1
|
Park JY, Park JY, Jeong YG, Park JH, Park YH, Kim SH, Khang D. Pancreatic Tumor-Targeting Stemsome Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300934. [PMID: 37114740 DOI: 10.1002/adma.202300934] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Indexed: 06/13/2023]
Abstract
Owing to the intrinsic ability of stem cells to target the tumor environment, stem-cell-membrane-functionalized nanocarriers can target and load active anticancer drugs. In this work, a strategy that focuses on stem cells that self-target pancreatic cancer cells is developed. In particular, malignant deep tumors such as pancreatic cancer cells, one of the intractable tumors that currently have no successful clinical strategy, are available for targeting and destruction. By gaining the targeting ability of stem cells against pancreatic tumor cells, stem cell membranes can encapsulate nano-polylactide-co-glycolide loaded with doxorubicin to target and reduce deep pancreatic tumor tissues. Considering the lack of known target proteins on pancreatic tumor cells, the suggested platform technology can be utilized for targeting any malignant tumors in which surface target receptors are unavailable.
Collapse
Affiliation(s)
- Jun-Young Park
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
| | - Jun Young Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| | - Yong-Gyu Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| | - Joo-Hwan Park
- Division of Medical Oncology, Department of Internal Medicine, Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea
| | - Yeon Ho Park
- Department of Surgery, Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea
| | - Sang-Hyun Kim
- CMRI, Department of Pharmacology, College of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, South Korea
- Ectosome Inc., Incheon, 21999, South Korea
| |
Collapse
|
2
|
Li X, Liu H, Dun MD, Faulkner S, Liu X, Jiang CC, Hondermarck H. Proteome and secretome analysis of pancreatic cancer cells. Proteomics 2022; 22:e2100320. [PMID: 35388624 DOI: 10.1002/pmic.202100320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 11/07/2022]
Abstract
Pancreatic cancer is a lethal malignancy and no screening biomarker or targeted therapy is currently available. Here, we performed a shotgun proteomic label-free quantification (LFQ) to define protein changes in the cellular proteome and secretome of four pancreatic cancer cell lines (PANC1, Paca44, Paca2, and BXPC3) versus normal human pancreatic ductal epithelial cells (HPDE). In the cellular proteome and secretome, 149 and 43 proteins were dysregulated in the most cancer cell lines, respectively. Using Ingenuity Pathway Analysis (IPA), the most dysregulated signaling pathways in pancreatic cancer cells included the activation of epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular regulated kinase (ERK), and the deactivation of type-I interferon (IFN) pathways, which could promote cancer cell progression and decrease antitumor immunity. Parallel reaction monitoring (PRM) mass spectrometry was used to confirm the changes of seven regulated proteins quantified by LFQ: EGFR, growth/differentiation factor 15 (GDF15), protein-glutamine gamma-glutamyltransferase 2 (TGM2), leukemia inhibitory factor (LIF), interferon-induced GTP-binding protein Mx1 (MX1), signal transducer and activator of transcription 1 (STAT1), and serpin B5 (SERPINB5). Together, this proteomic analysis highlights protein changes associated with pancreatic cancer cells that should be further investigated as potential biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Xiang Li
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, P.R. China
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Xiaoming Liu
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Chen Chen Jiang
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| |
Collapse
|
3
|
Vellan CJ, Jayapalan JJ, Yoong BK, Abdul-Aziz A, Mat-Junit S, Subramanian P. Application of Proteomics in Pancreatic Ductal Adenocarcinoma Biomarker Investigations: A Review. Int J Mol Sci 2022; 23:2093. [PMID: 35216204 PMCID: PMC8879036 DOI: 10.3390/ijms23042093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a highly aggressive malignancy with a poor prognosis is usually detected at the advanced stage of the disease. The only US Food and Drug Administration-approved biomarker that is available for PDAC, CA 19-9, is most useful in monitoring treatment response among PDAC patients rather than for early detection. Moreover, when CA 19-9 is solely used for diagnostic purposes, it has only a recorded sensitivity of 79% and specificity of 82% in symptomatic individuals. Therefore, there is an urgent need to identify reliable biomarkers for diagnosis (specifically for the early diagnosis), ascertain prognosis as well as to monitor treatment response and tumour recurrence of PDAC. In recent years, proteomic technologies are growing exponentially at an accelerated rate for a wide range of applications in cancer research. In this review, we discussed the current status of biomarker research for PDAC using various proteomic technologies. This review will explore the potential perspective for understanding and identifying the unique alterations in protein expressions that could prove beneficial in discovering new robust biomarkers to detect PDAC at an early stage, ascertain prognosis of patients with the disease in addition to monitoring treatment response and tumour recurrence of patients.
Collapse
Affiliation(s)
- Christina Jane Vellan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.J.V.); (A.A.-A.); (S.M.-J.)
| | - Jaime Jacqueline Jayapalan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.J.V.); (A.A.-A.); (S.M.-J.)
- University of Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Boon-Koon Yoong
- Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Azlina Abdul-Aziz
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.J.V.); (A.A.-A.); (S.M.-J.)
| | - Sarni Mat-Junit
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.J.V.); (A.A.-A.); (S.M.-J.)
| | - Perumal Subramanian
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram 608002, Tamil Nadu, India;
| |
Collapse
|
4
|
Arias-Pinilla GA, Modjtahedi H. Therapeutic Application of Monoclonal Antibodies in Pancreatic Cancer: Advances, Challenges and Future Opportunities. Cancers (Basel) 2021; 13:1781. [PMID: 33917882 PMCID: PMC8068268 DOI: 10.3390/cancers13081781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer remains as one of the most aggressive cancer types. In the absence of reliable biomarkers for its early detection and more effective therapeutic interventions, pancreatic cancer is projected to become the second leading cause of cancer death in the Western world in the next decade. Therefore, it is essential to discover novel therapeutic targets and to develop more effective and pancreatic cancer-specific therapeutic agents. To date, 45 monoclonal antibodies (mAbs) have been approved for the treatment of patients with a wide range of cancers; however, none has yet been approved for pancreatic cancer. In this comprehensive review, we discuss the FDA approved anticancer mAb-based drugs, the results of preclinical studies and clinical trials with mAbs in pancreatic cancer and the factors contributing to the poor response to antibody therapy (e.g. tumour heterogeneity, desmoplastic stroma). MAb technology is an excellent tool for studying the complex biology of pancreatic cancer, to discover novel therapeutic targets and to develop various forms of antibody-based therapeutic agents and companion diagnostic tests for the selection of patients who are more likely to benefit from such therapy. These should result in the approval and routine use of antibody-based agents for the treatment of pancreatic cancer patients in the future.
Collapse
Affiliation(s)
- Gustavo A. Arias-Pinilla
- Department of Oncology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK;
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, Surrey KT1 2EE, UK
| | - Helmout Modjtahedi
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, Surrey KT1 2EE, UK
| |
Collapse
|
5
|
Prognostic and therapeutic potential of Adenylate kinase 2 in lung adenocarcinoma. Sci Rep 2019; 9:17757. [PMID: 31780678 PMCID: PMC6883075 DOI: 10.1038/s41598-019-53594-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/23/2018] [Indexed: 01/10/2023] Open
Abstract
Adenylate kinase 2 (AK2), an isoenzyme of the AK family, may have momentous extra-mitochondrial functions, especially in tumourigenesis in addition to the well-known control of energy metabolism. In this study, we provided the first evidence that AK2 is overexpressed in lung adenocarcinoma. The positive expression of AK2 is associated with tumor progression, and poor survival in patients with pulmonary adenocarcinoma. Knockdown of AK2 could suppress proliferation, migration, and invasion as well as induce apoptosis and autophagy in human lung adenocarcinoma cells. Remarkably, silencing AK2 exerted the greater tumor suppression roles when combined with hydroxychloroquine, an effective autophagy inhibitor, in vitro and in xenografts mouse models. Our data have probably provided preclinical proof that systematic inhibition of AK2 and autophagy could be therapeutically effective on lung cancer.
Collapse
|
6
|
Lee J, Seok AE, Park A, Mun S, Kang HG. Mass Spectrometry-based Comparative Analysis of Membrane Protein: High-speed Centrifuge Method Versus Reagent-based Method. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2019. [DOI: 10.15324/kjcls.2019.51.1.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jiyeong Lee
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Korea
| | - Ae Eun Seok
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Korea
| | - Arum Park
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Korea
| | - Sora Mun
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Seongnam, Korea
| | - Hee-Gyoo Kang
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Korea
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Seongnam, Korea
| |
Collapse
|
7
|
Abstract
Pancreatic cancer remains the most fatal human tumor type. The aggressive tumor biology coupled with the lack of early detection strategies and effective treatment are major reasons for the poor survival rate. Collaborative research efforts have been devoted to understand pancreatic cancer at the molecular level. Large-scale genomic studies have generated important insights into the genetic drivers of pancreatic cancer. In the post-genomic era, protein sequencing of tumor tissue, cell lines, pancreatic juice, and blood from patients with pancreatic cancer has provided a fundament for the development of new diagnostic and prognostic biomarkers. The integration of mass spectrometry and genomic sequencing strategies may help characterize protein identities and post-translational modifications that relate to a specific mutation. Consequently, proteomic and genomic techniques have become a compulsory requirement in modern medicine and health care. These types of proteogenomic studies may usher in a new era of precision diagnostics and treatment in patients with pancreatic cancer.
Collapse
|
8
|
Coleman O, Henry M, O'Neill F, Roche S, Swan N, Boyle L, Murphy J, Meiller J, Conlon NT, Geoghegan J, Conlon KC, Lynch V, Straubinger NL, Straubinger RM, McVey G, Moriarty M, Meleady P, Clynes M. A Comparative Quantitative LC-MS/MS Profiling Analysis of Human Pancreatic Adenocarcinoma, Adjacent-Normal Tissue, and Patient-Derived Tumour Xenografts. Proteomes 2018; 6:proteomes6040045. [PMID: 30404163 PMCID: PMC6313850 DOI: 10.3390/proteomes6040045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide; it develops in a relatively symptom-free manner, leading to rapid disease progression and metastasis, leading to a 5-year survival rate of less than 5%. A lack of dependable diagnostic markers and rapid development of resistance to conventional therapies are among the problems associated with management of the disease. A better understanding of pancreatic tumour biology and discovery of new potential therapeutic targets are important goals in pancreatic cancer research. This study describes the comparative quantitative LC-MS/MS proteomic analysis of the membrane-enriched proteome of 10 human pancreatic ductal adenocarcinomas, 9 matched adjacent-normal pancreas and patient-derived xenografts (PDXs) in mice (10 at F1 generation and 10 F2). Quantitative label-free LC-MS/MS data analysis identified 129 proteins upregulated, and 109 downregulated, in PDAC, compared to adjacent-normal tissue. In this study, analysing peptide MS/MS data from the xenografts, great care was taken to distinguish species-specific peptides definitively derived from human sequences, or from mice, which could not be distinguished. The human-only peptides from the PDXs are of particular value, since only human tumour cells survive, and stromal cells are replaced during engraftment in the mouse; this list is, therefore, enriched in tumour-associated proteins, some of which might be potential therapeutic or diagnostic targets. Using human-specific sequences, 32 proteins were found to be upregulated, and 113 downregulated in PDX F1 tumours, compared to primary PDAC. Differential expression of CD55 between PDAC and normal pancreas, and expression across PDX generations, was confirmed by Western blotting. These data indicate the value of using PDX models in PDAC research. This study is the first comparative proteomic analysis of PDAC which employs PDX models to identify patient tumour cell-associated proteins, in an effort to find robust targets for therapeutic treatment of PDAC.
Collapse
Affiliation(s)
- Orla Coleman
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Fiona O'Neill
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Sandra Roche
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Niall Swan
- St. Vincent's University Hospital, Dublin 4, Ireland.
| | | | - Jean Murphy
- St. Vincent's University Hospital, Dublin 4, Ireland.
| | - Justine Meiller
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Neil T Conlon
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | - Kevin C Conlon
- St. Vincent's University Hospital, Dublin 4, Ireland.
- Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Vincent Lynch
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
- St. Vincent's University Hospital, Dublin 4, Ireland.
| | - Ninfa L Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA.
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA.
| | - Gerard McVey
- St. Vincent's University Hospital, Dublin 4, Ireland.
- St. Luke's Hospital, Highfield Road, Rathgar, Dublin 6, Ireland.
| | - Michael Moriarty
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
- St. Luke's Hospital, Highfield Road, Rathgar, Dublin 6, Ireland.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
9
|
Intracellular Energy-Transfer Networks and High-Resolution Respirometry: A Convenient Approach for Studying Their Function. Int J Mol Sci 2018; 19:ijms19102933. [PMID: 30261663 PMCID: PMC6213097 DOI: 10.3390/ijms19102933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
Compartmentalization of high-energy phosphate carriers between intracellular micro-compartments is a phenomenon that ensures efficient energy use. To connect these sites, creatine kinase (CK) and adenylate kinase (AK) energy-transfer networks, which are functionally coupled to oxidative phosphorylation (OXPHOS), could serve as important regulators of cellular energy fluxes. Here, we introduce how selective permeabilization of cellular outer membrane and high-resolution respirometry can be used to study functional coupling between CK or AK pathways and OXPHOS in different cells and tissues. Using the protocols presented here the ability of creatine or adenosine monophosphate to stimulate OXPHOS through CK and AK reactions, respectively, is easily observable and quantifiable. Additionally, functional coupling between hexokinase and mitochondria can be investigated by monitoring the effect of glucose on respiration. Taken together, high-resolution respirometry in combination with permeabilization is a convenient approach for investigating energy-transfer networks in small quantities of cells and tissues in health and in pathology.
Collapse
|
10
|
Cui L, Elzakra N, Xu S, Xiao GG, Yang Y, Hu S. Investigation of three potential autoantibodies in Sjogren's syndrome and associated MALT lymphoma. Oncotarget 2018; 8:30039-30049. [PMID: 28404907 PMCID: PMC5444724 DOI: 10.18632/oncotarget.15613] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/24/2017] [Indexed: 12/28/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease which might progress to mucosal-associated lymphoid tissue lymphoma (pSS/MALT). Diagnosis of pSS requires an invasive tissue biopsy and a delay in diagnosis of pSS has been frequently reported. In this study, four proteins including cofilin-1, alpha-enolase, annexin A2 and Rho GDP-dissociation inhibitor 2 (RGI2) were found to be over-expressed in pSS and pSS/MALT by 2D gel electrophoresis/mass spectrometry, and the finding was verified by the microarray analysis and western blotting results. We then developed enzyme-linked immunosorbent assays for autoantibodies including anti-cofilin-1, anti-alpha-enolase and anti-RGI2 with good quantitative ability. The expression levels of salivary anti-cofilin-1, anti-alpha-enolase and anti-RGI2 were found to be the highest in pSS/MALT patients and lowest in healthy controls. The combination of these three antiantibodies yielded an “area under the curve” (AUC) value of 0.94 with an 86% sensitivity and 93% specificity in distinguishing patients with pSS from healthy controls, an AUC value of 0.99 with a 95% sensitivity and 94% specificity in distinguishing patients with pSS/MALT from healthy controls and an AUC value of 0.86 with a 75% sensitivity and 94% specificity in distinguishing pSS/MALT patients from pSS patients. Collectively, we have successfully identified a panel of potential autoantigens that are progressively up-regulated during the development of pSS and its progression to MALT lymphoma. The autoantibody biomarkers may be used to help diagnose pSS and predict its progression to MALT lymphoma.
Collapse
Affiliation(s)
- Li Cui
- UCLA School of Dentistry, Los Angeles, CA 90095, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 900953, USA.,Department of Dentistry, Maoming People's Hospital, Maoming 525000, China
| | - Naseim Elzakra
- UCLA School of Dentistry, Los Angeles, CA 90095, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 900953, USA
| | - Shuaimei Xu
- Guangdong Provincial Stomatological Hospital, Guangzhou 510000, China
| | - Gary Guishan Xiao
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, 116024 China
| | - Yan Yang
- UCLA School of Dentistry, Los Angeles, CA 90095, USA.,Department of Stomatology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Shen Hu
- UCLA School of Dentistry, Los Angeles, CA 90095, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 900953, USA
| |
Collapse
|
11
|
Cui L, Cheng S, Liu X, Messadi D, Yang Y, Hu S. Syntenin-1 is a promoter and prognostic marker of head and neck squamous cell carcinoma invasion and metastasis. Oncotarget 2018; 7:82634-82647. [PMID: 27811365 PMCID: PMC5347720 DOI: 10.18632/oncotarget.13020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/19/2016] [Indexed: 12/11/2022] Open
Abstract
Metastasis represents a key factor associated with poor prognosis of head and neck squamous cell carcinoma (HNSC). However, the underlying molecular mechanisms remain largely unknown. In this study, our liquid chromatography with tandem mass spectrometry analysis revealed a number of significantly differentially expressed membrane/membrane-associated proteins between high invasive UM1 and low invasive UM2 cells. One of the identified membrane proteins, Syntenin-1, was remarkably up-regulated in HNSC tissues and cell lines when compared to the controls, and also over-expressed in recurrent HNSC and high invasive UM1 cells. Syntenin-1 over-expression was found to be significantly associated with lymph node metastasis and disease recurrence. HNSC patients with higher syntenin-1 expression had significantly poorer long term overall survival and similar results were found in many other types of cancers based on analysis of The Cancer Genome Atlas data. Finally, knockdown of syntenin-1 inhibited the proliferation, migration and invasion of HNSC cells, and opposite findings were observed when syntenin-1 was over-expressed. Collectively, our studies indicate that syntenin-1 promotes invasion and progression of HNSC. It may serve as a valuable biomarker for lymph node metastasis or a potential target for therapeutic intervention in HNSC.
Collapse
Affiliation(s)
- Li Cui
- University of California at Los Angeles, School of Dentistry, Los Angeles, CA 90095, USA.,University of California at Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Siliangyu Cheng
- University of California at Los Angeles, School of Dentistry, Los Angeles, CA 90095, USA.,University of California at Los Angeles, Department of Statistics, Los Angeles, CA 90095, USA
| | - Xiaojun Liu
- University of California at Los Angeles, School of Dentistry, Los Angeles, CA 90095, USA
| | - Diana Messadi
- University of California at Los Angeles, School of Dentistry, Los Angeles, CA 90095, USA.,University of California at Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Yan Yang
- University of California at Los Angeles, School of Dentistry, Los Angeles, CA 90095, USA.,Department of Stomatology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Shen Hu
- University of California at Los Angeles, School of Dentistry, Los Angeles, CA 90095, USA.,University of California at Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| |
Collapse
|
12
|
Roy J, Wycislo KL, Pondenis H, Fan TM, Das A. Comparative proteomic investigation of metastatic and non-metastatic osteosarcoma cells of human and canine origin. PLoS One 2017; 12:e0183930. [PMID: 28910304 PMCID: PMC5598957 DOI: 10.1371/journal.pone.0183930] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/14/2017] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma is the most common bone cancer in dogs and people. In order to improve clinical outcomes, it is necessary to identify proteins that are differentially expressed by metastatic cells. Membrane bound proteins are responsible for multiple pro-metastatic functions. Therefore characterizing the differential expression of membranous proteins between metastatic and non-metastatic clonal variants will allow the discovery of druggable targets and consequently improve treatment methodology. The objective of this investigation was to systemically identify the membrane-associated proteomics of metastatic and non-metastatic variants of human and canine origin. Two clonal variants of divergent in vivo metastatic potential from human and canine origins were used. The plasma membranes were isolated and peptide fingerprinting was used to identify differentially expressed proteins. Selected proteins were further validated using western blotting, flow cytometry, confocal microscopy and immunohistochemistry. Over 500 proteins were identified for each cell line with nearly 40% of the proteins differentially regulated. Conserved between both species, metastatic variants demonstrated significant differences in expression of membrane proteins that are responsible for pro-metastatic functions. Additionally, CD147, CD44 and vimentin were validated using various biochemical techniques. Taken together, through a comparative proteomic approach we have identified several differentially expressed cell membrane proteins that will help in the development of future therapeutics.
Collapse
Affiliation(s)
- Jahnabi Roy
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana, Illinois, United States of America
| | - Kathryn L. Wycislo
- Department of Pathobiology, University of Illinois Urbana–Champaign, Urbana, Illinois, United States of America
| | - Holly Pondenis
- Department of Veterinary Clinical Medicine, University of Illinois Urbana–Champaign, Urbana, Illinois, United States of America
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, University of Illinois Urbana–Champaign, Urbana, Illinois, United States of America
- * E-mail: (AD); (TMF)
| | - Aditi Das
- Department of Comparative Biosciences, Department of Biochemistry, Beckman Institute for Advanced Science, Division of Nutritional Sciences, Neuroscience Program and Department of Bioengineering, University of Illinois Urbana–Champaign, Urbana, Illinois, United States of America
- * E-mail: (AD); (TMF)
| |
Collapse
|
13
|
Abdouh M, Hamam D, Gao ZH, Arena V, Arena M, Arena GO. Exosomes isolated from cancer patients' sera transfer malignant traits and confer the same phenotype of primary tumors to oncosuppressor-mutated cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:113. [PMID: 28854931 PMCID: PMC5577828 DOI: 10.1186/s13046-017-0587-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/24/2017] [Indexed: 12/14/2022]
Abstract
Background Horizontal transfer of malignant traits from the primary tumor to distant organs, through blood circulating factors, has recently become a thoroughly studied metastatic pathway to explain cancer dissemination. Recently, we reported that oncosuppressor gene-mutated human cells undergo malignant transformation when exposed to cancer patients’ sera. We also observed that oncosuppressor mutated cells would show an increased uptake of cancer-derived exosomes and we suggested that oncosuppressor genes might protect the integrity of the cell genome by blocking integration of cancer-derived exosomes. In the present study, we tested the hypothesis that cancer patients’ sera-derived exosomes might be responsible for the malignant transformation of target cells and that oncosuppressor mutation would promote their increased uptake. We also sought to unveil the mechanisms behind the hypothesized phenomena. Methods We used human BRCA1 knockout (BRCA1-KO) fibroblasts as target cells. Cells were treated in vitro with cancer patients’ sera or cancer patients’ sera-derived exosomes. Treated cells were injected into NOD-SCID mice. Immunohistochemical analyses were performed to determine the differentiation state of the xenotransplants. Mass spectrometry analyses of proteins from cancer exosomes and the BRCA1-KO fibroblasts’ membrane were performed to investigate possible de novo expression of molecules involved in vesicles uptake. Blocking of the identified molecules in vitro was performed and in vivo experiments were conducted to confirm the role of these molecules in the malignant transformation carried out by cancer-derived exosomes. Results Cells treated with exosomes isolated from cancer patients’ sera underwent malignant transformation and formed tumors when transplanted into immunodeficient mice. Histological analyses showed that the tumors were carcinomas that differentiated into the same lineage of the primary tumors of blood donors. Oncosuppressor mutation promoted the de novo expression, on the plasma membrane of target cells, of receptors, responsible for the increased uptake of cancer-derived exosomes. The selective blocking of these receptors inhibited the horizontal transfer of malignant traits. Conclusion These findings strengthen the hypothesis that oncogenic factors transferred via circulating cancer exosomes, induce malignant transformation of target cells even at distance. Oncosuppressor genes might protect the integrity of the cell genome by inhibiting the uptake of cancer-derived exosomes. Electronic supplementary material The online version of this article (10.1186/s13046-017-0587-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohamed Abdouh
- Cancer Research Program, McGill University Health Centre-Research Institute, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Dana Hamam
- Cancer Research Program, McGill University Health Centre-Research Institute, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.,Department of Experimental Surgery, Faculty of Medicine, McGill University, 845 Rue Sherbrooke O, Montreal, Quebec, H3A 0G4, Canada
| | - Zu-Hua Gao
- Department of Pathology, McGill University Health Centre-Research Institute, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Vincenzo Arena
- Department of Obstetrics and Gynecology, Santo Bambino Hospital, via Torre del Vescovo 4, Catania, Italy
| | - Manuel Arena
- Department of Surgical Sciences, Organ Transplantation and Advances Technologies, University of Catania, via Santa Sofia, 84, Catania, Italy
| | - Goffredo Orazio Arena
- Cancer Research Program, McGill University Health Centre-Research Institute, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada. .,Department of Surgery, McGill University, St. Mary Hospital, 3830 Lacombe Avenue, Montreal, Quebec, H3T 1M5, Canada.
| |
Collapse
|
14
|
Rezaei M, Hosseini A, Nikeghbalian S, Ghaderi A. Establishment and characterization of a new human acinar cell carcinoma cell line, Faraz-ICR, from pancreas. Pancreatology 2017; 17:303-309. [PMID: 28215484 DOI: 10.1016/j.pan.2017.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/25/2017] [Accepted: 02/06/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Basic research in the field of acinar cell carcinoma (ACC) as a rare neoplasm of the pancreas is dependent on the availability of pragmatic model such as new pancreatic cancer cell lines. Thus, establishment and characterization of new pancreatic cancer cell lines from ACC origin are deemed important. METHODS Faraz-ICR cell line was derived from a 58-years old woman with pancreatic acinar cell carcinoma by the collagenase digestion protocol. We characterized the cell line by examining its morphology and cytostructural and functional profile. RESULTS Faraz-ICR has a doubling time of 35 hours and grows in soft agar with a colony-forming efficiency of 25%. The cell had nearly normal pattern of chromosomes in karyotype analysis and Comparative Genomic Hybridization (CGH) array analysis. Evaluation of cells by flowcytometry showed that Faraz-ICR is negative for EpCAM and mesenchymal markers in different passages, and has epithelial nature. Immunofluorescence staining revealed that cells were strongly positive for vimentin, desmin, ezrin, S100, nestin and they were negative for pan-cytokeratins, chromogranin and alpha smooth muscle actin. CONCLUSIONS We were able to establish a new pancreatic carcinoma cell line with partial aspects of Epithelial-mesenchymal transition and aggressiveness. This cell line might be suitable for studying various anticancer drugs and protein profile aiming to see any possible tumor associated marker for ACC.
Collapse
Affiliation(s)
- Marzieh Rezaei
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Hosseini
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Nikeghbalian
- Department of Surgery, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Abstract
OBJECTIVES Mass spectrometry-based proteomics enables near-comprehensive protein expression profiling. We aimed to compare quantitatively the relative expression levels of thousands of proteins across 5 pancreatic cell lines. METHODS Using tandem mass tags (TMT10-plex), we profiled the global proteomes of 5 cell lines in duplicate in a single multiplexed experiment. We selected cell lines commonly used in pancreatic research: CAPAN-1, HPAC, HPNE, PANC1, and PaSCs. In addition, we examined the effects of different proteases (Lys-C and Lys-C plus trypsin) on the dataset depth. RESULTS We quantified over 8000 proteins across the 5 cell lines. Analysis of variance testing of cell lines within each data set resulted in over 1400 statistically significant differences in protein expression levels. Comparing the data sets, 10% more proteins and 30% more peptides were identified in the Lys-C/trypsin data set than in the Lys-C-only data set. The correlation coefficient of quantified proteins common between the data sets was greater than 0.85. CONCLUSIONS We illustrate protein level differences across pancreatic cell lines. In addition, we highlight the advantages of Lys-C/trypsin over Lys-C-only digests for discovery proteomics. These data sets provide a valuable resource of cell line-dependent peptide and protein differences for future targeted analyses, including those investigating on- or off-target drug effects across cell lines.
Collapse
|
16
|
Coleman O, Henry M, McVey G, Clynes M, Moriarty M, Meleady P. Proteomic strategies in the search for novel pancreatic cancer biomarkers and drug targets: recent advances and clinical impact. Expert Rev Proteomics 2016; 13:383-94. [PMID: 26985644 DOI: 10.1586/14789450.2016.1167601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers; despite a low incidence rate it is the fourth leading cause of cancer-related death in the world. Improvement of the diagnosis, prognosis and treatment remains the main focus of pancreatic cancer research. Rapid developments in proteomic technologies has improved our understanding of the pancreatic cancer proteome. Here, the authors summarise the recent proteomic strategies undertaken in the search for: novel biomarkers for early diagnosis, pancreatic cancer-specific proteins which may be used for novel targeted therapies and proteins which may be useful for monitoring disease progression post-therapy. Recent advances and findings discussed here provide great promise of having a significant clinical impact and improving the outcome of patients with this malignancy.
Collapse
Affiliation(s)
- Orla Coleman
- a Department of Proteomics, National Institute for Cellular Biotechnology , Dublin City University , Glasnevin , Dublin 9 , Ireland
| | - Michael Henry
- a Department of Proteomics, National Institute for Cellular Biotechnology , Dublin City University , Glasnevin , Dublin 9 , Ireland
| | - Gerard McVey
- b St. Lukes Hospital , Rathgar , Dublin 6 , Ireland
| | - Martin Clynes
- a Department of Proteomics, National Institute for Cellular Biotechnology , Dublin City University , Glasnevin , Dublin 9 , Ireland
| | - Michael Moriarty
- a Department of Proteomics, National Institute for Cellular Biotechnology , Dublin City University , Glasnevin , Dublin 9 , Ireland.,b St. Lukes Hospital , Rathgar , Dublin 6 , Ireland
| | - Paula Meleady
- a Department of Proteomics, National Institute for Cellular Biotechnology , Dublin City University , Glasnevin , Dublin 9 , Ireland
| |
Collapse
|
17
|
Simple oxygraphic analysis for the presence of adenylate kinase 1 and 2 in normal and tumor cells. J Bioenerg Biomembr 2016; 48:531-548. [PMID: 27854030 DOI: 10.1007/s10863-016-9687-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
The adenylate kinase (AK) isoforms network plays an important role in the intracellular energy transfer processes, the maintenance of energy homeostasis, and it is a major player in AMP metabolic signaling circuits in some highly-differentiated cells. For this purpose, a rapid and sensitive method was developed that enables to estimate directly and semi-quantitatively the distribution between cytosolic AK1 and mitochondrial AK2 localized in the intermembrane space, both in isolated cells and tissue samples (biopsy material). Experiments were performed on isolated rat mitochondria or permeabilized material, including undifferentiated and differentiated neuroblastoma Neuro-2a cells, HL-1 cells, isolated rat heart cardiomyocytes as well as on human breast cancer postoperative samples. In these samples, the presence of AK1 and AK2 could be detected by high-resolution respirometry due to the functional coupling of these enzymes with ATP synthesis. By eliminating extra-mitochondrial ADP with an excess of pyruvate kinase and its substrate phosphoenolpyruvate, the coupling of the AK reaction with mitochondrial ATP synthesis could be quantified for total AK and mitochondrial AK2 as a specific AK index. In contrast to the creatine kinase pathway, the AK phosphotransfer pathway is up-regulated in murine neuroblastoma and HL-1 sarcoma cells and in these malignant cells expression of AK2 is higher than AK1. Differentiated Neuro-2a neuroblastoma cells exhibited considerably higher OXPHOS capacity than undifferentiated cells, and this was associated with a remarkable decrease in their AK activity. The respirometric method also revealed a considerable difference in mitochondrial affinity for AMP between non-transformed cells and tumor cells.
Collapse
|
18
|
Molinaro R, Corbo C, Martinez JO, Taraballi F, Evangelopoulos M, Minardi S, Yazdi I, Zhao P, De Rosa E, Sherman M, De Vita A, Furman NT, Wang X, Parodi A, Tasciotti E. Biomimetic proteolipid vesicles for targeting inflamed tissues. NATURE MATERIALS 2016; 15:1037-46. [PMID: 27213956 PMCID: PMC5127392 DOI: 10.1038/nmat4644] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/13/2016] [Indexed: 05/13/2023]
Abstract
A multitude of micro- and nanoparticles have been developed to improve the delivery of systemically administered pharmaceuticals, which are subject to a number of biological barriers that limit their optimal biodistribution. Bioinspired drug-delivery carriers formulated by bottom-up or top-down strategies have emerged as an alternative approach to evade the mononuclear phagocytic system and facilitate transport across the endothelial vessel wall. Here, we describe a method that leverages the advantages of bottom-up and top-down strategies to incorporate proteins derived from the leukocyte plasma membrane into lipid nanoparticles. The resulting proteolipid vesicles-which we refer to as leukosomes-retained the versatility and physicochemical properties typical of liposomal formulations, preferentially targeted inflamed vasculature, enabled the selective and effective delivery of dexamethasone to inflamed tissues, and reduced phlogosis in a localized model of inflammation.
Collapse
Affiliation(s)
- R. Molinaro
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - C. Corbo
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
- EINGE–Biotecnologie Avanzate s.c.a.r.l., Via G. Salvatore 486, 80145 Naples, Italy
- IRCCS SDN, Via Gianturco 113, 80143 Naples, Italy
| | - J. O. Martinez
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - F. Taraballi
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Pain Therapy Service, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - M. Evangelopoulos
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - S. Minardi
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - I.K. Yazdi
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - P. Zhao
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - E. De Rosa
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - M. Sherman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
| | - A. De Vita
- Osteoncology and Rare Tumors Center, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Italy
| | - N.E. Toledano Furman
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - X. Wang
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - A. Parodi
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
- IRCCS SDN, Via Gianturco 113, 80143 Naples, Italy
| | - E. Tasciotti
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
- To whom correspondence should be addressed: Dr. Ennio Tasciotti, Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030,
| |
Collapse
|
19
|
Hamam D, Abdouh M, Gao ZH, Arena V, Arena M, Arena GO. Transfer of malignant trait to BRCA1 deficient human fibroblasts following exposure to serum of cancer patients. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:80. [PMID: 27179759 PMCID: PMC4868000 DOI: 10.1186/s13046-016-0360-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/09/2016] [Indexed: 02/06/2023]
Abstract
Background It was reported that metastases might occur via transfer of biologically active blood circulating molecules from the primary tumor to distant organs rather than only migration of cancer cells. We showed in an earlier study that exposure of immortalized human embryonic kidney cells (HEK 293) to cancer patient sera, induce their transformation into undifferentiated cancers due to a horizontal transfer of malignant traits. In the present work, we tested the hypothesis that even other human cells as long as they are deficient for a single oncosuppressor gene might undergo malignant transformation when exposed to human cancer serum. Methods We used the CRISPR/Cas9 system to establish a stable BRCA1 knockout (KO) in human fibroblasts. The BRCA1-KO fibroblasts were exposed to cancer patients’ sera or healthy patients’ sera for 2 weeks. Treated cells were analyzed for cell proliferation and transformation to study their susceptibility to the oncogenic potential of cancer patients’ sera and to determine the possible mechanisms underlying their hypothesized transformation. Results BRCA1-KO fibroblasts treated with cancer patients’ sera displayed higher proliferation and underwent malignant transformation as opposed to wild type control fibroblasts, which were not affected by exposure to cancer patients’ sera. The malignant transformation was not seen when BRCA1-KO fibroblasts were treated with healthy human sera. Histological analysis of tumors generated by BRCA1-KO fibroblasts showed that they were carcinomas with phenotypical characteristics related to the cancers of the blood donor patients. Interestingly, BRCA1-KO fibroblasts were significantly more prone to internalize serum-derived exosomes, when compared to wild type fibroblasts. This suggests that oncosuppressor genes might protect the integrity of the cell genome also by blocking integration of cancer-derived exosomes. Conclusion These data support the hypothesis that any human cells carrying a single oncosuppressor mutation is capable of integrating cancer factors carried in the blood and undergo complete malignant transformation. Oncosuppressor genes might protect the cell genome by impeding the integration inside the cells of these mutating factors. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0360-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dana Hamam
- Cancer Research Program, McGill University Health Centre-Research Institute, 1001 Decarie Boulevard, Montreal, H4A 3J1, QC, Canada.,Department of Experimental Surgery, Faculty of Medicine, McGill University, 845 Rue Sherbrooke O, Montreal, H3A 0G4, QC, Canada
| | - Mohamed Abdouh
- Cancer Research Program, McGill University Health Centre-Research Institute, 1001 Decarie Boulevard, Montreal, H4A 3J1, QC, Canada
| | - Zu-Hua Gao
- Department of Pathology, McGill University Health Centre-Research Institute, 1001 Decarie Boulevard, H4A 3J1, Montreal, QC, Canada
| | - Vincenzo Arena
- Department of Obstetrics and Gynecology, Santo Bambino Hospital, via Torre del Vescovo 4, Catania, Italy
| | - Manuel Arena
- Department of Surgical Sciences, Organ Transplantation and Advances Technologies, University of Catania, via Santa Sofia 84, Catania, Italy
| | - Goffredo Orazio Arena
- Cancer Research Program, McGill University Health Centre-Research Institute, 1001 Decarie Boulevard, Montreal, H4A 3J1, QC, Canada. .,Department of Surgery, McGill University, St. Mary Hospital, 3830 Lacombe Avenue, Montreal, H3T 1M5, QC, Canada.
| |
Collapse
|
20
|
Adisakwattana P, Suwandittakul N, Petmitr S, Wongkham S, Sangvanich P, Reamtong O. ALCAM is a Novel Cytoplasmic Membrane Protein in TNF-α Stimulated Invasive Cholangiocarcinoma Cells. Asian Pac J Cancer Prev 2016; 16:3849-56. [PMID: 25987048 DOI: 10.7314/apjcp.2015.16.9.3849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA), or bile duct cancer, is incurable with a high mortality rate due to a lack of effective early diagnosis and treatment. Identifying cytoplasmic membrane proteins of invasive CCA that facilitate cancer progression would contribute toward the development of novel tumor markers and effective chemotherapy. MATERIALS AND METHODS An invasive CCA cell line (KKU-100) was stimulated using TNF-α and then biotinylated and purified for mass spectrometry analysis. Novel proteins expressed were selected and their mRNAs expression levels were determined by real-time RT-PCR. In addition, the expression of ALCAM was selected for further observation by Western blot analysis, immunofluorescent imaging, and antibody neutralization assay. RESULTS After comparing the proteomics profile of TNF-α induced invasive with non-treated control cells, over-expression of seven novel proteins was observed in the cytoplasmic membrane of TNF-α stimulated CCA cells. Among these, ALCAM is a novel candidate which showed significant higher mRNA- and protein levels. Immunofluorescent assay also supported that ALCAM was expressed on the cell membrane of the cancer, with increasing intensity associated with TNF-α. CONCLUSIONS This study indicated that ALCAM may be a novel protein candidate expressed on cytoplasmic membranes of invasive CCA cells that could be used as a biomarker for development of diagnosis, prognosis, and drug or antibody-based targeted therapies in the future.
Collapse
Affiliation(s)
- Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand E-mail :
| | | | | | | | | | | |
Collapse
|
21
|
Zhang X, Li W, Hou Y, Niu Z, Zhong Y, Zhang Y, Yang S. Comparative membrane proteomic analysis between lung adenocarcinoma and normal tissue by iTRAQ labeling mass spectrometry. Am J Transl Res 2014; 6:267-280. [PMID: 24936219 PMCID: PMC4058308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/10/2014] [Indexed: 06/03/2023]
Abstract
Lung adenocarcinoma, the most common type of lung cancer, has increased in recent years. Prognosis is still poor, and pathogenesis remains unclear. This study aimed to investigate the membrane protein profile differences between lung adenocarcinoma and normal tissue. Manual microdissection was used to isolate the target cells from tumor tissue and normal tissue. iTRAQ labeling combined with 2D-LC-MS/MS yielded a differential expression profile of membrane proteins. Bioinformatic analysis was performed using Gene Ontology, WEGO, PID, and KEGG. S100A14 protein was selectively verified by Western blotting. The relationship of S100A14 expression with clinicopathological features in lung cancer patients was evaluated using immunohistochemistry. As a result, 568 differential proteins were identified; 257 proteins were upregulated and 311 were downregulated. Of these proteins, 48% were found to be membrane bound or membrane associated. These proteins enable the physiological functions of binding, catalysis, molecular transduction, transport, and molecular structure. For these differential proteins, 35 pathways were significantly enriched through the Pathway Interaction Database, whereas 19 pathways were enriched via KEGG. The overexpression and cellular distribution of S100A14 in lung cancer were confirmed. We found that upregulation of S100A14 was associated with well or moderate differentiation. The iTRAQ-coupled 2D-LC-MS/MS technique is a potential method for comparing membrane protein profiles between tumor and normal tissue. Such analysis may also help in identifying novel biomarkers and the mechanisms underlying carcinogenesis.
Collapse
Affiliation(s)
- Xuede Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University Xi'an, Shannxi 710004, China
| | - Wei Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University Xi'an, Shannxi 710004, China
| | - Yanli Hou
- Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University Xi'an, Shannxi 710004, China
| | - Zequn Niu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University Xi'an, Shannxi 710004, China
| | - Yujie Zhong
- Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University Xi'an, Shannxi 710004, China
| | - Yuping Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University Xi'an, Shannxi 710004, China
| | - Shuanying Yang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University Xi'an, Shannxi 710004, China
| |
Collapse
|
22
|
Kim H, Lee HJ, Oh Y, Choi SG, Hong SH, Kim HJ, Lee SY, Choi JW, Su Hwang D, Kim KS, Kim HJ, Zhang J, Youn HJ, Noh DY, Jung YK. The DUSP26 phosphatase activator adenylate kinase 2 regulates FADD phosphorylation and cell growth. Nat Commun 2014; 5:3351. [PMID: 24548998 PMCID: PMC3948464 DOI: 10.1038/ncomms4351] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/30/2014] [Indexed: 01/16/2023] Open
Abstract
Adenylate kinase 2 (AK2), which balances adenine nucleotide pool, is a multi-functional protein. Here we show that AK2 negatively regulates tumour cell growth. AK2 forms a complex with dual-specificity phosphatase 26 (DUSP26) phosphatase and stimulates DUSP26 activity independently of its AK activity. AK2/DUSP26 phosphatase protein complex dephosphorylates fas-associated protein with death domain (FADD) and regulates cell growth. AK2 deficiency enhances cell proliferation and induces tumour formation in a xenograft assay. This anti-growth function of AK2 is associated with its DUSP26-stimulating activity. Downregulation of AK2 is frequently found in tumour cells and human cancer tissues showing high levels of phospho-FADD(Ser194). Moreover, reconstitution of AK2 in AK2-deficient tumour cells retards both cell proliferation and tumourigenesis. Consistent with this, AK2(+/-) mouse embryo fibroblasts exhibit enhanced cell proliferation with a significant alteration in phospho-FADD(Ser191). These results suggest that AK2 is an associated activator of DUSP26 and suppresses cell proliferation by FADD dephosphorylation, postulating AK2 as a negative regulator of tumour growth.
Collapse
Affiliation(s)
- Hyunjoo Kim
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
- These authors contributed equally to this work
| | - Ho-June Lee
- Department of Discovery Oncology, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, USA
- These authors contributed equally to this work
| | - Yumin Oh
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Seon-Guk Choi
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Se-Hoon Hong
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Hyo-Jin Kim
- Department of Discovery Oncology, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, USA
| | - Song-Yi Lee
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Ji-Woo Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Deog Su Hwang
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Key-Sun Kim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Hyo-Joon Kim
- Department of Biochemistry, Hanyang University, Ansan, Kyeonggi-do 425-791, Korea
| | - Jianke Zhang
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Hyun-Jo Youn
- Department of Surgery, Chonbuk National University Medical School, Jeonju 561-180, Korea
| | - Dong-Young Noh
- Department of Surgery, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Yong-Keun Jung
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| |
Collapse
|
23
|
Qattan AT, Radulovic M, Crawford M, Godovac-Zimmermann J. Spatial distribution of cellular function: the partitioning of proteins between mitochondria and the nucleus in MCF7 breast cancer cells. J Proteome Res 2012; 11:6080-101. [PMID: 23051583 PMCID: PMC4261608 DOI: 10.1021/pr300736v] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Concurrent proteomics analysis of the nuclei and mitochondria of MCF7 breast cancer cells identified 985 proteins (40% of all detected proteins) present in both organelles. Numerous proteins from all five complexes involved in oxidative phosphorylation (e.g., NDUFA5, NDUFB10, NDUFS1, NDUF2, SDHA, UQRB, UQRC2, UQCRH, COX5A, COX5B, MT-CO2, ATP5A1, ATP5B, ATP5H, etc.), from the TCA-cycle (DLST, IDH2, IDH3A, OGDH, SUCLAG2, etc.), and from glycolysis (ALDOA, ENO1, FBP1, GPI, PGK1, TALDO1, etc.) were distributed to both the nucleus and mitochondria. In contrast, proteins involved in nuclear/mitochondrial RNA processing/translation and Ras/Rab signaling showed different partitioning patterns. The identity of the OxPhos, TCA-cycle, and glycolysis proteins distributed to both the nucleus and mitochondria provides evidence for spatio-functional integration of these processes over the two different subcellular organelles. We suggest that there are unrecognized aspects of functional coordination between the nucleus and mitochondria, that integration of core functional processes via wide subcellular distribution of constituent proteins is a common characteristic of cells, and that subcellular spatial integration of function may be a vital aspect of cancer.
Collapse
Affiliation(s)
- Amal T. Qattan
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, Royal Free Campus, Rowland Hill Street NW3 2PF, United Kingdom
| | - Marko Radulovic
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, Royal Free Campus, Rowland Hill Street NW3 2PF, United Kingdom
| | - Mark Crawford
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, Royal Free Campus, Rowland Hill Street NW3 2PF, United Kingdom
| | - Jasminka Godovac-Zimmermann
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, Royal Free Campus, Rowland Hill Street NW3 2PF, United Kingdom
| |
Collapse
|
24
|
Abstract
Serum and membrane proteins are two of the most attractive targets for proteomic analysis. Previous membrane protein studies tend to focus on tissue sample, while membrane protein studies in serum are still limited. In this study, an analysis of membrane proteins in normal human serum was carried out. Nano-liquid chromatography-electrospray ionization mass spectrometry (NanoLC-ESI-MS/MS) and bioinformatics tools were used to identify membrane proteins. Two hundred and seventeen membrane proteins were detected in the human serum, of which 129 membrane proteins have at least one transmembrane domain (TMD). Further characterizations of identified membrane proteins including their subcellular distributions, molecular weights, post translational modifications, transmembrane domains and average of hydrophobicity, were also implemented. Our results showed the potential of membrane proteins in serum for diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Nguyen Tien Dung
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Rd, Hanoi, Vietnam
| | - Phan Van Chi
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Rd, Hanoi, Vietnam
| |
Collapse
|
25
|
Sun C, Rosendahl AH, Ansari D, Andersson R. Proteome-based biomarkers in pancreatic cancer. World J Gastroenterol 2011; 17:4845-52. [PMID: 22171124 PMCID: PMC3235626 DOI: 10.3748/wjg.v17.i44.4845] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/01/2011] [Accepted: 08/08/2011] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer, as a highly malignant cancer and the fourth cause of cancer-related death in world, is characterized by dismal prognosis, due to rapid disease progression, highly invasive tumour phenotype, and resistance to chemotherapy. Despite significant advances in treatment of the disease during the past decade, the survival rate is little improved. A contributory factor to the poor outcome is the lack of appropriate sensitive and specific biomarkers for early diagnosis. Furthermore, biomarkers for targeting, directing and assessing therapeutic intervention, as well as for detection of residual or recurrent cancer are also needed. Thus, the identification of adequate biomarkers in pancreatic cancer is of extreme importance. Recently, accompanying the development of proteomic technology and devices, more and more potential biomarkers have appeared and are being reported. In this review, we provide an overview of the role of proteome-based biomarkers in pancreatic cancer, including tissue, serum, juice, urine and cell lines. We also discuss the possible mechanism and prospects in the future. That information hopefully might be helpful for further research in the field.
Collapse
|
26
|
Zhang A, Williamson CD, Wong DS, Bullough MD, Brown KJ, Hathout Y, Colberg-Poley AM. Quantitative proteomic analyses of human cytomegalovirus-induced restructuring of endoplasmic reticulum-mitochondrial contacts at late times of infection. Mol Cell Proteomics 2011; 10:M111.009936. [PMID: 21742798 DOI: 10.1074/mcp.m111.009936] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Endoplasmic reticulum-mitochondrial contacts, known as mitochondria-associated membranes, regulate important cellular functions including calcium signaling, bioenergetics, and apoptosis. Human cytomegalovirus is a medically important herpesvirus whose growth increases energy demand and depends upon continued cell survival. To gain insight into how human cytomegalovirus infection affects endoplasmic reticulum-mitochondrial contacts, we undertook quantitative proteomics of mitochondria-associated membranes using differential stable isotope labeling by amino acids in cell culture strategy and liquid chromatography-tandem MS analysis. This is the first reported quantitative proteomic analyses of a suborganelle during permissive human cytomegalovirus infection. Human fibroblasts were uninfected or human cytomegalovirus-infected for 72 h. Heavy mitochondria-associated membranes were isolated from paired unlabeled, uninfected cells and stable isotope labeling by amino acids in cell culture-labeled, infected cells and analyzed by liquid chromatography-tandem MS analysis. The results were verified by a reverse labeling experiment. Human cytomegalovirus infection dramatically altered endoplasmic reticulum-mitochondrial contacts by late times. Notable is the increased abundance of several fundamental networks in the mitochondria-associated membrane fraction of human cytomegalovirus-infected fibroblasts. Chaperones, including HSP60 and BiP, which is required for human cytomegalovirus assembly, were prominently increased at endoplasmic reticulum-mitochondrial contacts after infection. Minimal translational and translocation machineries were also associated with endoplasmic reticulum-mitochondrial contacts and increased after human cytomegalovirus infection as were glucose regulated protein 75 and the voltage dependent anion channel, which can form an endoplasmic reticulum-mitochondrial calcium signaling complex. Surprisingly, mitochondrial metabolic enzymes and cytosolic glycolytic enzymes were confidently detected in the mitochondria-associated membrane fraction and increased therein after infection. Finally, proapoptotic regulatory proteins, including Bax, cytochrome c, and Opa1, were augmented in endoplasmic reticulum-mitochondrial contacts after infection, suggesting attenuation of proapoptotic signaling by their increased presence therein. Together, these results suggest that human cytomegalovirus infection restructures the proteome of endoplasmic reticulum-mitochondrial contacts to bolster protein translation at these junctions, calcium signaling to mitochondria, cell survival, and bioenergetics and, thereby, allow for enhanced progeny production.
Collapse
Affiliation(s)
- Aiping Zhang
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | | | | | | | | | | | | |
Collapse
|