1
|
López-Gálvez R, de la Morena-Barrio ME, Miñano A, Pathak M, Marcos C, Emsley J, Caballero T, López-Trascasa M, Vicente V, Corral J, López-Lera A. Thrombin in the Activation of the Fluid Contact Phase in Patients with Hereditary Angioedema Carrying the F12 P.Thr309Lys Variant. Clin Rev Allergy Immunol 2021; 60:357-368. [PMID: 33725261 DOI: 10.1007/s12016-021-08840-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 11/29/2022]
Abstract
Hereditary angioedema due to pathogenic FXII variants (HAE-FXII) is a rare dominant disease caused by increased activation of the plasma contact system. The most prevalent HAE-FXII variant, c.1032C > A p.Thr309Lys (FXII309Lys), results in a smaller FXII protein with increased sensitivity to fluid-phase activation by poorly understood mechanisms. We aimed to investigate the functionality of the FXII309Lys variant in 33 HAE-FXII patients, 25 healthy controls and 46 patients with congenital disorders of glycosylation (CDG). Activation of the plasma contact system was assessed by western blot and amidolytic assay in basal conditions or after treatment with either artificial or physiological activators. Recombinant wild-type and FXII309Lys variants were expressed in S2 insect (Drosophila) cells. Amidolytic and fibrin generation assays were performed in fresh plasma samples. FXII309Lys samples exhibited an increased electrophoretic mobility comparable with N-glycan-deficient FXII from CDG patients and asialo-FXII generated by neuraminidase treatment. They presented increased sensitivity to activation by dextran sulphate and silica which resulted in the generation of an aberrant 37-kDa heavy chain. We did not observe increased susceptibility of FXII309Lys to proteolysis by exogenous or tPA-generated plasmin. However, both exogenous and endogenous thrombin cleaved the FXII309Lys variant, releasing a 37-kDa fragment and resulting in enhanced proteolytic activation on the fluid phase. This model supports a sequential proteolytic activation process involving thrombin priming of FXII309Lys, followed by kallikrein cleavage and generation of active βFXIIa. The present results and the observation that angioedema episodes in HAE-FXII patients occur predominantly during hypercoagulable situations suggest a key role for thrombin.
Collapse
Affiliation(s)
- R López-Gálvez
- Servicio de Hematología Y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
| | - M E de la Morena-Barrio
- Servicio de Hematología Y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain.
| | - A Miñano
- Servicio de Hematología Y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
| | - M Pathak
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, England
| | - C Marcos
- Sección Alergología, Complexo Hospitalario Universitario de Vigo. Hospital Meixoeiro, Vigo, Spain
| | - J Emsley
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, England
| | - T Caballero
- Servicio de Alergia, Hospital Universitario La Paz, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital La Paz (IdiPaz), Madrid, Spain.,Centre for Biomedical Network Research On Rare Diseases (CIBERER) U-754, Hospital Universitario La Paz, Madrid, Spain
| | - M López-Trascasa
- Centre for Biomedical Network Research On Rare Diseases (CIBERER) U-754, Hospital Universitario La Paz, Madrid, Spain.,Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - V Vicente
- Servicio de Hematología Y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
| | - J Corral
- Servicio de Hematología Y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
| | - A López-Lera
- Instituto de Investigación Sanitaria del Hospital La Paz (IdiPaz), Madrid, Spain. .,Centre for Biomedical Network Research On Rare Diseases (CIBERER) U-754, Hospital Universitario La Paz, Madrid, Spain.
| |
Collapse
|
2
|
Abstract
Glycosylation is a sophisticated informational system that controls specific biological functions at the cellular and organismal level. Dysregulation of glycosylation may underlie some of the most complex and common diseases of the modern era. In the past 5 years, microRNAs have come to the forefront as a critical regulator of the glycome. Herein, we review the current literature on miRNA regulation of glycosylation and how this work may point to a new way to identify the biological importance of glycosylation enzymes.
Collapse
Affiliation(s)
- Chu T Thu
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Lara K Mahal
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
3
|
Piacente C, Martucci G, Miceli V, Pavone G, Papeo A, Occhipinti G, Panarello G, Lorusso R, Tanaka K, Arcadipane A. A narrative review of antithrombin use during veno-venous extracorporeal membrane oxygenation in adults: rationale, current use, effects on anticoagulation, and outcomes. Perfusion 2020; 35:452-464. [PMID: 32228213 DOI: 10.1177/0267659120913803] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND During extracorporeal membrane oxygenation, the large contact surface between the blood and the extracorporeal circuit causes a continuous activation of coagulation and inflammation. Unfractionated heparin, a glycosaminoglycan that must bind to antithrombin as a cofactor, is currently the standard anticoagulant adopted during extracorporeal membrane oxygenation. Antithrombin, beyond being a potent natural anticoagulant, acts in the cross-talk between coagulation and inflammatory system through anticoagulation and coagulation-independent effects. OBJECTIVES In this review, we describe, in the adult setting of veno-venous extracorporeal membrane oxygenation, the pathophysiological rationale for antithrombin use, the current practice of administration, and the effects of antithrombin on anticoagulation, bleeding, and outcomes. DATA SOURCES Studies on adults (18 years or older) on veno-venous extracorporeal membrane oxygenation published from 1995 to 2018 in order to evaluate the use of antithrombin. RESULTS In adults on veno-venous extracorporeal membrane oxygenation, antithrombin supplementation has a highly pathophysiological rationale since coagulation factor consumption, systemic inflammatory response syndrome, and endothelial activation are triggered by extracorporeal membrane oxygenation. Eleven articles are focused on the topic but among the authors there is no consensus on the threshold for supplementation (ranging from 70% to 80%) as well as on the dose (rarely standardized) and time of administration (bolus vs continuous infusion). Consistently, antithrombin is considered able to achieve better anticoagulation targets in or not in the presence of heparin resistance. The impact of antithrombin administration on bleeding still shows contrasting results. CONCLUSION Antithrombin use in veno-venous extracorporeal membrane oxygenation should be investigated on the threshold for supplementation, dose, and time of administration.
Collapse
Affiliation(s)
- Claudia Piacente
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| | - Gennaro Martucci
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
- Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Vitale Miceli
- Research Department, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| | - Gaetano Pavone
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| | - Anna Papeo
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| | - Giovanna Occhipinti
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| | - Giovanna Panarello
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| | - Roberto Lorusso
- Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Kenichi Tanaka
- Department of Anesthesiology, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Antonio Arcadipane
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| |
Collapse
|
4
|
Zhao L, Li Y, Song X, Zhou H, Li N, Miao Y, Jia L. Upregulation of miR-181c inhibits chemoresistance by targeting ST8SIA4 in chronic myelocytic leukemia. Oncotarget 2018; 7:60074-60086. [PMID: 27527856 PMCID: PMC5312369 DOI: 10.18632/oncotarget.11054] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/10/2016] [Indexed: 12/02/2022] Open
Abstract
Chemotherapy resistance frequently drives tumor progression. Increased expression of ST8SIA4 has been reported in diverse carcinomas and highly correlates with leukemia multidrug resistance (MDR). MicroRNAs (miRNA) are widely recognized as key players in cancer progression and drug resistance. Here, to explore whether miRNA modulates the sensitivity of chronic myelocytic leukemia (CML) to chemotherapeutic agents and regulates ST8SIA4 expression, we analyzed the complete miRNA expression profile and found a subset of miRNAs specifically dysregulated in adriamycin-resistant CML cell line K562/ADR and its parent cell line K562. Compared with three pairs of CML cell lines and 38 clinical samples of peripheral blood mononuclear cells (PBMC) of CML patients, miR-181c expression was down-regulated in drug-resistant cell lines and CML/MDR samples. Altered expression levels of miR-181c influenced the MDR phenotypes of K562 and K562/ADR. Reporter-gene assay showed that miR-181c directly targeted and inhibited the ST8SIA4 expression, as well as miR-181c was inversely correlated with the levels of ST8SIA4 expression in CML cell lines and samples. Moreover, ST8SIA4 could reverse the effect of miR-181c on drug resistance in K562 and K562/ADR cells in vitro. Upregulation of miR-181c sensitized K562/ADR cells to adriamycin in vivo through directly suppressing ST8SIA4 expression. Further investigation showed that miR-181c mediated the activity of phosphoinositide-3 kinase (PI3K)/AKT signal pathway, and inhibition of PI3K/Akt in K562 cells counteracted miR-181c-mediated MDR phenotype. These data revealed an important role for miR-181c in the regulation of chemoresistance in CML, and suggested the potential application of miR-181c in drug resistance treatment.
Collapse
Affiliation(s)
- Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yan Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xiaobo Song
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Huimin Zhou
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Nana Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yuan Miao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
5
|
Zhou H, Li Y, Liu B, Shan Y, Li Y, Zhao L, Su Z, Jia L. Downregulation of miR-224 and let-7i contribute to cell survival and chemoresistance in chronic myeloid leukemia cells by regulating ST3GAL IV expression. Gene 2017; 626:106-118. [DOI: 10.1016/j.gene.2017.05.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/30/2017] [Accepted: 05/11/2017] [Indexed: 12/24/2022]
|
6
|
Ma X, Dong W, Su Z, Zhao L, Miao Y, Li N, Zhou H, Jia L. Functional roles of sialylation in breast cancer progression through miR-26a/26b targeting ST8SIA4. Cell Death Dis 2016; 7:e2561. [PMID: 28032858 PMCID: PMC5260976 DOI: 10.1038/cddis.2016.427] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/12/2016] [Accepted: 11/15/2016] [Indexed: 01/12/2023]
Abstract
Sialylation is one of the altered glycosylation patterns associated with cancer progression. In this study, we investigated the N-glycan profiles of breast cancer patients and cell lines to reveal sialylation associated with breast cancer progression, and provided new evidences of miRNA-mediated sialylation. MALDI-TOF MS analysis revealed that N-glycans found in breast cancer tissues and breast cancer cell MDA-MB-231 featured increased levels of sialylation compared with adjacent tissues and normal breast epithelial cell MCF-10A. The expressional profiles of 20 sialyltransferase genes were then analyzed and found significantly different comparing breast cancer samples with adjacent tissues, and two breast cancer cell lines MDA-MB-231 and MCF-7 with different metastatic potential and MCF-10A cells. Tumor tissues and highly metastatic breast cancer cell line MDA-MB-231 exhibited higher levels of ST8SIA4. Knocking down ST8SIA4 in breast cancer cell lines significantly inhibited their malignant behaviors including cell proliferation and invasion in a sialyltransferase-dependent manner. By applying bioinformatic approaches for the prediction of miRNA targeting 3′-UTR of ST8SIA4, we identified ST8SIA4 as one of the miR-26a/26b-targeted genes. Further data analysis revealed the inversely related expression of ST8SIA4 and miR-26a/26b in breast cancer cells, tumor tissues and corresponding adjacent tissues. The ability of miR-26a/26b to interact specifically with and regulate the 3′-UTR of ST8SIA4 was demonstrated via a luciferase reporter assay. The forced expression of miR-26a/26b was able to induce a decrease of ST8SIA4 level and also to affect breast cancer cells progression, while altered expression of ST8SIA4 in breast cancer cells modulated progression upon transfection with miR-26a/26b mimics or inhibiter. Taken together, these results indicate that changes in the glycosylation patterns and sialylation levels may be useful markers of the progression of breast cancer, as well as miR-26a/26b may be widely involved in the regulation of sialylation machinery by targeting ST8SIA4.
Collapse
Affiliation(s)
- Xiaolu Ma
- College of Laboratory Medicine, Dalian Medical University, Dalian, China.,Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Weijie Dong
- Department of Biochemistry, Dalian Medical University, Dalian, China
| | - Zhen Su
- Graduate School, Dalian Medical University, Dalian, China
| | - Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian, China
| | - Yuan Miao
- College of Laboratory Medicine, Dalian Medical University, Dalian, China
| | - Nana Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, China
| | - Huimin Zhou
- Department of Microbiology, Dalian Medical University, Dalian, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Tay J, Tiao J, Hughes Q, Gilmore G, Baker R. Therapeutic Potential of miR-494 in Thrombosis and Other Diseases: A Review. Aust J Chem 2016. [DOI: 10.1071/ch16020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Functional nucleic acids, such as microRNAs (miRNAs), have been implicated in the pathophysiology of many diseases. The miRNA expression profiles of various cancers including haematological malignancies are well defined, but the role of miRNAs in haemostasis and the regulation of coagulation is poorly understood. We identified that miR-494 is oestrogen responsive and directly targets the anticoagulant protein, Protein S, as a mechanism for acquiring Protein S deficiency under high oestrogenic conditions such as during pregnancy and oral contraceptive use. Furthermore, previous studies have also characterised miR-494 to be involved in many biological processes. This paper reviews the current knowledge in the role of miRNAs in regulating haemostatic proteins and the known biological functions of miR-494, highlighting miR-494 as an emerging therapeutic target, with an overview of the strategy we have employed in identifying functional nucleic acids such as miRNAs that target haemostatic factors and the therapeutic potential of miR-494-directed therapy for the treatment of thrombotic disorders.
Collapse
|
8
|
Abstract
Epidemiologic studies have revealed that modification of the levels of individual components of the hemostatic system may have effects on the development of thrombosis or hemorrhage. To maintain the necessary equilibrium, the hemostatic system is finely regulated. It is known that acquired factors and/or alterations in genes (single-nucleotide polymorphisms or mutations) may be the cause of interindividual differences or exacerbated levels of hemostatic proteins in plasma, but there are still many non-characterized factors that provoke such variations. The search for new elements, such as microRNAs (miRNAs), a family of small non-coding RNAs that are novel regulators of protein expression, may reveal an additional layer at which to investigate the causes of hemostatic diseases. In this review, we discuss the latest developments in research into the role of miRNAs in the regulation of several hemostatic factors, and the potential use of miRNAs as prognostic or diagnostic tools in hemostasis and thrombosis.
Collapse
Affiliation(s)
- R Teruel-Montoya
- Centro Regional de Hemodonación, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | | | | |
Collapse
|
9
|
Karlaftis V, Sritharan G, Attard C, Corral J, Monagle P, Ignjatovic V. Beta (β)-antithrombin activity in children and adults: implications for heparin therapy in infants and children. J Thromb Haemost 2014; 12:1141-4. [PMID: 24801362 DOI: 10.1111/jth.12597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/30/2014] [Indexed: 08/31/2023]
Abstract
BACKGROUND Antithrombin, a hemostatic protein and naturally occurring anticoagulant, is a major thrombin inhibitor. The capacity of antithrombin to inhibit thrombin is known to increase a 1000-fold whilst in the presence of unfractionated heparin. β-antithrombin is an isoform of antithrombin with a high affinity for unfractionated heparin. This study aimed to determine the differences in the anticoagulant activity of the β-antithrombin isoform in children compared with adults. METHODS Plasma samples were obtained from 105 healthy individuals from the following age groups: neonates (day 1 and day 3), 28 days to 1 year, 1-5 years, 6-10 years, 11-16 years and adults. The method utilized to measure the activity of β-antithrombin in plasma is a modified version of the total antithrombin assay routinely used in diagnostic laboratories. The modified version of this assay allows for the specific quantification of the β-antithrombin glycoform anticoagulant activity alone, as the β-antithrombin molecule is activated under a high salt concentration, which in turn does not allow activation of other antithrombin isoforms. CONCLUSIONS This study demonstrated that there are no age-specific differences in the activity of β-antithrombin. However, considering that the total AT activity is significantly reduced in neonates, our results suggest that in this population β-antithrombin activity is a major contributor to the overall activity of AT.
Collapse
Affiliation(s)
- V Karlaftis
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Vic., Australia
| | | | | | | | | | | |
Collapse
|