterial activities from crude extracts of shallow sponge individuals were generally higher than observed from mesophotic individuals, that showed limited or no antibacterial activities. Conversely, the highest anti-oomycete activity was found from crude extracts of X. muta individuals from lower mesophotic depth, but without a clear pattern across the depth gradient. These results indicate that sponge-associated prokaryotic communities and the antimicrobial activity of sponges change within species across a depth gradient from shallow to mesophotic depth.
Collapse
Affiliation(s)
- Anak Agung Gede Indraningrat
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Faculty of Medicine and Health Sciences, Warmadewa University, Jln Terompong 24, 80235, Denpasar, Bali, Indonesia
| | - Georg Steinert
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Leontine E Becking
- Marine Animal Ecology Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.,Wageningen Marine Research, Wageningen University and Research, Ankerpark 27, 1781 AG, Den Helder, The Netherlands
| | - Benjamin Mueller
- Department of Freshwater and Marine Ecology, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands.,CARMABI Foundation, Piscaderabaai z/n, P.O. Box 2090, Willemstad, Curaçao
| | - Jasper M de Goeij
- Department of Freshwater and Marine Ecology, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands.,CARMABI Foundation, Piscaderabaai z/n, P.O. Box 2090, Willemstad, Curaçao
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Wang G, Li Y, Liu J, Chen B, Su H, Liang J, Huang W, Yu K. Comparative Genomics Reveal the Animal-Associated Features of the Acanthopleuribacteraceae Bacteria, and Description of Sulfidibacter corallicola gen. nov., sp., nov. Front Microbiol 2022; 13:778535. [PMID: 35173698 PMCID: PMC8841776 DOI: 10.3389/fmicb.2022.778535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Members of the phylum Acidobacteria are ubiquitous in various environments. Soil acidobacteria have been reported to present a variety of strategies for their success in terrestrial environments. However, owing to lack of pure culture, information on animal-associated acidobacteria are limited, except for those obtained from 16S rRNA genes. To date, only two acidobacteria have been isolated from animals, namely strain M133T obtained from coral Porites lutea and Acanthopleuribacter pedis KCTC 12899T isolated from chiton. Genomics and physiological characteristics of strain M133T and A. pedis KCTC 12899T were compared with 19 other isolates (one strain from each genus) in the phylum Acidobacteria. The results revealed that strain M133T represents a new species in a new genus in the family Acanthopleuribacteraceae. To date, these two Acanthopleuribacteraceae isolates have the largest genomes (10.85–11.79 Mb) in the phylum Acidobacteria. Horizontal gene transfer and gene duplication influenced the structure and plasticity of these large genomes. Dissimilatory nitrate reduction and abundant secondary metabolite biosynthetic gene clusters (including eicosapentaenoic acid de novo biosynthesis) are two distinct features of the Acanthopleuribacteraceae bacteria in the phylum Acidobacteria. The absence of glycoside hydrolases involved in plant polysaccharide degradation and presence of animal disease-related peptidases indicate that these bacteria have evolved to adapt to the animal hosts. In addition to low- and high-affinity respiratory oxygen reductases, enzymes for nitrate to nitrogen, and sulfhydrogenase were also detected in strain M133T, suggesting the capacity and flexibility to grow in aerobic and anaerobic environments. This study highlighted the differences in genome structure, carbohydrate and protein utilization, respiration, and secondary metabolism between animal-associated acidobacteria and other acidobacteria, especially the soil acidobacteria, displaying flexibility and versatility of the animal-associated acidobacteria in environmental adaption.
Collapse
Affiliation(s)
- Guanghua Wang
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Yuanjin Li
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Jianfeng Liu
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Hongfei Su
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Wen Huang
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
- *Correspondence: Kefu Yu,
| |
Collapse
|
4
|
Flieder M, Buongiorno J, Herbold CW, Hausmann B, Rattei T, Lloyd KG, Loy A, Wasmund K. Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling. THE ISME JOURNAL 2021; 15:3159-3180. [PMID: 33981000 PMCID: PMC8528874 DOI: 10.1038/s41396-021-00992-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023]
Abstract
Acidobacteriota are widespread and often abundant in marine sediments, yet their metabolic and ecological properties are poorly understood. Here, we examined metabolisms and distributions of Acidobacteriota in marine sediments of Svalbard by functional predictions from metagenome-assembled genomes (MAGs), amplicon sequencing of 16S rRNA and dissimilatory sulfite reductase (dsrB) genes and transcripts, and gene expression analyses of tetrathionate-amended microcosms. Acidobacteriota were the second most abundant dsrB-harboring (averaging 13%) phylum after Desulfobacterota in Svalbard sediments, and represented 4% of dsrB transcripts on average. Meta-analysis of dsrAB datasets also showed Acidobacteriota dsrAB sequences are prominent in marine sediments worldwide, averaging 15% of all sequences analysed, and represent most of the previously unclassified dsrAB in marine sediments. We propose two new Acidobacteriota genera, Candidatus Sulfomarinibacter (class Thermoanaerobaculia, "subdivision 23") and Ca. Polarisedimenticola ("subdivision 22"), with distinct genetic properties that may explain their distributions in biogeochemically distinct sediments. Ca. Sulfomarinibacter encode flexible respiratory routes, with potential for oxygen, nitrous oxide, metal-oxide, tetrathionate, sulfur and sulfite/sulfate respiration, and possibly sulfur disproportionation. Potential nutrients and energy include cellulose, proteins, cyanophycin, hydrogen, and acetate. A Ca. Polarisedimenticola MAG encodes various enzymes to degrade proteins, and to reduce oxygen, nitrate, sulfur/polysulfide and metal-oxides. 16S rRNA gene and transcript profiling of Svalbard sediments showed Ca. Sulfomarinibacter members were relatively abundant and transcriptionally active in sulfidic fjord sediments, while Ca. Polarisedimenticola members were more relatively abundant in metal-rich fjord sediments. Overall, we reveal various physiological features of uncultured marine Acidobacteriota that indicate fundamental roles in seafloor biogeochemical cycling.
Collapse
Affiliation(s)
- Mathias Flieder
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Joy Buongiorno
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
- Division of Natural Sciences, Maryville College, Maryville, TN, USA
| | - Craig W Herbold
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Division of Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Karen G Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Alexander Loy
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria.
- Austrian Polar Research Institute, Vienna, Austria.
| | - Kenneth Wasmund
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Austrian Polar Research Institute, Vienna, Austria.
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
5
|
Yoneda Y, Yamamoto K, Makino A, Tanaka Y, Meng XY, Hashimoto J, Shin-ya K, Satoh N, Fujie M, Toyama T, Mori K, Ike M, Morikawa M, Kamagata Y, Tamaki H. Novel Plant-Associated Acidobacteria Promotes Growth of Common Floating Aquatic Plants, Duckweeds. Microorganisms 2021; 9:1133. [PMID: 34074043 PMCID: PMC8225144 DOI: 10.3390/microorganisms9061133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Duckweeds are small, fast growing, and starch- and protein-rich aquatic plants expected to be a next generation energy crop and an excellent biomaterial for phytoremediation. Despite such an importance, very little is known about duckweed-microbe interactions that would be a key biological factor for efficient industrial utilization of duckweeds. Here we first report the duckweed growth promoting ability of bacterial strains belonging to the phylum Acidobacteria, the members of which are known to inhabit soils and terrestrial plants, but their ecological roles and plant-microbe interactions remain largely unclear. Two novel Acidobacteria strains, F-183 and TBR-22, were successfully isolated from wild duckweeds and phylogenetically affiliated with subdivision 3 and 6 of the phylum, respectively, based on 16S rRNA gene sequence analysis. In the co-culture experiments with aseptic host plants, the F-183 and TBR-22 strains visibly enhanced growth (frond number) of six duckweed species (subfamily Lemnoideae) up to 1.8-5.1 times and 1.6-3.9 times, respectively, compared with uninoculated controls. Intriguingly, both strains also increased the chlorophyll content of the duckweed (Lemna aequinoctialis) up to 2.4-2.5 times. Under SEM observation, the F-183 and TBR-22 strains were epiphytic and attached to the surface of duckweed. Taken together, our findings suggest that indigenous plant associated Acidobacteria contribute to a healthy growth of their host aquatic plants.
Collapse
Affiliation(s)
- Yasuko Yoneda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan; (Y.Y.); (K.Y.); (A.M.); (X.-Y.M.); (Y.K.)
| | - Kyosuke Yamamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan; (Y.Y.); (K.Y.); (A.M.); (X.-Y.M.); (Y.K.)
- Bioproduction Research Institute, AIST, Sapporo 062-8517, Hokkaido, Japan
| | - Ayaka Makino
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan; (Y.Y.); (K.Y.); (A.M.); (X.-Y.M.); (Y.K.)
| | - Yasuhiro Tanaka
- Department of Environmental Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu 400-8510, Yamanashi, Japan;
| | - Xian-Ying Meng
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan; (Y.Y.); (K.Y.); (A.M.); (X.-Y.M.); (Y.K.)
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBiC), Koto-ku, Tokyo 135-0064, Japan;
| | - Kazuo Shin-ya
- Cellular and Molecular Biotechnology Research Institute, AIST, Koto-ku, Tokyo 135-0064, Japan;
| | - Noriyuki Satoh
- Okinawa Institute of Science, Technology Graduate University (OIST), Kunigami-gun 904-0495, Okinawa, Japan; (N.S.); (M.F.)
| | - Manabu Fujie
- Okinawa Institute of Science, Technology Graduate University (OIST), Kunigami-gun 904-0495, Okinawa, Japan; (N.S.); (M.F.)
| | - Tadashi Toyama
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Yamanashi, Kofu 400-8511, Yamanashi, Japan; (T.T.); (K.M.)
| | - Kazuhiro Mori
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Yamanashi, Kofu 400-8511, Yamanashi, Japan; (T.T.); (K.M.)
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Masaaki Morikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan;
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan; (Y.Y.); (K.Y.); (A.M.); (X.-Y.M.); (Y.K.)
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan; (Y.Y.); (K.Y.); (A.M.); (X.-Y.M.); (Y.K.)
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
6
|
Distribution patterns of Acidobacteriota in different fynbos soils. PLoS One 2021; 16:e0248913. [PMID: 33750980 PMCID: PMC7984625 DOI: 10.1371/journal.pone.0248913] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/09/2021] [Indexed: 11/28/2022] Open
Abstract
The Acidobacteriota is ubiquitous and is considered as one of the major bacterial phyla in soils. The current taxonomic classifications of this phylum are divided into 15 class-level subdivisions (SDs), with only 5 of these SDs containing cultured and fully described species. Within the fynbos biome, the Acidobacteriota has been reported as one of the dominant bacterial phyla, with relative abundances ranging between 4–26%. However, none of these studies reported on the specific distribution and diversity of the Acidobacteriota within these soils. Therefore, in this study we aimed to first determine the relative abundance and diversity of the Acidobacteriota in three pristine fynbos nature reserve soils, and secondly, whether differences in the acidobacterial composition can be attributed to environmental factors, such as soil abiotic properties. A total of 27 soil samples were collected at three nature reserves, namely Jonkershoek, Hottentots Holland, and Kogelberg. The variable V4-V5 region of the 16S rRNA gene was sequenced using the Ion Torrent S5 platform. The mean relative abundance of the Acidobacteriota were 9.02% for Jonkershoek, 14.91% for Kogelberg, and most significantly (p<0.05), 18.42% for Hottentots Holland. A total of 33 acidobacterial operational taxonomic units (OTUs) were identified. The dominant subdivisions identified in all samples included SDs 1, 2, and 3. Significant differences were observed in the distribution and composition of these OTUs between nature reserves. The SD1 were negatively correlated to soil pH, hydrogen (H+), potassium (K+) and carbon (C). In contrast, SD2, was positively correlated to soil pH, phosphorus (P), and K+, and unclassified members of SD3 was positively correlated to H+, K, and C. This study is the first to report on the specific acidobacterial distribution in pristine fynbos soils in South Africa.
Collapse
|
7
|
Seasonal and Agricultural Response of Acidobacteria Present in Two Fynbos Rhizosphere Soils. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12070277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Acidobacteria is one of the most abundant phyla in most soil types. Fynbos plants are endemic to South Africa, and these soils provide the ideal habitat for Acidobacteria, because of its low pH and oligotrophic properties. However, little is known about their distribution in the fynbos biome and the impact of cultivation of plants on Acidobacterial diversity. Therefore, the aim of this study was to determine the effect of seasonal changes and cultivation on the relative abundance and diversity of Acidobacteria associated with Aspalathus linearis (rooibos) and Cyclopia spp. (honeybush). This study was based on rhizosphere soil. A total of 32 and 31 operational taxonomic units (OTUs) were identified for honeybush and rooibos, respectively. The majority of these were classified as representatives of subdivisions 1, 2, 3, and 10. Significant differences in community compositions were observed between seasons for both honeybush and rooibos, as well as between the cultivated and uncultivated honeybush. Acidobacteria had a significantly positive correlation with pH, C, Ca2+, and P. In this study, we have shown the effect of seasonal changes, in summer and winter, and cultivation farming on the relative abundance and diversity of Acidobacteria present in the soil of rooibos and honeybush.
Collapse
|
8
|
Yang Q, Franco CMM, Lin HW, Zhang W. Untapped sponge microbiomes: structure specificity at host order and family levels. FEMS Microbiol Ecol 2020; 95:5554005. [PMID: 31494678 DOI: 10.1093/femsec/fiz136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Sponges are complex holobionts in which the structure of the microbiome has seldom been characterized above the host species level. The hypothesis tested in this study is that the structure of the sponge microbiomes is specific to the host at the order and family levels. This was done by using 33 sponge species belonging to 19 families representing five orders. A combination of three primer sets covering the V1-V8 regions of the 16S rRNA gene provided a more comprehensive coverage of the microbiomes. Both the diversity and structure of sponge microbiomes were demonstrated to be highly specific to the host phylogeny at the order and family levels. There are always dominant operational taxonomic units (OTUs) (relative abundance >1%) shared between microbial communities of sponges within the same family or order, but these shared OTUs showed high levels of dissimilarity between different sponge families and orders. The unique OTUs for a particular sponge family or order could be regarded as their 'signature identity'. 70%-87% of these unique OTUs (class level) are unaffiliated and represent a vast resource of untapped microbiota. This study contributes to a deeper understanding on the concept of host-specificity of sponge microbiomes and highlights a hidden reservoir of sponge-associated microbial resources.
Collapse
Affiliation(s)
- Qi Yang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia.,Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Christopher M M Franco
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia
| | - Hou-Wen Lin
- Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia.,Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
9
|
Angelova AG, Ellis GA, Wijesekera HW, Vora GJ. Microbial Composition and Variability of Natural Marine Planktonic and Biofouling Communities From the Bay of Bengal. Front Microbiol 2019; 10:2738. [PMID: 31866960 PMCID: PMC6908470 DOI: 10.3389/fmicb.2019.02738] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022] Open
Abstract
The Bay of Bengal (BoB) is the largest bay in the world and presents a unique marine environment that is subjected to severe weather, a distinct hydrographic regime and a large anthropogenic footprint. Despite these features and the BoB’s overall economic significance, this ecosystem and its microbiome remain among the most underexplored in the world. In this study, amplicon-based microbial profiling was used to assess the bacterial, archaeal, and micro-eukaryotic content of unperturbed planktonic and biofilm/biofouling communities within the BoB. Planktonic microbial communities were collected during the Southwest monsoon season from surface (2 m), subsurface (75 m), and deep-sea (1000 m) waters from six south-central BoB locations and were compared to concomitant mature biofouling communities from photic-zone subsurface moorings (∼75 m). The results demonstrated vertical stratification of all planktonic communities with geographic variations disappearing in the deep-sea environment. Planktonic microbial diversity was found to be driven by different members of the community, with the most dominant phylotypes driving the diversity of the photic zone and rarer species playing a more influential role within the deep-sea. Geographic variability was not observed in the co-located biofouling microbiomes, but community composition and variability was found to be driven by depth and the presence of macro-fouling and photosynthetic organisms. Overall, these results provide much needed baselines for longitudinal assessments that can be used to monitor the health and evolution of this dynamic and critically important marine environment.
Collapse
Affiliation(s)
- Angelina G Angelova
- American Society for Engineering Education, Postdoctoral Fellowship Program, U.S. Naval Research Laboratory, Washington, DC, United States
| | - Gregory A Ellis
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, United States
| | | | - Gary J Vora
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, United States
| |
Collapse
|
10
|
Kuo J, Yang YT, Lu MC, Wong TY, Sung PJ, Huang YS. Antimicrobial activity and diversity of bacteria associated with Taiwanese marine sponge Theonella swinhoei. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-018-1414-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
11
|
Najafi A, Moradinasab M, Nabipour I. First Record of Microbiomes of Sponges Collected From the Persian Gulf, Using Tag Pyrosequencing. Front Microbiol 2018; 9:1500. [PMID: 30034382 PMCID: PMC6043863 DOI: 10.3389/fmicb.2018.01500] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
The Persian Gulf is a special habitat of marine sponges whose bacterial communities are under-investigated. Recently, next-generation sequencing technology has comprehensively improved the knowledge of marine sponge-associated bacteria. For the first time, this study aimed to evaluate the diversity of the Persian Gulf sponge-associated bacteria using tag pyrosequencing in Iran. In this study, 10 sponge samples from 6 different taxonomic orders were collected from the Persian Gulf using SCUBA diving. The diversity of the bacteria associated with the marine sponges was investigated using the 16S rRNA gene PCR-tagged pyrosequencing method. A total of 68,628 high-quality sequences were obtained and clustered at a 97% similarity into 724 unique operational taxonomic units (OTUs), representing 17 bacterial phyla. Cyanobacteria was the most abundant phylum in the sponges, followed by Proteobacteria, Chloroflexi, Acidobacteria, and Actinobacteria. Other phyla were detected as minor groups of bacteria. Bacterial community richness, Shannon, and Simpson indices revealed the highest diversity in sponge S11 (Dictyoceratida sp.) compared to other sponges. This study showed a diverse structure of bacterial communities associated with the Persian Gulf sponges. The dominance of Cyanobacteria may suggest an ecological importance of this phylum in the Persian Gulf sponges.
Collapse
Affiliation(s)
- Akram Najafi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Moradinasab
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
12
|
Vieira S, Luckner M, Wanner G, Overmann J. Luteitalea pratensis gen. nov., sp. nov. a new member of subdivision 6 Acidobacteria isolated from temperate grassland soil. Int J Syst Evol Microbiol 2017; 67:1408-1414. [PMID: 28141504 DOI: 10.1099/ijsem.0.001827] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Albeit being widespread and abundant in soils worldwide, bacteria of the phylum Acidobacteria have remained grossly understudied due to difficulties in their cultivation and isolation. To date, only 48 species have been validly described, including a single member of the phylogenetically diverse Acidobacteria subdivision 6. Here, we report the polyphasic characterization of strain HEG_-6_39T, a novel representative of Acidobacteria subdivision 6 isolated from a grassland soil in Thuringia, Germany. Cells of HEG_-6_39T are Gram-stain-negative, non-motile, non-spore-forming, non-capsulated short rods that form small dark yellow colonies. This slow growing bacterium is psychrotolerant and grows between 0 and 36 °C. It displays a narrower pH tolerance (5.3-8.3) than most acidobacteria. The strain is an aerobe that grows chemo-organotrophically utilizing mostly sugars and proteinaceous substrates such as peptone, yeast extract, casein hydrolysate and casamino acids as substrates. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol and two unknown phospholipids are identified as polar lipids. Major fatty acids are iso-C15 : 0, summed feature 3 (C16 : 1ω6c/C16 : 1ω7c), C18 : 1ω9c and iso-C17 : 1ω9c. The major respiratory quinone is MK-8. The G+C content of the genomic DNA is 64.7 mol%. 16S rRNA gene sequence analysis indicated that this bacterium was related to Vicinamibacter silvestris Ac_5_C6T with 93.6 % sequence similarity. Based on the present taxonomic characterization, strain HEG_-6_39T represents a new species of a novel genus for which the name Luteitalea pratensis gen. nov., sp. nov., is proposed. The type strain of the type species is HEG_-6_39T (=DSM 100886T=KCTC 52215T).
Collapse
Affiliation(s)
- Selma Vieira
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Manja Luckner
- Department of Biology I, Biozentrum Ludwig Maximilian University of Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Gerhard Wanner
- Department of Biology I, Biozentrum Ludwig Maximilian University of Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany.,Braunschweig University of Technology, Braunschweig, Germany
| |
Collapse
|
13
|
Troussellier M, Escalas A, Bouvier T, Mouillot D. Sustaining Rare Marine Microorganisms: Macroorganisms As Repositories and Dispersal Agents of Microbial Diversity. Front Microbiol 2017; 8:947. [PMID: 28611749 PMCID: PMC5447324 DOI: 10.3389/fmicb.2017.00947] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/11/2017] [Indexed: 12/14/2022] Open
Abstract
Recent analyses revealed that most of the biodiversity observed in marine microbial communities is represented by organisms with low abundance but, nonetheless essential for ecosystem dynamics and processes across both temporal and spatial scales. Surprisingly, few studies have considered the effect of macroorganism–microbe interactions on the ecology and distribution dynamics of rare microbial taxa. In this review, we synthesize several lines of evidence that these relationships cannot be neglected any longer. First, we provide empirical support that the microbiota of macroorganisms represents a significant part of marine bacterial biodiversity and that host-microbe interactions benefit to certain microbial populations which are part of the rare biosphere (i.e., opportunistic copiotrophic organisms). Second, we reveal the major role that macroorganisms may have on the dispersal and the geographic distribution of microbes. Third, we introduce an innovative and integrated view of the interactions between microbes and macroorganisms, namely sustaining the rares, which suggests that macroorganisms favor the maintenance of marine microbial diversity and are involved in the regulation of its richness and dynamics. Finally, we show how this hypothesis complements existing theories in microbial ecology and offers new perspectives about the importance of macroorganisms for the microbial biosphere, particularly the rare members.
Collapse
Affiliation(s)
- Marc Troussellier
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université MontpellierMontpellier, France
| | - Arthur Escalas
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, NormanOK, United States
| | - Thierry Bouvier
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université MontpellierMontpellier, France
| | - David Mouillot
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université MontpellierMontpellier, France.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, TownsvilleQLD, Australia
| |
Collapse
|
14
|
Paulino GVB, Broetto L, Pylro VS, Landell MF. Compositional shifts in bacterial communities associated with the coral Palythoa caribaeorum due to anthropogenic effects. MARINE POLLUTION BULLETIN 2017; 114:1024-1030. [PMID: 27889074 DOI: 10.1016/j.marpolbul.2016.11.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/10/2016] [Accepted: 11/18/2016] [Indexed: 05/06/2023]
Abstract
Corals harbor abundant and diverse prokaryotic communities that may be strongly influenced by human activities, which in turn compromise the normal functioning of coral species and predispose them to opportunistic infections. In this study, we investigated the effect of sewage dumping on the bacterial communities associated with the soft coral Palythoa caribaeorum at two sites in the Brazilian coast. We observed a dominance of bacterial species classified as human pathogens at sites exposed to untreated sewage discharge. The microbial diversity of undisturbed sites was more homogeneous and diverse and showed greater abundance. In addition, bacterial communities differed substantially between the exposed and undisturbed areas. The microbial community associated with the samples collected from the exposed sites revealed the anthropogenic effect caused by organic matter from untreated sewage dumping, with an abundance of pathogenic bacterial species.
Collapse
Affiliation(s)
- Gustavo Vasconcelos Bastos Paulino
- Programa de Pós-graduação em Diversidade Biológica e Conservação nos Trópicos, Universidade Federal de Alagoas, Campus A. C. Simões, Av. Lourival Melo Mota, s/n, CEP 57072-900 Maceió, AL, Brazil
| | - Leonardo Broetto
- Universidade Federal de Alagoas, Campus Arapiraca, Av. Manoel Severino Barbosa, s/n, CEP 57309-005 Arapiraca, AL, Brazil
| | - Victor Satler Pylro
- René Rachou Research Center (CPqRR-FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Melissa Fontes Landell
- Universidade Federal de Alagoas, Campus A. C. Simões, Av. Lourival Melo Mota, s/n, CEP 57072-900 Maceió, AL, Brazil.
| |
Collapse
|
15
|
Tang JY, Ma J, Li XD, Li YH. Illumina sequencing-based community analysis of bacteria associated with different bryophytes collected from Tibet, China. BMC Microbiol 2016; 16:276. [PMID: 27852238 PMCID: PMC5112639 DOI: 10.1186/s12866-016-0892-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/09/2016] [Indexed: 11/17/2022] Open
Abstract
Background Previous studies on the bacteria associated with the bryophytes showed that there were abundant bacteria inhabited in/on these hosts. However, the type of bacteria and whether these discriminate between different bryophytes based on a particular factor remains largely unknown. Results This study was designed to analyze the biodiversity and community of the bacteria associated with ten liverworts and ten mosses using Illumina-sequencing techniques based on bacterial 16S rRNA gene. A total of 125,762 high quality sequences and 437 OTUs were obtained from twenty bryophytes. Generally, there were no obvious differences between the richness of bacteria associated with liverworts and mosses; however, the diversity was significantly higher in liverworts than in mosses. The taxonomic analyses showed that there were abundant bacteria inhabited with each bryophyte and those primarily detected in all samples were within the phyla Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Armatimonadetes and Planctomycetes. In addition, bacteria assigned to Chloroflexi, Fibrobacteres, Gemmatimonadetes, Chlamydiae, group of TM6 and WCHB1-60 also appeared in part of the bryophytes. The assigned bacteria included those adapted to aquatic, anaerobic and even extreme drought environments, which is consistent with the bryophyte transition from aquatic to terrestrial conditions. Of them, approximately 10 recognized genera were shared by all the samples in a higher proportion, such as Burkholderia, Novosphingobium, Mucilaginibacter, Sorangium, Frankia, Frondihatitans, Haliangium, Rhizobacter, Granulicella and Hafnia, and 11 unclassified genera were also detected in all samples, which exhibited that large amounts of unclassified bacteria could interact with the bryophytes. The Heatmap and Principle Coordinate Analyses showed that bacteria associated with six mosses displayed a higher community similarity. Notably, the bacteria associated with another four mosses exhibited higher similarity with the ten liverworts. Conclusions The result of further analysis of the bacterial community in different bryophytes revealed that the phylogeny of hosts might portray a strong influence on the associated bacterial community and that niche also played important roles when the hosts were phylogenetically more similar. Further studies are needed to confirm the role of phylogeny on bacterial communities and determine the level of influence on predicting which bacteria is associated with the host.
Collapse
Affiliation(s)
- Jing Yan Tang
- College of Life Science, Capital Normal University, Xisanhuan North Road 105#, Haidian District, Beijing, 100048, China
| | - Jing Ma
- College of Life Science, Capital Normal University, Xisanhuan North Road 105#, Haidian District, Beijing, 100048, China
| | - Xue Dong Li
- College of Life Science, Capital Normal University, Xisanhuan North Road 105#, Haidian District, Beijing, 100048, China
| | - Yan Hong Li
- College of Life Science, Capital Normal University, Xisanhuan North Road 105#, Haidian District, Beijing, 100048, China.
| |
Collapse
|
16
|
Cummings ME, Barbé D, Leao TF, Korobeynikov A, Engene N, Glukhov E, Gerwick WH, Gerwick L. A novel uncultured heterotrophic bacterial associate of the cyanobacterium Moorea producens JHB. BMC Microbiol 2016; 16:198. [PMID: 27577966 PMCID: PMC5006271 DOI: 10.1186/s12866-016-0817-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/19/2016] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Filamentous tropical marine cyanobacteria such as Moorea producens strain JHB possess a rich community of heterotrophic bacteria on their polysaccharide sheaths; however, these bacterial communities have not yet been adequately studied or characterized. RESULTS AND DISCUSSION Through efforts to sequence the genome of this cyanobacterial strain, the 5.99 MB genome of an unknown bacterium emerged from the metagenomic information, named here as Mor1. Analysis of its genome revealed that the bacterium is heterotrophic and belongs to the phylum Acidobacteria, subgroup 22; however, it is only 85 % identical to the nearest cultured representative. Comparative genomics further revealed that Mor1 has a large number of genes involved in transcriptional regulation, is completely devoid of transposases, is not able to synthesize the full complement of proteogenic amino acids and appears to lack genes for nitrate uptake. Mor1 was found to be present in lab cultures of M. producens collected from various locations, but not other cyanobacterial species. Diverse efforts failed to culture the bacterium separately from filaments of M. producens JHB. Additionally, a co-culturing experiment between M. producens JHB possessing Mor1 and cultures of other genera of cyanobacteria indicated that the bacterium was not transferable. CONCLUSION The data presented support a specific relationship between this novel uncultured bacterium and M. producens, however, verification of this proposed relationship cannot be done until the "uncultured" bacterium can be cultured.
Collapse
Affiliation(s)
- Milo E Cummings
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - Debby Barbé
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tiago Ferreira Leao
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - Anton Korobeynikov
- Department of Statistical Modelling, St. Petersburg State University, Saint Petersburg, Russia
- Center for Algorithmic Biotechnology, St. Petersburg State University, Saint Petersburg, Russia
| | - Niclas Engene
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Evgenia Glukhov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|