1
|
Zaytseva AK, Kulichik OE, Kostareva AA, Zhorov BS. Biophysical mechanisms of myocardium sodium channelopathies. Pflugers Arch 2024; 476:735-753. [PMID: 38424322 DOI: 10.1007/s00424-024-02930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Genetic variants of gene SCN5A encoding the alpha-subunit of cardiac voltage-gated sodium channel Nav1.5 are associated with various diseases, including long QT syndrome (LQT3), Brugada syndrome (BrS1), and progressive cardiac conduction disease (PCCD). In the last decades, the great progress in understanding molecular and biophysical mechanisms of these diseases has been achieved. The LQT3 syndrome is associated with gain-of-function of sodium channels Nav1.5 due to impaired inactivation, enhanced activation, accelerated recovery from inactivation or the late current appearance. In contrast, BrS1 and PCCD are associated with the Nav1.5 loss-of-function, which in electrophysiological experiments can be manifested as reduced current density, enhanced fast or slow inactivation, impaired activation, or decelerated recovery from inactivation. Genetic variants associated with congenital arrhythmias can also disturb interactions of the Nav1.5 channel with different proteins or drugs and cause unexpected reactions to drug administration. Furthermore, mutations can affect post-translational modifications of the channels and their sensitivity to pH and temperature. Here we briefly review the current knowledge on biophysical mechanisms of LQT3, BrS1 and PCCD. We focus on limitations of studies that use heterologous expression systems and induced pluripotent stem cells (iPSC) derived cardiac myocytes and summarize our understanding of genotype-phenotype relations of SCN5A mutations.
Collapse
Affiliation(s)
- Anastasia K Zaytseva
- Almazov National Medical Research Centre, St. Petersburg, Russia.
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Olga E Kulichik
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | | | - Boris S Zhorov
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- McMaster University, Hamilton, Canada
| |
Collapse
|
2
|
Zhang Z, Chen H, Chen W, Zhang Z, Li R, Xu J, Yang C, Chen M, Liu S, Li Y, Wang T, Tu X, Huang Z. Genetic Characteristics and Transcriptional Regulation of Sodium Channel Related Genes in Chinese Patients With Brugada Syndrome. Front Cardiovasc Med 2021; 8:714844. [PMID: 34422936 PMCID: PMC8374431 DOI: 10.3389/fcvm.2021.714844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate the genetic characteristics and transcriptional regulation of the SCN5A gene of Brugada syndrome (BrS) patients in China. Methods: Using PubMed, Medline, China National Knowledge Internet (CNKI), and Wanfang Database, Chinese patients with BrS who underwent SCN5A gene testing were studied. Results: A total of 27 suitable studies involving Chinese BrS patients who underwent the SCN5A gene test were included. A total of 55 SCN5A gene mutations/variations were reported in Chinese BrS patients, including 10 from southern China and 45 from northern China. Mutations/variations of BrS patients from southern China mostly occurred in the regions of the α-subunit of Nav1.5, including DIII (Domain III), DIV, DIII-DIV, C-terminus regions, and the 3'UTR region. Furthermore, we analyzed the post-transcriptional modifications (PTMs) throughout the Nav1.5 protein encoded by SCN5A and found that the PTM changes happened in 72.7% of BrS patients from southern China and 26.7% from northern China. Conclusions: SCN5A mutations/variations of BrS patients in southern China mostly occurred in the DIII-DIV to C-terminus region and the 3'-UTR region of the SCN5A gene, different from northern China. PTM changes were consistent with the mutation/variation distribution of SCN5A, which might be involved in the regulation of the pathogenesis of BrS patients.
Collapse
Affiliation(s)
- Ziguan Zhang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hongwei Chen
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wenbo Chen
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhenghao Zhang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Runjing Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiajia Xu
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Cui Yang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Minwei Chen
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shixiao Liu
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yanling Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - TzungDau Wang
- Department of Internal Medicine, Cardiovascular Center and Division of Cardiology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, China
| | - Xin Tu
- Cardio-X Center, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengrong Huang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Wu Y, Ai M, Bardeesi ASA, Xu L, Zheng J, Zheng D, Yin K, Wu Q, Zhang L, Huang L, Cheng J. Brugada syndrome: a fatal disease with complex genetic etiologies - still a long way to go. Forensic Sci Res 2017; 2:115-125. [PMID: 30483629 PMCID: PMC6197104 DOI: 10.1080/20961790.2017.1333203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 05/04/2017] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is an arrhythmogenic disorder which was first described in 1992. This disease is a channelopathy characterized by ST-segment elevations in the right precordial leads and is susceptible to sudden death. BrS is a fatal disease with gender and age preferences. It occurs mainly in young male subjects with a structurally normal heart and silently progresses to sudden death with no significant symptoms. The prevalence of BrS has been reported in the ranges of 5–20 per 10 000 people. The disease is more prevalent in Asia. Nowadays, numerous variations in 23 genes have been linked to BrS since the first gene SCN5A has been associated with BrS in 1998. Not only can clinical specialists apply these discoveries in risk assessment, diagnosis and personal medicine, but also forensic pathologists can make full use of these variations to conduct death cause identification. However, despite the progress in genetics, these associated genes can only account for approximately 35% of the BrS cases while the etiology of the remaining BrS cases is still unexplained. In this review, we discussed the prevalence, the genes associated with BrS and the application of molecular autopsy in forensic pathology. We also summarized the present obstacles, and provided a new insight into the genetic basis of BrS.
Collapse
Affiliation(s)
- Yeda Wu
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Mei Ai
- Forensic Science Center of WASTON Guangdong Province, Guangzhou, China
| | - Adham Sameer A Bardeesi
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Lunwu Xu
- The Branch Office of Yanping, Public Security Bureau of Nanping, Nanping, China
| | - Jingjing Zheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Da Zheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Kun Yin
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qiuping Wu
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Liyong Zhang
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Lei Huang
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jianding Cheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Liang P, Sallam K, Wu H, Li Y, Itzhaki I, Garg P, Zhang Y, Vermglinchan V, Lan F, Gu M, Gong T, Zhuge Y, He C, Ebert AD, Sanchez-Freire V, Churko J, Hu S, Sharma A, Lam CK, Scheinman MM, Bers DM, Wu JC. Patient-Specific and Genome-Edited Induced Pluripotent Stem Cell-Derived Cardiomyocytes Elucidate Single-Cell Phenotype of Brugada Syndrome. J Am Coll Cardiol 2017; 68:2086-2096. [PMID: 27810048 DOI: 10.1016/j.jacc.2016.07.779] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/29/2016] [Accepted: 07/27/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Brugada syndrome (BrS), a disorder associated with characteristic electrocardiogram precordial ST-segment elevation, predisposes afflicted patients to ventricular fibrillation and sudden cardiac death. Despite marked achievements in outlining the organ level pathophysiology of the disorder, the understanding of human cellular phenotype has lagged due to a lack of adequate human cellular models of the disorder. OBJECTIVES The objective of this study was to examine single cell mechanism of Brugada syndrome using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). METHODS This study recruited 2 patients with type 1 BrS carrying 2 different sodium voltage-gated channel alpha subunit 5 variants as well as 2 healthy control subjects. We generated iPSCs from their skin fibroblasts by using integration-free Sendai virus. We used directed differentiation to create purified populations of iPSC-CMs. RESULTS BrS iPSC-CMs showed reductions in inward sodium current density and reduced maximal upstroke velocity of action potential compared with healthy control iPSC-CMs. Furthermore, BrS iPSC-CMs demonstrated increased burden of triggered activity, abnormal calcium (Ca2+) transients, and beating interval variation. Correction of the causative variant by genome editing was performed, and resultant iPSC-CMs showed resolution of triggered activity and abnormal Ca2+ transients. Gene expression profiling of iPSC-CMs showed clustering of BrS compared with control subjects. Furthermore, BrS iPSC-CM gene expression correlated with gene expression from BrS human cardiac tissue gene expression. CONCLUSIONS Patient-specific iPSC-CMs were able to recapitulate single-cell phenotype features of BrS, including blunted inward sodium current, increased triggered activity, and abnormal Ca2+ handling. This novel human cellular model creates future opportunities to further elucidate the cellular disease mechanism and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Ping Liang
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| | - Karim Sallam
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Haodi Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Yingxin Li
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Ilanit Itzhaki
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Priyanka Garg
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Ying Zhang
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Vittavat Vermglinchan
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Feng Lan
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Mingxia Gu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Tingyu Gong
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Zhuge
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Chunjiang He
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Antje D Ebert
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Veronica Sanchez-Freire
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Jared Churko
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Shijun Hu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Arun Sharma
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Chi Keung Lam
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Melvin M Scheinman
- Department of Medicine, Division of Cardiology, University of California, San Francisco, California
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
5
|
Zeng Z, Xie Q, Huang Y, Zhao Y, Li W, Huang Z. p.D1690N sodium voltage-gated channel α subunit 5 mutation reduced sodium current density and is associated with Brugada syndrome. Mol Med Rep 2016; 13:5216-22. [PMID: 27108952 DOI: 10.3892/mmr.2016.5162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 03/07/2016] [Indexed: 11/06/2022] Open
Abstract
Brugada syndrome (BrS) is an inherited primary arrhythmia disorder, leading to sudden cardiac death due to ventricular tachyarrhythmia, but does not exhibit clinical cardiac abnormalities. The sodium voltage-gated channel α subunit 5 (SCN5A) gene, which encodes the α subunit of the cardiac sodium channel, Nav1.5, is the most common pathogenic gene, although ≥22 BrS‑susceptibility genes have previously been identified. In the present study, a novel genetic variant (p.D1690N) localized in the S5‑S6 linker of domain IV of the Nav1.5 channels was identified in a Chinese Han family. Wild‑type (WT) and p.D1690N Nav1.5 channels were transiently over‑expressed in HEK293 cells and analyzed via the whole-cell patch clamp technique. The p.D1690N mutation significantly reduced the peak sodium current density to 23% of WT (at ‑20 mV; P<0.01), shifted steady‑state activation by 7 mV to increasingly positive potentials (P<0.01). Furthermore, prolonging of the recovery from inactivation was observed in the p.D1690N mutant. No significant change was identified in steady‑state inactivation. Thus, the mutant‑induced changes contributed to the loss of function of Nav1.5 channels, which indicates that the p.D1690N variant may have a pathogenic role in BrS.
Collapse
Affiliation(s)
- Zhipeng Zeng
- Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of The Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Qiang Xie
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yuan Huang
- Key Laboratory of Molecular Biophysics of The Ministry of Education, Cardio‑X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yuanyuan Zhao
- Key Laboratory of Molecular Biophysics of The Ministry of Education, Cardio‑X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Weihua Li
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Zhengrong Huang
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| |
Collapse
|
6
|
Detta N, Frisso G, Salvatore F. The multi-faceted aspects of the complex cardiac Nav1.5 protein in membrane function and pathophysiology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015. [PMID: 26209461 DOI: 10.1016/j.bbapap.2015.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this mini-review is to draw together the main concepts and findings that have emerged from recent studies of the cardiac channel protein Nav1.5. This complex protein is encoded by the SCN5A gene that, in its mutated form, is implicated in various diseases, particularly channelopathies, specifically at cardiac tissue level. Here we describe the structural, and functional aspects of Nav1.5 including post-translational modifications in normal conditions, and the main human channelopathies in which this protein may be the cause or trigger. Lastly, we also briefly discuss interacting proteins that are relevant for these channel functions in normal and disease conditions.
Collapse
Affiliation(s)
- Nicola Detta
- CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| | - Giulia Frisso
- CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples, Italy; IRCCS-Fondazione SDN, Naples, Italy.
| |
Collapse
|
7
|
Nielsen MW, Holst AG, Olesen SP, Olesen MS. The genetic component of Brugada syndrome. Front Physiol 2013; 4:179. [PMID: 23874304 PMCID: PMC3710955 DOI: 10.3389/fphys.2013.00179] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/24/2013] [Indexed: 12/12/2022] Open
Abstract
Brugada syndrome (BrS) is a clinical entity first described in 1992. BrS is characterized by ST-segment elevations in the right precordial leads and susceptibility to ventricular arrhythmias and sudden cardiac death. It affects young subjects, predominantly males, with structurally normal hearts. The prevalence varies with ethnicity ranging from 1:2,000 to 1:100,000 in different parts of the world. Today, hundreds of variants in 17 genes have been associated with BrS of which mutations in SCN5A, coding for the cardiac voltage-gated sodium channel, accounts for the vast majority. Despite this, approximately 70% of BrS cases cannot be explained genetically with the current knowledge. Moreover, the monogenic role of some of the variants previously described as being associated with BrS has been questioned by their occurrence in about 4% (1:23) of the general population as found in NHLBI GO Exome Sequencing Project (ESP) currently including approximately 6500 individuals. If we add the variants described in the five newest identified genes associated with BrS, they appear at an even higher prevalence in the ESP (1:21). The current standard treatment of BrS is an implantable cardioverter-defibrillator (ICD). The risk stratification and indications for ICD treatment are based on the ECG and on the clinical and family history. In this review we discuss the genetic basis of BrS.
Collapse
Affiliation(s)
- Morten W Nielsen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia Copenhagen, Denmark ; Department of Cardiology, Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen Copenhagen, Denmark
| | | | | | | |
Collapse
|