1
|
Ducza L, Gaál B. The Neglected Sibling: NLRP2 Inflammasome in the Nervous System. Aging Dis 2024; 15:1006-1028. [PMID: 38722788 PMCID: PMC11081174 DOI: 10.14336/ad.2023.0926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/26/2023] [Indexed: 05/13/2024] Open
Abstract
While classical NOD-like receptor pyrin domain containing protein 1 (NLRP1) and NLRP3 inflammasomal proteins have been extensively investigated, the contribution of NLRP2 is still ill-defined in the nervous system. Given the putative significance of NLRP2 in orchestrating neuroinflammation, further inquiry is needed to gain a better understanding of its connectome, hence its specific targeting may hold a promising therapeutic implication. Therefore, bioinformatical approach for extracting information, specifically in the context of neuropathologies, is also undoubtedly preferred. To the best of our knowledge, there is no review study selectively targeting only NLRP2. Increasing, but still fragmentary evidence should encourage researchers to thoroughly investigate this inflammasome in various animal- and human models. Taken together, herein we aimed to review the current literature focusing on the role of NLRP2 inflammasome in the nervous system and more importantly, we provide an algorithm-based protein network of human NLRP2 for elucidating potentially valuable molecular partnerships that can be the beginning of a new discourse and future therapeutic considerations.
Collapse
Affiliation(s)
- László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary, Hungary
| | - Botond Gaál
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary, Hungary
| |
Collapse
|
2
|
Hernaiz A, Sanz A, Sentre S, Ranera B, Lopez-Pérez O, Zaragoza P, Badiola JJ, Filali H, Bolea R, Toivonen JM, Martín-Burriel I. Genome-Wide Methylation Profiling in the Thalamus of Scrapie Sheep. Front Vet Sci 2022; 9:824677. [PMID: 35252421 PMCID: PMC8888973 DOI: 10.3389/fvets.2022.824677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Scrapie is a neurodegenerative disorder belonging to the group of transmissible spongiform encephalopathy (TSE). Scrapie occurs in sheep and goats, which are considered good natural animal models of these TSE. Changes in DNA methylation occur in the central nervous system (CNS) of patients suffering from prion-like neurodegenerative diseases, such as Alzheimer's disease. Nevertheless, potential DNA methylation alterations have not yet been investigated in the CNS of any prion disease model or naturally infected cases, neither in humans nor in animals. Genome-wide DNA methylation patterns were studied in the thalamus obtained from sheep naturally infected with scrapie at a clinical stage (n = 4) and from controls (n = 4) by performing a whole-genome bisulfite sequencing (WGBS) analysis. Ewes carried the scrapie-susceptible ARQ/ARQ PRNP genotype and were sacrificed at a similar age (4–6 years). Although the average genomic methylation levels were similar between the control and the scrapie animals, we identified 8,907 significant differentially methylated regions (DMRs) and 39 promoters (DMPs). Gene Ontology analysis revealed that hypomethylated DMRs were enriched in genes involved in transmembrane transport and cell adhesion, whereas hypermethylated DMRs were related to intracellular signal transduction genes. Moreover, genes highly expressed in specific types of CNS cells and those previously described to be differentially expressed in scrapie brains contained DMRs. Finally, a quantitative PCR (qPCR) validation indicated differences in the expression of five genes (PCDH19, SNCG, WDR45B, PEX1, and CABIN1) that matched the methylation changes observed in the genomic study. Altogether, these results suggest a potential regulatory role of DNA methylation in prion neuropathology.
Collapse
Affiliation(s)
- Adelaida Hernaiz
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Arianne Sanz
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Sara Sentre
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Beatriz Ranera
- Facultad de Ciencias de la Salud, Universidad San Jorge, Zaragoza, Spain
| | - Oscar Lopez-Pérez
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Juan J. Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Hicham Filali
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Janne M. Toivonen
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Inmaculada Martín-Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Inmaculada Martín-Burriel
| |
Collapse
|
3
|
Effect of Scrapie Prion Infection in Ovine Bone Marrow-Derived Mesenchymal Stem Cells and Ovine Mesenchymal Stem Cell-Derived Neurons. Animals (Basel) 2021; 11:ani11041137. [PMID: 33921147 PMCID: PMC8071557 DOI: 10.3390/ani11041137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Prion diseases are neurodegenerative disorders affecting humans and animals. The development of in vitro cellular models from naturally susceptible species like humans or ruminants can potentially make a great contribution to the study of many aspects of these diseases, including the ability of prions to infect and replicate in cells and therapeutics. Our study shows for the first time how ovine mesenchymal stem cells derived from bone marrow and their neural-like progeny are able to react to scrapie prion infection in vitro and assesses the effects of this infection on cell viability and proliferation. Finally, we observe that the differentiation of ovine mesenchymal stem cells into neuron-like cells makes them more permissive to prion infection. Abstract Scrapie is a prion disease affecting sheep and goats and it is considered a prototype of transmissible spongiform encephalopathies (TSEs). Mesenchymal stem cells (MSCs) have been proposed as candidates for developing in vitro models of prion diseases. Murine MSCs are able to propagate prions after previous mouse-adaptation of prion strains and, although ovine MSCs express the cellular prion protein (PrPC), their susceptibility to prion infection has never been investigated. Here, we analyze the potential of ovine bone marrow-derived MSCs (oBM-MSCs), in growth and neurogenic conditions, to be infected by natural scrapie and propagate prion particles (PrPSc) in vitro, as well as the effect of this infection on cell viability and proliferation. Cultures were kept for 48–72 h in contact with homogenates of central nervous system (CNS) samples from scrapie or control sheep. In growth conditions, oBM-MSCs initially maintained detectable levels of PrPSc post-inoculation, as determined by Western blotting and ELISA. However, the PrPSc signal weakened and was lost over time. oBM-MSCs infected with scrapie displayed lower cell doubling and higher doubling times than those infected with control inocula. On the other hand, in neurogenic conditions, oBM-MSCs not only maintained detectable levels of PrPSc post-inoculation, as determined by ELISA, but this PrPSc signal also increased progressively over time. Finally, inoculation with CNS extracts seems to induce the proliferation of oBM-MSCs in both growth and neurogenic conditions. Our results suggest that oBM-MSCs respond to prion infection by decreasing their proliferation capacity and thus might not be permissive to prion replication, whereas ovine MSC-derived neuron-like cells seem to maintain and replicate PrPSc.
Collapse
|
4
|
Chen L, Xiao D, Tang F, Gao H, Li X. CAPN6 in disease: An emerging therapeutic target (Review). Int J Mol Med 2020; 46:1644-1652. [PMID: 33000175 PMCID: PMC7521557 DOI: 10.3892/ijmm.2020.4734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
As a member of the calpain protein family, calpain6 (CAPN6) is highly expressed mainly in the placenta and embryos. It plays a number of important roles in cellular processes, such as the stabilization of microtubules, the main-tenance of cell stability, the control of cell movement and the inhibition of apoptosis. In recent years, various studies have found that CAPN6 is one of the contributing factors associated with the tumorigenesis of uterine tumors and osteosarcoma, and that CAPN6 participates in the development of tumors by promoting cell proliferation and angiogenesis, and by inhibiting apoptosis, which is mainly regulated by the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway. Due to its abnormal cellular expression, CAPN6 has also been found to be associated with a number of diseases, such as white matter damage and muscular dystrophy. Therefore, CAPN6 may be a novel therapeutic target for these diseases. In the present review, the role of CAPN6 in disease and its possible use as a target in various therapies are discussed.
Collapse
Affiliation(s)
- Lin Chen
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dongqiong Xiao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fajuan Tang
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hu Gao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xihong Li
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
5
|
Abstract
Prion diseases are unique neurodegenerative pathologies that can occur with sporadic, genetic, and acquired etiologies. Human and animal prion diseases can be recapitulated in laboratory animals with good reproducibility providing highly controlled models for studying molecular mechanisms of neurodegeneration. In this chapter the overall area of omics research in prion diseases is described. The term omics includes all fields of studies that employ a comprehensive, unbiased, and high-throughput approach to areas of research such as functional genomics, transcriptomics, and proteomics. These kind of approaches can be extremely helpful in identifying disease susceptibility factors and pathways that are dysregulated upon the onset and the progression of the disease. Herein, the most important research about the various forms of prion pathologies in human and in models of prion diseases in animals is presented and discussed.
Collapse
|
6
|
Mediano DR, Sanz-Rubio D, Bolea R, Marín B, Vázquez FJ, Remacha AR, López-Pérez Ó, Fernández-Borges N, Castilla J, Zaragoza P, Badiola JJ, Rodellar C, Martín-Burriel I. Characterization of mesenchymal stem cells in sheep naturally infected with scrapie. J Gen Virol 2016; 96:3715-3726. [PMID: 26431976 DOI: 10.1099/jgv.0.000292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be infected with prions and have been proposed as in vitro cell-based models for prion replication. In addition, autologous MSCs are of interest for cell therapy in neurodegenerative diseases. To the best of our knowledge, the effect of prion diseases on the characteristics of these cells has never been investigated. Here, we analysed the properties of MSCs obtained from bone marrow (BM-MSCs) and peripheral blood (PB-MSCs) of sheep naturally infected with scrapie — a large mammal model for the study of prion diseases. After three passages of expansion, MSCs derived from scrapie animals displayed similar adipogenic, chondrogenic and osteogenic differentiation ability as cells from healthy controls, although a subtle decrease in the proliferation potential was observed. Exceptionally, mesenchymal markers such as CD29 were significantly upregulated at the transcript level compared with controls. Scrapie MSCs were able to transdifferentiate into neuron-like cells, but displayed lower levels of neurogenic markers at basal conditions, which could limit this potential .The expression levels of cellular prion protein (PrPC) were highly variable between cultures, and no significant differences were observed between control and scrapie-derived MSCs. However, during neurogenic differentiation the expression of PrPC was upregulated in MSCs. This characteristic could be useful for developing in vitro models for prion replication. Despite the infectivity reported for MSCs obtained from scrapie-infected mice and Creutzfeldt–Jakob disease patients, protein misfolding cyclic amplification did not detect PrPSc in BM- or PB-MSCs from scrapie-infected sheep, which limits their use for in vivo diagnosis for scrapie.
Collapse
Affiliation(s)
- Diego R Mediano
- Laboratorio de Genética Bioquímica, Instituto de Investigación Agroalimentaria (IA2), IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - David Sanz-Rubio
- Laboratorio de Genética Bioquímica, Instituto de Investigación Agroalimentaria (IA2), IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Rosa Bolea
- Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, Instituto de Investigación Agroalimentaria (IA2), IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Belén Marín
- Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, Instituto de Investigación Agroalimentaria (IA2), IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Francisco J Vázquez
- Laboratorio de Genética Bioquímica, Instituto de Investigación Agroalimentaria (IA2), IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Ana R Remacha
- Laboratorio de Genética Bioquímica, Instituto de Investigación Agroalimentaria (IA2), IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Óscar López-Pérez
- Laboratorio de Genética Bioquímica, Instituto de Investigación Agroalimentaria (IA2), IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, Instituto de Investigación Agroalimentaria (IA2), IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Spain.,IKERBasque, Basque Foundation for Science, Bilbao, Spain
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica, Instituto de Investigación Agroalimentaria (IA2), IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan J Badiola
- Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, Instituto de Investigación Agroalimentaria (IA2), IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Clementina Rodellar
- Laboratorio de Genética Bioquímica, Instituto de Investigación Agroalimentaria (IA2), IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, Instituto de Investigación Agroalimentaria (IA2), IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Laboratorio de Genética Bioquímica, Instituto de Investigación Agroalimentaria (IA2), IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
7
|
Xerxa E, Barbisin M, Chieppa MN, Krmac H, Vallino Costassa E, Vatta P, Simmons M, Caramelli M, Casalone C, Corona C, Legname G. Whole Blood Gene Expression Profiling in Preclinical and Clinical Cattle Infected with Atypical Bovine Spongiform Encephalopathy. PLoS One 2016; 11:e0153425. [PMID: 27073865 PMCID: PMC4830546 DOI: 10.1371/journal.pone.0153425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022] Open
Abstract
Prion diseases, such as bovine spongiform encephalopathies (BSE), are transmissible neurodegenerative disorders affecting humans and a wide variety of mammals. Variant Creutzfeldt-Jakob disease (vCJD), a prion disease in humans, has been linked to exposure to BSE prions. This classical BSE (cBSE) is now rapidly disappearing as a result of appropriate measures to control animal feeding. Besides cBSE, two atypical forms (named H- and L-type BSE) have recently been described in Europe, Japan, and North America. Here we describe the first wide-spectrum microarray analysis in whole blood of atypical BSE-infected cattle. Transcriptome changes in infected animals were analyzed prior to and after the onset of clinical signs. The microarray analysis revealed gene expression changes in blood prior to the appearance of the clinical signs and during the progression of the disease. A set of 32 differentially expressed genes was found to be in common between clinical and preclinical stages and showed a very similar expression pattern in the two phases. A 22-gene signature showed an oscillating pattern of expression, being differentially expressed in the preclinical stage and then going back to control levels in the symptomatic phase. One gene, SEL1L3, was downregulated during the progression of the disease. Most of the studies performed up to date utilized various tissues, which are not suitable for a rapid analysis of infected animals and patients. Our findings suggest the intriguing possibility to take advantage of whole blood RNA transcriptional profiling for the preclinical identification of prion infection. Further, this study highlighted several pathways, such as immune response and metabolism that may play an important role in peripheral prion pathogenesis. Finally, the gene expression changes identified in the present study may be further investigated as a fingerprint for monitoring the progression of disease and for developing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Elena Xerxa
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Functional and Structural Genomics sector, Trieste, Italy
| | - Maura Barbisin
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Functional and Structural Genomics sector, Trieste, Italy
| | - Maria Novella Chieppa
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Torino, Italy
| | - Helena Krmac
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Functional and Structural Genomics sector, Trieste, Italy
| | - Elena Vallino Costassa
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Torino, Italy
| | - Paolo Vatta
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Functional and Structural Genomics sector, Trieste, Italy
| | - Marion Simmons
- Pathology Department, Animal and Plant Health Agency (Weybridge), New Haw, Addlestone, United Kingdom
| | - Maria Caramelli
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Torino, Italy
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Torino, Italy
| | - Cristiano Corona
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Torino, Italy
| | - Giuseppe Legname
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Functional and Structural Genomics sector, Trieste, Italy
- * E-mail:
| |
Collapse
|
8
|
Barbisin M, Vanni S, Schmädicke AC, Montag J, Motzkus D, Opitz L, Salinas-Riester G, Legname G. Gene expression profiling of brains from bovine spongiform encephalopathy (BSE)-infected cynomolgus macaques. BMC Genomics 2014; 15:434. [PMID: 24898206 PMCID: PMC4061447 DOI: 10.1186/1471-2164-15-434] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prion diseases are fatal neurodegenerative disorders whose pathogenesis mechanisms are not fully understood. In this context, the analysis of gene expression alterations occurring in prion-infected animals represents a powerful tool that may contribute to unravel the molecular basis of prion diseases and therefore discover novel potential targets for diagnosis and therapeutics. Here we present the first large-scale transcriptional profiling of brains from BSE-infected cynomolgus macaques, which are an excellent model for human prion disorders. RESULTS The study was conducted using the GeneChip® Rhesus Macaque Genome Array and revealed 300 transcripts with expression changes greater than twofold. Among these, the bioinformatics analysis identified 86 genes with known functions, most of which are involved in cellular development, cell death and survival, lipid homeostasis, and acute phase response signaling. RT-qPCR was performed on selected gene transcripts in order to validate the differential expression in infected animals versus controls. The results obtained with the microarray technology were confirmed and a gene signature was identified. In brief, HBB and HBA2 were down-regulated in infected macaques, whereas TTR, APOC1 and SERPINA3 were up-regulated. CONCLUSIONS Some genes involved in oxygen or lipid transport and in innate immunity were found to be dysregulated in prion infected macaques. These genes are known to be involved in other neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Our results may facilitate the identification of potential disease biomarkers for many neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|