1
|
Topoisomerase I inhibitors: Challenges, progress and the road ahead. Eur J Med Chem 2022; 236:114304. [DOI: 10.1016/j.ejmech.2022.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
|
2
|
|
3
|
Bolat G. Investigation of poly(CTAB-MWCNTs) composite based electrochemical DNA biosensor and interaction study with anticancer drug Irinotecan. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
The Biological Activity of Natural Alkaloids against Herbivores, Cancerous Cells and Pathogens. Toxins (Basel) 2019; 11:toxins11110656. [PMID: 31717922 PMCID: PMC6891610 DOI: 10.3390/toxins11110656] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023] Open
Abstract
The growing incidence of microorganisms that resist antimicrobials is a constant concern for the scientific community, while the development of new antimicrobials from new chemical entities has become more and more expensive, time-consuming, and exacerbated by emerging drug-resistant strains. In this regard, many scientists are conducting research on plants aiming to discover possible antimicrobial compounds. The secondary metabolites contained in plants are a source of chemical entities having pharmacological activities and intended to be used for the treatment of different diseases. These chemical entities have the potential to be used as an effective antioxidant, antimutagenic, anticarcinogenic and antimicrobial agents. Among these pharmacologically active entities are the alkaloids which are classified into a number of classes, including pyrrolizidines, pyrrolidines, quinolizidines, indoles, tropanes, piperidines, purines, imidazoles, and isoquinolines. Alkaloids that have antioxidant properties are capable of preventing a variety of degenerative diseases through capturing free radicals, or through binding to catalysts involved indifferent oxidation processes occurring within the human body. Furthermore, these entities are capable of inhibiting the activity of bacteria, fungi, protozoan and etc. The unique properties of these secondary metabolites are the main reason for their utilization by the pharmaceutical companies for the treatment of different diseases. Generally, these alkaloids are extracted from plants, animals and fungi. Penicillin is the most famous natural drug discovery deriving from fungus. Similarly, marines have been used as a source for thousands of bioactive marine natural products. In this review, we cover the medical use of natural alkaloids isolated from a variety of plants and utilized by humans as antibacterial, antiviral, antifungal and anticancer agents. An example for such alkaloids is berberine, an isoquinoline alkaloid, found in roots and stem-bark of Berberis asculin P. Renault plant and used to kill a variety of microorganisms.
Collapse
|
5
|
Alvau MD, Tartaggia S, Meneghello A, Casetta B, Calia G, Serra PA, Polo F, Toffoli G. Enzyme-Based Electrochemical Biosensor for Therapeutic Drug Monitoring of Anticancer Drug Irinotecan. Anal Chem 2018; 90:6012-6019. [PMID: 29658266 DOI: 10.1021/acs.analchem.7b04357] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Therapeutic drug monitoring (TDM) is the clinical practice of measuring pharmaceutical drug concentrations in patients' biofluids at designated intervals, thus allowing a close and timely control of their dosage. To date, TDM in oncology can only be performed by trained personnel in centralized laboratories and core facilities employing conventional analytical techniques (e.g., MS). CPT-11 is an antineoplastic drug that inhibits topoisomerase type I, causing cell death, and is widely used in the treatment of colorectal cancer. CPT-11 was also found to directly inhibit acetylcholine esterase (AChE), an enzyme involved in neuromuscular junction. In this work, we describe an enzymatic biosensor, based on AChE and choline oxidase (ChOx), which can quantify CPT-11. ACh (acetylcholine) substrate is converted to choline, which is subsequently metabolized by ChOx to give betaine aldehyde and hydrogen peroxide. The latter one is then oxidized at a suitably polarized platinum electrode, providing a current transient proportional to the amount of ACh. Such an enzymatic process is hampered by CPT-11. The biosensor showed a ∼60% maximal inhibition toward AChE activity in the clinically relevant concentration range 10-10 000 ng/mL of CPT-11 in both simple (phosphate buffer) and complex (fetal bovine serum) matrixes, while its metabolites showed negligible effects. These findings could open new routes toward a real-time TDM in oncology, thus improving the therapeutic treatments and lowering the related costs.
Collapse
Affiliation(s)
- Maria Domenica Alvau
- Experimental and Clinical Pharmacology Division , CRO Aviano - National Cancer Institute , Aviano , Italy
| | - Stefano Tartaggia
- Experimental and Clinical Pharmacology Division , CRO Aviano - National Cancer Institute , Aviano , Italy
| | - Anna Meneghello
- Experimental and Clinical Pharmacology Division , CRO Aviano - National Cancer Institute , Aviano , Italy
| | - Bruno Casetta
- Experimental and Clinical Pharmacology Division , CRO Aviano - National Cancer Institute , Aviano , Italy
| | - Giammario Calia
- Department of Clinical and Experimental Medicine Section of Pharmacology , University of Sassari , Viale San Pietro 43/b , Sassari , Italy
| | - Pier Andrea Serra
- Department of Clinical and Experimental Medicine Section of Pharmacology , University of Sassari , Viale San Pietro 43/b , Sassari , Italy
| | - Federico Polo
- Experimental and Clinical Pharmacology Division , CRO Aviano - National Cancer Institute , Aviano , Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Division , CRO Aviano - National Cancer Institute , Aviano , Italy
| |
Collapse
|
6
|
Zuccaro L, Tesauro C, Kurkina T, Fiorani P, Yu HK, Knudsen BR, Kern K, Desideri A, Balasubramanian K. Real-Time Label-Free Direct Electronic Monitoring of Topoisomerase Enzyme Binding Kinetics on Graphene. ACS NANO 2015; 9:11166-76. [PMID: 26445172 DOI: 10.1021/acsnano.5b05709] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Monolayer graphene field-effect sensors operating in liquid have been widely deployed for detecting a range of analyte species often under equilibrium conditions. Here we report on the real-time detection of the binding kinetics of the essential human enzyme, topoisomerase I interacting with substrate molecules (DNA probes) that are immobilized electrochemically on to monolayer graphene strips. By monitoring the field-effect characteristics of the graphene biosensor in real-time during the enzyme-substrate interactions, we are able to decipher the surface binding constant for the cleavage reaction step of topoisomerase I activity in a label-free manner. Moreover, an appropriate design of the capture probes allows us to distinctly follow the cleavage step of topoisomerase I functioning in real-time down to picomolar concentrations. The presented results are promising for future rapid screening of drugs that are being evaluated for regulating enzyme activity.
Collapse
Affiliation(s)
- Laura Zuccaro
- Max Planck Institute for Solid State Research , D-70569 Stuttgat, Germany
- Department of Biology, University of Rome Tor Vergata , I-00133 Rome, Italy
| | - Cinzia Tesauro
- Department of Biology, University of Rome Tor Vergata , I-00133 Rome, Italy
- Department of Molecular Biology & Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Tetiana Kurkina
- Max Planck Institute for Solid State Research , D-70569 Stuttgat, Germany
| | - Paola Fiorani
- Department of Biology, University of Rome Tor Vergata , I-00133 Rome, Italy
- Institute of Translational Pharmacology , National Research Council CNR, I-00133 Rome, Italy
| | - Hak Ki Yu
- Max Planck Institute for Biophysical Chemistry , 37077 Göttingen, Germany
| | - Birgitta R Knudsen
- Department of Molecular Biology & Genetics, Aarhus University , DK-8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , DK-8000 Aarhus, Denmark
| | - Klaus Kern
- Max Planck Institute for Solid State Research , D-70569 Stuttgat, Germany
- Institut de Physique de la Matière Condensée, École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
7
|
Lee YC, Lee CH, Tsai HP, An HW, Lee CM, Wu JC, Chen CS, Huang SH, Hwang J, Cheng KT, Leiw PL, Chen CL, Lin CM. Targeting of Topoisomerase I for Prognoses and Therapeutics of Camptothecin-Resistant Ovarian Cancer. PLoS One 2015. [PMID: 26207989 PMCID: PMC4514822 DOI: 10.1371/journal.pone.0132579] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA topoisomerase I (TOP1) levels of several human neoplasms are higher than those of normal tissues. TOP1 inhibitors are widely used in treating conventional therapy-resistant ovarian cancers. However, patients may develop resistance to TOP1 inhibitors, hampering chemotherapy success. In this study, we examined the mechanisms associated with the development of camptothecin (CPT) resistance in ovarian cancers and identified evodiamine (EVO), a natural product with TOP1 inhibiting activity that overcomes the resistance. The correlations among TOP1 levels, cancer staging, and overall survival (OS) were analyzed. The effect of EVO on CPT-resistant ovarian cancer was evaluated in vitro and in vivo. TOP1 was associated with poor prognosis in ovarian cancers (p = 0.024). EVO induced apoptosis that was detected using flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The tumor size decreased significantly in the EVO treatment group compared with the control group (p < 0.01) in a xenograft mouse model. Effects of drugs targeting TOP1 for prognosis and therapy in CPT-resistant ovarian cancer are anticipated. EVO with TOP1 can be developed as an antiproliferative agent for overcoming CPT resistance in ovarian cancers.
Collapse
Affiliation(s)
- Yu-Chieh Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chii-Hong Lee
- Department of Pathology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Hsiang-Ping Tsai
- Department of Biochemistry, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Herng-Wei An
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Ming Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jen-Chine Wu
- Center for Stem Cells and Translational Cancer Research, Chang Gung Memorial Hospital, Gueishan, Taoyuan County, Taiwan
| | - Chien-Shu Chen
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Shih-Hao Huang
- Department of Food and Beverage Management, Taipei College of Maritime Technology, Taipei, Taiwan
| | - Jaulang Hwang
- Department of Biochemistry, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kur-Ta Cheng
- Department of Biochemistry, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Phui-Ly Leiw
- Department of Pathology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Chi-Long Chen
- Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Mao Lin
- Department of Biochemistry, School of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Lin RW, Yang CN, Ku S, Ho CJ, Huang SB, Yang MC, Chang HW, Lin CM, Hwang J, Chen YL, Tzeng CC, Wang C. CFS-1686 causes cell cycle arrest at intra-S phase by interference of interaction of topoisomerase 1 with DNA. PLoS One 2014; 9:e113832. [PMID: 25460368 PMCID: PMC4252032 DOI: 10.1371/journal.pone.0113832] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/30/2014] [Indexed: 01/07/2023] Open
Abstract
CFS-1686 (chemical name (E)-N-(2-(diethylamino)ethyl)-4-(2-(2-(5-nitrofuran-2-yl)vinyl)quinolin-4-ylamino)benzamide) inhibits cell proliferation and triggers late apoptosis in prostate cancer cell lines. Comparing the effect of CFS-1686 on cell cycle progression with the topoisomerase 1 inhibitor camptothecin revealed that CFS-1686 and camptothecin reduced DNA synthesis in S-phase, resulting in cell cycle arrest at the intra-S phase and G1-S boundary, respectively. The DNA damage in CFS-1686 and camptothecin treated cells was evaluated by the level of ATM phosphorylation, γH2AX, and γH2AX foci, showing that camptothecin was more effective than CFS-1686. However, despite its lower DNA damage capacity, CFS-1686 demonstrated 4-fold higher inhibition of topoisomerase 1 than camptothecin in a DNA relaxation assay. Unlike camptothecin, CFS-1686 demonstrated no activity on topoisomerase 1 in a DNA cleavage assay, but nevertheless it reduced the camptothecin-induced DNA cleavage of topoisomerase 1 in a dose-dependent manner. Our results indicate that CFS-1686 might bind to topoisomerase 1 to inhibit this enzyme from interacting with DNA relaxation activity, unlike campothecin's induction of a topoisomerase 1-DNA cleavage complex. Finally, we used a computer docking strategy to localize the potential binding site of CFS-1686 to topoisomerase 1, further indicating that CFS-1686 might inhibit the binding of Top1 to DNA.
Collapse
Affiliation(s)
- Ru-Wei Lin
- Bone and Joint Research Center, National Cheng Kung University, Tainan, Taiwan
- Medical Device R & D Core Laboratory, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan
| | - Chia-Ning Yang
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - ShengYu Ku
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Jung Ho
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shih-Bo Huang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Min-Chi Yang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Wen Chang
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Chun-Mao Lin
- Department of Biochemistry, School of Medical, Taipei Medical University, Taipei, Taiwan
| | - Jaulang Hwang
- Department of Biochemistry, School of Medical, Taipei Medical University, Taipei, Taiwan
| | - Yeh-Long Chen
- Department of Medical and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cherg-Chyi Tzeng
- Department of Medical and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chihuei Wang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Tiwari PB, Annamalai T, Cheng B, Narula G, Wang X, Tse-Dinh YC, He J, Darici Y. A surface plasmon resonance study of the intermolecular interaction between Escherichia coli topoisomerase I and pBAD/Thio supercoiled plasmid DNA. Biochem Biophys Res Commun 2014; 445:445-50. [PMID: 24530905 DOI: 10.1016/j.bbrc.2014.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/05/2014] [Indexed: 11/17/2022]
Abstract
To date, the bacterial DNA topoisomerases are one of the major target biomolecules for the discovery of new antibacterial drugs. DNA topoisomerase regulates the topological state of DNA, which is very important for replication, transcription and recombination. The relaxation of negatively supercoiled DNA is catalyzed by bacterial DNA topoisomerase I (topoI) and this reaction requires Mg(2+). In this report, we first quantitatively studied the intermolecular interactions between Escherichia coli topoisomerase I (EctopoI) and pBAD/Thio supercoiled plasmid DNA using surface plasmon resonance (SPR) technique. The equilibrium dissociation constant (Kd) for EctopoI-pBAD/Thio interactions was determined to be about 8 nM. We then studied the effect of Mg(2+) on the catalysis of EctopoI-pBAD/Thio reaction. A slightly higher equilibrium dissociation constant (~15 nM) was obtained for Mg(2+) coordinated EctopoI (Mg(2+)EctopoI)-pBAD/Thio interactions. In addition, we observed a larger dissociation rate constant (kd) for Mg(2+)EctopoI-pBAD/Thio interactions (~0.043 s(-1)), compared to EctopoI-pBAD/Thio interactions (~0.017 s(-1)). These results suggest that enzyme turnover during plasmid DNA relaxation is enhanced due to the presence of Mg(2+) and furthers the understanding of importance of the Mg(2+) ion for bacterial topoisomerase I catalytic activity.
Collapse
Affiliation(s)
| | - Thirunavukkarasu Annamalai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Bokun Cheng
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Gagandeep Narula
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Xuewen Wang
- Department of Physics, Florida International University, Miami, FL 33199, United States
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States.
| | - Jin He
- Department of Physics, Florida International University, Miami, FL 33199, United States.
| | - Yesim Darici
- Department of Physics, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
10
|
Sreekanth V, Bansal S, Motiani RK, Kundu S, Muppu SK, Majumdar TD, Panjamurthy K, Sengupta S, Bajaj A. Design, synthesis, and mechanistic investigations of bile acid-tamoxifen conjugates for breast cancer therapy. Bioconjug Chem 2013; 24:1468-84. [PMID: 23909664 DOI: 10.1021/bc300664k] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have synthesized two series of bile acid tamoxifen conjugates using three bile acids lithocholic acid (LCA), deoxycholic acid (DCA), and cholic acid (CA). These bile acid-tamoxifen conjugates possess 1, 2, and 3 tamoxifen molecules attached to hydroxyl groups of bile acids having free acid and amine functionalities at the tail region of bile acids. The in vitro anticancer activities of these bile acid-tamoxifen conjugates show that the free amine headgroup based cholic acid-tamoxifen conjugate (CA-Tam3-Am) is the most potent anticancer conjugate as compared to the parent drug tamoxifen and other acid and amine headgroup based bile acid-tamoxifen conjugates. The cholic acid-tamoxifen conjugate (CA-Tam3-Am) bearing three tamoxifen molecules shows enhanced anticancer activities in both estrogen receptor +ve and estrogen receptor -ve breast cancer cell lines. The enhanced anticancer activity of CA-Tam3-Am is due to more favorable irreversible electrostatic interactions followed by intercalation of these conjugates in hydrophobic core of membrane lipids causing increase in membrane fluidity. Annexin-FITC based FACS analysis showed that cells undergo apoptosis, and cell cycle analysis showed the arrest of cells in sub G0 phase. ROS assays showed a high amount of generation of ROS independent of ER status of the cell line indicating changes in mitochondrial membrane fluidity upon the uptake of the conjugate that further leads to the release of cytochrome c, a direct and indirect regulator of ROS. The mechanistic studies for apoptosis using PCR and western analysis showed apoptotsis by intrinsic and extrinsic pathways in ER +ve MCF-7 cells and by only an intrinsic pathway in ER -ve cells. In vivo studies in the 4T1 tumor model showed that CA-Tam3-Am is more potent than tamoxifen. These studies showed that bile acids provide a new scaffold for high drug loading and that their anticancer activities strongly depend on charge and hydrophobicity of lipid-drug conjugates.
Collapse
Affiliation(s)
- Vedagopuram Sreekanth
- The Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology , 180 Udyog Vihar, Phase 1, Gurgaon-122016, Haryana, India
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Shapiro AB. A high-throughput-compatible, fluorescence anisotropy-based assay for ATP-dependent supercoiled DNA relaxation by human topoisomerase IIα. Biochem Pharmacol 2013; 85:1269-77. [PMID: 23415903 DOI: 10.1016/j.bcp.2013.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 11/29/2022]
Abstract
A novel, high-throughput-compatible assay for the ATP-dependent supercoiled DNA relaxing activity of human topoisomerase IIα (hTopoIIα) is described. The principle of detection is the preferential binding of the oligodeoxyribonucleotide BODIPY-TMR-5'-TTCTTCTTCT-3' to relaxed double-stranded plasmid containing the triplex forming sequence (TTC)9 versus the supercoiled plasmid. Binding of the oligonucleotide to the plasmid increases the fluorescence anisotropy of the BODIPY-TMR label. Optimization of the assay conditions was conducted to maximize the signal and the activity of the topoisomerase. The multiwell assay plate-based fluorescence anisotropy assay gave the same values for the potencies of several previously reported inhibitors of hTopoIIα as a gel electrophoresis-based assay of DNA relaxation.
Collapse
Affiliation(s)
- Adam B Shapiro
- Bioscience Department, Infection Innovative Medicines, AstraZeneca R&D Boston, Waltham, MA 02451 USA.
| |
Collapse
|
12
|
Alkaloids isolated from natural herbs as the anticancer agents. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:485042. [PMID: 22988474 PMCID: PMC3440018 DOI: 10.1155/2012/485042] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/17/2012] [Accepted: 07/30/2012] [Indexed: 01/02/2023]
Abstract
Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery. Several alkaloids isolated from natural herbs exhibit antiproliferation and antimetastasis effects on various types of cancers both in vitro and in vivo. Alkaloids, such as camptothecin and vinblastine, have already been successfully developed into anticancer drugs. This paper focuses on the naturally derived alkaloids with prospective anticancer properties, such as berberine, evodiamine, matrine, piperine, sanguinarine, and tetrandrine, and summarizes the mechanisms of action of these compounds. Based on the information in the literature that is summarized in this paper, the use of alkaloids as anticancer agents is very promising, but more research and clinical trials are necessary before final recommendations on specific alkaloids can be made.
Collapse
|
13
|
Cyril V, Muller MT. A solid phase assay for topoisomerase I interfacial poisons and catalytic inhibitors. Anal Biochem 2012; 421:607-16. [DOI: 10.1016/j.ab.2011.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
|