1
|
Cunha CW, Baker KN, O’Toole D, Cole E, Shringi S, Dewals BG, Vanderplasschen A, Li H. A Vaccine Targeting Ovine Herpesvirus 2 Glycoprotein B Protects against Sheep-Associated Malignant Catarrhal Fever. Vaccines (Basel) 2022; 10:vaccines10122156. [PMID: 36560568 PMCID: PMC9786699 DOI: 10.3390/vaccines10122156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Malignant catarrhal fever (MCF) is a complex and often fatal disease of ungulates. Effective vaccines are needed to avoid MCF outbreaks and mitigate losses. This study aimed to evaluate a sheep-associated MCF (SA-MCF) vaccine candidate targeting ovine herpesvirus 2 (OvHV-2) glycoprotein B (gB). Rabbits were used as a laboratory animal model to test the safety, immunogenicity, and protective efficacy of a chimeric virus consisting of a recombinant, non-pathogenic strain of alcelaphine herpesvirus-1 encoding OvHV-2 ORF8 to express gB (AlHV-1∆ORF73/OvHV-2-ORF8). Viral-vectored immunizations were performed by using the AlHV-1∆ORF73/OvHV-2-ORF8 chimera alone or as a DNA prime (OvHV-2-ORF8)-virus boost regimen. The viral vector was inoculated by intravenous or intramuscular routes and the DNA was delivered by intradermal shots using a gene gun. The vaccine candidates were deemed safe as no clinical signs were observed following any of the immunizations. Anti-OvHV-2 gB antibodies with neutralizing activity were induced by all immunogens. At three weeks post-final immunization, all animals were challenged intranasally with a lethal dose of OvHV-2. MCF protection rates ranging from 66.7% to 71.4% were observed in vaccinated rabbits, while all mock-vaccinated animals developed the disease. The significant protective efficacy obtained with the vaccine platforms tested in this study encourages further trials in relevant livestock species, such as cattle and bison.
Collapse
Affiliation(s)
- Cristina W. Cunha
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA 99164, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
- Correspondence: ; Tel.: +1-509-335-6072
| | - Katherine N. Baker
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA 99164, USA
| | - Donal O’Toole
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY 82070, USA
| | - Emily Cole
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Smriti Shringi
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Benjamin G. Dewals
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Alain Vanderplasschen
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Hong Li
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA 99164, USA
| |
Collapse
|
2
|
Analysis of immune responses to attenuated alcelaphine herpesvirus 1 formulated with and without adjuvant. Vaccine X 2021; 8:100090. [PMID: 33912826 PMCID: PMC8065228 DOI: 10.1016/j.jvacx.2021.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 11/24/2022] Open
Abstract
MCF vaccine was tested with and without adjuvant and containing inactivated virus. Adjuvant was required for optimal virus neutralising antibody responses. Storage of AlHV-1 with Emulsigen adjuvant significantly reduced virus viability. Vaccination with adjuvant-inactivated AlHV-1 did not reduce antibody responses.
The experimental vaccine for bovine malignant catarrhal fever consists of viable attenuated alcelaphine herpesvirus 1 (AlHV-1) derived by extensive culture passage, combined with an oil-in-water adjuvant, delivered intramuscularly. This immunisation strategy was over 80% effective in previous experimental and field trials and protection appeared to be associated with induction of virus-neutralising antibodies. Whether the vaccine virus is required to be viable at the point of immunisation and whether adjuvant is required to induce the appropriate immune responses remains unclear. To address these issues two studies were performed, firstly to analyse immune responses in the presence and absence of adjuvant and secondly, to investigate immune responses to vaccines containing adjuvant plus viable or inactivated AlHV-1. The first study showed that viable attenuated AlHV-1 in the absence of adjuvant induced virus-specific antibodies but the titres of virus-neutralising antibodies were significantly lower than those induced by vaccine containing viable virus and adjuvant, suggesting adjuvant was required for optimal responses. In contrast, the second study found that the vaccine containing inactivated (>99.9%) AlHV-1 induced similar levels of virus-neutralising antibody to the equivalent formulation containing viable AlHV-1. Together these studies suggest that the MCF vaccine acts as an antigen depot for induction of immune responses, requiring adjuvant and a suitable antigen source, which need not be viable virus. These observations may help in directing the development of alternative MCF vaccine formulations for distribution in the absence of an extensive cold chain.
Collapse
|
3
|
Shringi S, O’Toole D, Cole E, Baker KN, White SN, Donofrio G, Li H, Cunha CW. OvHV-2 Glycoprotein B Delivered by a Recombinant BoHV-4 Is Immunogenic and Induces Partial Protection against Sheep-Associated Malignant Catarrhal Fever in a Rabbit Model. Vaccines (Basel) 2021; 9:vaccines9020090. [PMID: 33530566 PMCID: PMC7911203 DOI: 10.3390/vaccines9020090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
An efficacious vaccine for sheep-associated malignant catarrhal fever (SA-MCF) is important for the livestock industry. Research towards SA-MCF vaccine development is hindered by the absence of culture systems to propagate the causative agent, ovine herpesvirus-2 (OvHV-2), which means its genome cannot be experimentally modified to generate an attenuated vaccine strain. Alternative approaches for vaccine development are needed to deliver OvHV-2 antigens. Bovine herpesvirus 4 (BoHV-4) has been evaluated as a vaccine vector for several viral antigens with promising results. In this study, we genetically engineered BoHV-4 to express OvHV-2 glycoprotein B (gB) and evaluated its efficacy as an SA-MCF vaccine using a rabbit model. The construction of a viable recombinant virus (BoHV-4-AΔTK-OvHV-2-gB) and confirmation of OvHV-2 gB expression were performed in vitro. The immunization of rabbits with BoHV-4-AΔTK-OvHV-2-gB elicited strong humoral responses to OvHV-2 gB, including neutralizing antibodies. Following intra-nasal challenge with a lethal dose of OvHV-2, 42.9% of the OvHV-2 gB vaccinated rabbits were protected against SA-MCF, while all rabbits in the mock-vaccinated group succumbed to SA-MCF. Overall, OvHV-2 gB delivered by the recombinant BoHV-4 was immunogenic and partly protective against SA-MCF in rabbits. These are promising results towards an SA-MCF vaccine; however, improvements are needed to increase protection rates.
Collapse
Affiliation(s)
- Smriti Shringi
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (S.S.); (E.C.); (K.N.B.); (S.N.W.)
| | - Donal O’Toole
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY 82070, USA;
| | - Emily Cole
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (S.S.); (E.C.); (K.N.B.); (S.N.W.)
| | - Katherine N. Baker
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (S.S.); (E.C.); (K.N.B.); (S.N.W.)
| | - Stephen N. White
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (S.S.); (E.C.); (K.N.B.); (S.N.W.)
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA 99164, USA;
- Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, 43126 Parma, Italy;
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA
| | - Hong Li
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA 99164, USA;
| | - Cristina W. Cunha
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (S.S.); (E.C.); (K.N.B.); (S.N.W.)
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA 99164, USA;
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA
- Correspondence:
| |
Collapse
|
4
|
A randomised vaccine field trial in Kenya demonstrates protection against wildebeest-associated malignant catarrhal fever in cattle. Vaccine 2019; 37:5946-5953. [PMID: 31473000 DOI: 10.1016/j.vaccine.2019.08.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 11/23/2022]
Abstract
Wildebeest-associated malignant catarrhal fever (WA-MCF), a fatal disease of cattle caused by alcelaphine herpesvirus 1 (AlHV-1), is one of the most important seasonal diseases of cattle in wildebeest endemic areas, with annual incidence reaching 10%. Here we report efficacy of over 80% for a vaccine based on the attenuated AlHV-1 C500 strain, in preventing fatal WA-MCF in cattle exposed to natural wildebeest challenge. The study was conducted at Kapiti Plains Ranch Ltd, south-east of Nairobi, Kenya. In 2016, 146 cattle were selected for a randomised placebo-controlled trial. Cattle were stratified according to breed and age and randomly assigned to groups given vaccine or culture medium mixed with Emulsigen®. Cattle received prime and boost inoculations one month apart and few adverse reactions (n = 4) were observed. Indirect ELISA demonstrated that all cattle in the vaccine group developed a serological response to AlHV-1. The study herd was grazed with wildebeest from one month after booster vaccination. Three cattle, two that received vaccine and one control, succumbed to conditions unrelated to WA-MCF before the study ended. Twenty-five cattle succumbed to WA-MCF; four of the remaining 71 cattle in the vaccine group (5.6%) and 21 of the remaining 72 control cattle (29.2%; χ2 = 13.6, df = 1, p < 0.001). All of the WA-MCF affected cattle were confirmed by PCR to be infected with AlHV-1 and in 23 cases exhibited histopathology typical of WA-MCF. Vaccine efficacy was determined to be 80.6% (95% CI 46.5-93.0%). Hence, the AlHV-1 C500 vaccine is a safe and potentially effective novel method for controlling WA-MCF in cattle. The implementation of this vaccine may have significant impacts on marginalised cattle keeping communities.
Collapse
|
5
|
Yatoo MI, Parray OR, Bhat RA, Nazir QU, Haq AU, Malik HU, Fazilli MUR, Gopalakrishnan A, Bashir ST, Tiwari R, Khurana SK, Chaicumpa W, Dhama K. Novel Candidates for Vaccine Development Against Mycoplasma Capricolum Subspecies Capripneumoniae (Mccp)-Current Knowledge and Future Prospects. Vaccines (Basel) 2019; 7:E71. [PMID: 31340571 PMCID: PMC6789616 DOI: 10.3390/vaccines7030071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
Exploration of novel candidates for vaccine development against Mycoplasma capricolum subspecies capripneumoniae (Mccp), the causative agent of contagious caprine pleuropneumonia (CCPP), has recently gained immense importance due to both the increased number of outbreaks and the alarming risk of transboundary spread of disease. Treatment by antibiotics as the only therapeutic strategy is not a viable option due to pathogen persistence, economic issues, and concerns of antibiotic resistance. Therefore, prophylactics or vaccines are becoming important under the current scenario. For quite some time inactivated, killed, or attenuated vaccines proved to be beneficial and provided good immunity up to a year. However, their adverse effects and requirement for larger doses led to the need for production of large quantities of Mccp. This is challenging because the required culture medium is costly and Mycoplasma growth is fastidious and slow. Furthermore, quality control is always an issue with such vaccines. Currently, novel candidate antigens including capsular polysaccharides (CPS), proteins, enzymes, and genes are being evaluated for potential use as vaccines. These have shown potential immunogenicity with promising results in eliciting protective immune responses. Being easy to produce, specific, effective and free from side effects, these novel vaccine candidates can revolutionize vaccination against CCPP. Use of novel proteomic approaches, including sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis, immunoblotting, matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry, tandem mass spectroscopy, fast protein liquid chromatography (FPLC), bioinformatics, computerized simulation and genomic approaches, including multilocus sequence analysis, next-generation sequencing, basic local alignment search tool (BLAST), gene expression, and recombinant expression, will further enable recognition of ideal antigenic proteins and virulence genes with vaccination potential.
Collapse
Affiliation(s)
- Mohd Iqbal Yatoo
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Jammu and Kashmir, Srinagar 190006, India.
| | - Oveas Raffiq Parray
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Jammu and Kashmir, Srinagar 190006, India
| | - Riyaz Ahmed Bhat
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Jammu and Kashmir, Srinagar 190006, India
| | - Qurat Un Nazir
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Jammu and Kashmir, Srinagar 190006, India
| | - Abrar Ul Haq
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Jammu and Kashmir, Srinagar 190006, India
| | - Hamid Ullah Malik
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Jammu and Kashmir, Srinagar 190006, India
| | - Mujeeb Ur Rehman Fazilli
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Jammu and Kashmir, Srinagar 190006, India
| | - Arumugam Gopalakrishnan
- Department of Veterinary Clinical Medicine, Madras Veterinary College, Tamilnadu Veterinary and Animal Sciences University, Vepery 600007, India
| | - Shah Tauseef Bashir
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Sandip Kumar Khurana
- ICAR-Central Institute for Research on Buffaloes, Sirsa Road, Hisar 125001, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India.
| |
Collapse
|
6
|
Muangthai K, Tankaew P, Varinrak T, Uthi R, Rojanasthien S, Sawada T, Sthitmatee N. Intranasal immunization with a recombinant outer membrane protein H based Haemorrhagic septicemia vaccine in dairy calves. J Vet Med Sci 2017; 80:68-76. [PMID: 29109353 PMCID: PMC5797862 DOI: 10.1292/jvms.17-0176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Haemorrhagic septicemia (HS) is a contagious disease in cattle with high morbidity and mortality rates. HS vaccine in Thailand is an oil-adjuvant formulation, and is difficult to administer. The present study aimed to
formulate and evaluate the protection in dairy calves conferred by immunization with an in-house intranasal HS vaccine. The intranasal vaccine was formulated in a total volume of 500 µl containing either
50 or 100 µg of the recombinant outer membrane protein H (rOmpH) of Pasteurella multocida strain M-1404 (serovar B:2), and 10 µg of Cytosine-phosphate-guanosine
oligodeoxynucleotides (CpG-ODN) as a mucosal adjuvant. Intranasal immunizations were conducted three times at three-week intervals. The antibodies post-immunization were detected by indirect ELISA and demonstrated
efficient in vitro activity in suppressing a P. multocida strain from the complement-mediated killing assay. An intranasal vaccine induced both the serum IgG and secretory IgA levels
that were significantly higher than the level conferred by the parenteral vaccine (P<0.05). Challenge exposure was conducted with a P. multocida strain M-1404 at day 72 of the
experiments. The immunized calves had reduced clinical signs after challenge exposure that would normally result in disease proliferation. We conclude that intranasal vaccination of calves with rOmpH with CpG-ODN 2007
stimulated serum and secretory antibodies to rOmpH and whole cells of P. multocida strain M-1404 antigen. Moreover, it would result in protection in calves against artificial P.
multocida infection.
Collapse
Affiliation(s)
- Korkiat Muangthai
- Bureau of Veterinary Biologics, Department of Livestock Developments, Ministry of Agriculture and Cooperative, Nakhon Ratchasima 30130, Thailand
| | - Pallop Tankaew
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100 Thailand
| | - Thanya Varinrak
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100 Thailand
| | - Ratchanee Uthi
- Bureau of Veterinary Biologics, Department of Livestock Developments, Ministry of Agriculture and Cooperative, Nakhon Ratchasima 30130, Thailand
| | | | - Takuo Sawada
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100 Thailand.,Laboratory of Veterinary Microbiology, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Nattawooti Sthitmatee
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100 Thailand.,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, 50100, Thailand
| |
Collapse
|
7
|
Lankester F, Lugelo A, Werling D, Mnyambwa N, Keyyu J, Kazwala R, Grant D, Smith S, Parameswaran N, Cleaveland S, Russell G, Haig D. The efficacy of alcelaphine herpesvirus-1 (AlHV-1) immunization with the adjuvants Emulsigen ® and the monomeric TLR5 ligand FliC in zebu cattle against AlHV-1 malignant catarrhal fever induced by experimental virus challenge. Vet Microbiol 2016; 195:144-153. [PMID: 27771060 PMCID: PMC5081063 DOI: 10.1016/j.vetmic.2016.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 12/01/2022]
Abstract
Vaccination induces a pharyngeal antibody response in shorthorn zebu cross (SZC). Direct challenge with the AlHV-1 virus is effective at inducing MCF in SZC. Attenuated AlHV–1 + Emulsigen® vaccine efficacy in SZC calculated to be 50%. Bacterial flagellin is not a good adjuvant as inclusion reduced antibody response. We provide evidence that non-fatal AlHV-1 infections occur in SZC.
Malignant catarrhal fever (MCF) is a fatal disease of cattle that, in East Africa, follows contact with wildebeest excreting alcelaphine herpesvirus 1 (AlHV-1). Recently an attenuated vaccine (atAlHV-1) was tested under experimental challenge on Friesian-Holstein (FH) cattle and gave a vaccine efficacy (VE) of approximately 90%. However testing under field conditions on an East African breed, the shorthorn zebu cross (SZC), gave a VE of 56% suggesting that FH and SZC cattle may respond differently to the vaccine. To investigate, a challenge trial was carried out using SZC. Additionally three adjuvant combinations were tested: (i) Emulsigen®, (ii) bacterial flagellin (FliC) and (iii) Emulsigen® + bacterial flagellin. We report 100% seroconversion in all immunized cattle. The group inoculated with atAlHV-1 + Emulsigen® had significantly higher antibody titres than groups inoculated with FliC, the smallest number of animals that became infected and the fewest fatalities, suggesting this was the most effective combination. A larger study is required to more accurately determine the protective effect of this regime in SZC. There was an apparent inhibition of the antibody response in cattle inoculated with atAlHV-1 + FliC, suggesting FliC might induce an immune suppressive mechanism. The VE in SZC (50–60%) was less than that in FH (80–90%). We speculate that this might be due to increased risk of disease in vaccinated SZC (suggesting that the vaccine may be less effective at stimulating an appropriate immune response in this breed) and/or increased survival in unvaccinated SZC (suggesting that these cattle may have a degree of prior immunity against infection with AlHV-1).
Collapse
Affiliation(s)
- Felix Lankester
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK; Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA; School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania
| | - Ahmed Lugelo
- Faculty of Veterinary Medicine, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Dirk Werling
- Royal Veterinary College, Department of Pathology and Pathogen Biology, London, UK
| | - Nicholas Mnyambwa
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania
| | - Julius Keyyu
- Tanzanian Wildlife Research Institute, Arusha, Tanzania
| | - Rudovick Kazwala
- Faculty of Veterinary Medicine, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Dawn Grant
- Moredun Research Institute, Midlothian, Edinburgh, UK
| | - Sarah Smith
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Nevi Parameswaran
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Sarah Cleaveland
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | - David Haig
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK.
| |
Collapse
|
8
|
Lankester F, Russell GC, Lugelo A, Ndabigaye A, Mnyambwa N, Keyyu J, Kazwala R, Grant D, Percival A, Deane D, Haig DM, Cleaveland S. A field vaccine trial in Tanzania demonstrates partial protection against malignant catarrhal fever in cattle. Vaccine 2015; 34:831-8. [PMID: 26706270 PMCID: PMC4742522 DOI: 10.1016/j.vaccine.2015.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 10/29/2022]
Abstract
Malignant catarrhal fever (MCF) is a fatal lymphoproliferative disease of cattle that, in East Africa, results from transmission of the causative virus, alcelaphine herpesvirus 1 (AlHV-1), from wildebeest. A vaccine field trial involving an attenuated AlHV-1 virus vaccine was performed over two wildebeest calving seasons on the Simanjiro Plain of northern Tanzania. Each of the two phases of the field trial consisted of groups of 50 vaccinated and unvaccinated cattle, which were subsequently exposed to AlHV-1 challenge by herding toward wildebeest. Vaccination resulted in the induction of virus-specific and virus-neutralizing antibodies. Some cattle in the unvaccinated groups also developed virus-specific antibody responses but only after the start of the challenge phase of the trial. PCR of DNA from blood samples detected AlHV-1 infection in both groups of cattle but the frequency of infection was significantly lower in the vaccinated groups. Some infected animals showed clinical signs suggestive of MCF but few animals went on to develop fatal MCF, with similar numbers in vaccinated and unvaccinated groups. This study demonstrated a baseline level of MCF-seropositivity among cattle in northern Tanzania of 1% and showed that AlHV-1 virus-neutralizing antibodies could be induced in Tanzanian zebu shorthorn cross cattle by our attenuated vaccine, a correlate of protection in previous experimental trials. The vaccine reduced infection rates by 56% in cattle exposed to wildebeest but protection from fatal MCF could not be determined due to the low number of fatal cases.
Collapse
Affiliation(s)
- F Lankester
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK; Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA; School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania.
| | - G C Russell
- Moredun Research Institute, Midlothian, Edinburgh, UK
| | - A Lugelo
- Faculty of Veterinary Medicine, Sokoine University of Agriculture, Morogoro, Tanzania
| | - A Ndabigaye
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania; Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, Dar es Salaam, Tanzania
| | - N Mnyambwa
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania
| | - J Keyyu
- Tanzanian Wildlife Research Institute, Arusha, Tanzania
| | - R Kazwala
- Faculty of Veterinary Medicine, Sokoine University of Agriculture, Morogoro, Tanzania
| | - D Grant
- Moredun Research Institute, Midlothian, Edinburgh, UK
| | - A Percival
- Moredun Research Institute, Midlothian, Edinburgh, UK
| | - D Deane
- Moredun Research Institute, Midlothian, Edinburgh, UK
| | - D M Haig
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - S Cleaveland
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK; School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania
| |
Collapse
|
9
|
Wambua L, Wambua PN, Ramogo AM, Mijele D, Otiende MY. Wildebeest-associated malignant catarrhal fever: perspectives for integrated control of a lymphoproliferative disease of cattle in sub-Saharan Africa. Arch Virol 2015; 161:1-10. [PMID: 26446889 PMCID: PMC4698299 DOI: 10.1007/s00705-015-2617-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/15/2015] [Indexed: 01/08/2023]
Abstract
Wildebeest-associated malignant catarrhal fever (WA-MCF), an acute lymphoproliferative disease of cattle caused by alcelaphine herpesvirus 1 (AlHV-1), remains a significant constraint to cattle production in nomadic pastoralist systems in eastern and southern Africa. The transmission of WA-MCF is dependent on the presence of the wildlife reservoir, i.e. wildebeest, belonging to the species Connochaetes taurinus and Connochaetes gnou; hence, the distribution of WA-MCF is largely restricted to Kenya, Tanzania and the Republic of South Africa, where wildebeest are present. WA-MCF is analogous to sheep-associated MCF (SA-MCF) in many aspects, with the latter having sheep as its reservoir host and a more global distribution, mainly in developed countries with intensive livestock production systems. However, unlike SA-MCF, the geographic seclusion of WA-MCF may have contributed to an apparent neglect in research efforts aimed at increased biological understanding and control of the disease. This review aims to highlight the importance of WA-MCF and the need for intensified research towards measures for its integrated control. We discuss current knowledge on transmission and geographical distribution in eastern and southern Africa and the burden of WA-MCF in affected vulnerable pastoral communities in Africa. Recent findings towards vaccine development and pertinent knowledge gaps for future research efforts on WA-MCF are also considered. Finally, integrated control of WA-MCF based on a logical three-pronged framework is proposed, contextualizing vaccine development, next-generation diagnostics, and diversity studies targeted to the viral pathogen and cattle hosts.
Collapse
Affiliation(s)
- Lillian Wambua
- School of Biological Sciences, University of Nairobi, P.O Box 30197, 00100, Nairobi, Kenya. .,International Center for Insect Physiology and Ecology, P.O Box 30772, 00100, Nairobi, Kenya.
| | - Peninah Nduku Wambua
- School of Biological Sciences, University of Nairobi, P.O Box 30197, 00100, Nairobi, Kenya.,International Center for Insect Physiology and Ecology, P.O Box 30772, 00100, Nairobi, Kenya
| | - Allan Maurice Ramogo
- International Center for Insect Physiology and Ecology, P.O Box 30772, 00100, Nairobi, Kenya
| | - Domnic Mijele
- Kenya Wildlife Service, P.O Box 40241, 00100, Nairobi, Kenya
| | | |
Collapse
|
10
|
Bartley K, Deane D, Percival A, Dry IR, Grant DM, Inglis NF, Mclean K, Manson EDT, Imrie LHJ, Haig DM, Lankester F, Russell GC. Identification of immuno-reactive capsid proteins of malignant catarrhal fever viruses. Vet Microbiol 2014; 173:17-26. [PMID: 25091530 DOI: 10.1016/j.vetmic.2014.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 11/30/2022]
Abstract
Malignant catarrhal fever (MCF) is a fatal disease of cattle and other ungulates caused by certain gamma-herpesviruses including alcelaphine herpesvirus-1 (AlHV-1) and ovine herpesvirus-2 (OvHV-2). An attenuated virus vaccine based on AlHV-1 has been shown to induce virus-neutralising antibodies in plasma and nasal secretions of protected cattle but the targets of virus-specific antibodies are unknown. Proteomic analysis and western blotting of virus extracts allowed the identification of eight candidate AlHV-1 virion antigens. Recombinant expression of selected candidates and their OvHV-2 orthologues confirmed that two polypeptides, the products of the ORF17.5 and ORF65 genes, were antigens recognised by antibodies from natural MCF cases or from AlHV-1 vaccinated cattle. These proteins have potential as diagnostic and/or vaccine antigens.
Collapse
Affiliation(s)
- Kathryn Bartley
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - David Deane
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Ann Percival
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Inga R Dry
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Dawn M Grant
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Neil F Inglis
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Kevin Mclean
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Erin D T Manson
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Lisa H J Imrie
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - David M Haig
- School of Veterinary Medicine and Science, Nottingham University, Sutton Bonington, Leicestershire LE12 5RD, UK
| | - Felix Lankester
- Institute for Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Paul G. Allen School of Global Animal Health, Washington State University, USA
| | - George C Russell
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK.
| |
Collapse
|