1
|
Ma S, Yang K, Li Z, Li L, Feng Y, Wang X, Wang J, Zhu Z, Wang Z, Wang J, Zhu Y, Liu L. A retro-inverso modified peptide alleviated ovalbumin-induced asthma model by affecting glycerophospholipid and purine metabolism of immune cells. Pulm Pharmacol Ther 2023; 78:102185. [PMID: 36563740 DOI: 10.1016/j.pupt.2022.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Allergic asthma is a heterogeneous disease involving a variety of inflammatory cells. Immune imbalance or changes in the immune microenvironment are the essential causes that promote inflammation in allergic asthma. Tetraspanin CD81 can be used as a platform for receptor clustering and signal transmission owing to its special transmembrane structure and is known to participate in the physiological processes of cell proliferation, differentiation, adhesion, and migration. Previous studies have shown that CD81-targeting peptidomimetics exhibit anti-allergic lung inflammation. However, due to the low metabolic stability of peptide drugs, their druggability is limited. Here, we aimed to generate a metabolically stable anti-CD81 peptide, evaluate its anti-inflammatory action and establish its mechanism of action. Based on previous reports, we applied retro-inverse peptide modification to obtain a new compound, PD00 (NH2-D-Gly-D-Ser-D-Thr-D-Tyr-D-Thr-D-Gln-D-Gly-COOH), with high metabolic stability. Enhanced ultraperformance liquid chromatography-tandem mass spectrometry was used to investigate the in vitro and in vivo metabolic stabilities of PD00. The affinities of PD00 and CD81 were studied using molecular docking and surface plasmon resonance techniques. An ovalbumin (OVA)-induced asthma model was used to evaluate the effects of PD00 in vivo. Mice were treated with different concentrations of PD00 (175 and 350 μg/kg) for 10 days. Airway hyperresponsiveness (AHR) to acetyl-β-methacholine (Mch), inflammatory cell counts in the bronchoalveolar lavage fluid, and serum OVA-specific IgE levels were detected in the mice at the end of the experiment. Lung tissues were collected for haematoxylin and eosin staining, untargeted metabolomic analysis, and single-cell transcriptome sequencing. PD00 has a high affinity for CD81; therefore, administration of PD00 markedly ameliorated AHR and airway inflammation in mice after OVA sensitisation and exposure. Serum OVA-specific IgE levels decreased considerably. In addition, PD00 treatment increased glycerophospholipid and purine metabolism in immune cells. Collectively, PD00 may regulate the glycerophospholipid and purine metabolism pathways to ameliorate the pathophysiological features of asthma. These findings suggest that PD00 is a potential compound for the treatment of asthma.
Collapse
Affiliation(s)
- Shumei Ma
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, PR China; Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China; Shanghai Professional and Technical Service Center for Biological Material Drug-Ability Evaluation, Shanghai, PR China
| | - Kuan Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Zhihong Li
- Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China; Shanghai Professional and Technical Service Center for Biological Material Drug-Ability Evaluation, Shanghai, PR China
| | - Liang Li
- Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China; Shanghai Professional and Technical Service Center for Biological Material Drug-Ability Evaluation, Shanghai, PR China
| | - Yue Feng
- Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China; Shanghai Professional and Technical Service Center for Biological Material Drug-Ability Evaluation, Shanghai, PR China
| | - Xiaowei Wang
- Shanghai Professional and Technical Service Center for Biological Material Drug-Ability Evaluation, Shanghai, PR China
| | - Jiahui Wang
- Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China; Shanghai Professional and Technical Service Center for Biological Material Drug-Ability Evaluation, Shanghai, PR China
| | - Zhengdan Zhu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, PR China; Beijing Institute of Big Data Research, Beijing, PR China
| | - Zhiyong Wang
- Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China; Shanghai Professional and Technical Service Center for Biological Material Drug-Ability Evaluation, Shanghai, PR China
| | - Juan Wang
- Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China; Shanghai Professional and Technical Service Center for Biological Material Drug-Ability Evaluation, Shanghai, PR China
| | - Yizhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, PR China.
| | - Li Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, PR China; Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China; Shanghai Professional and Technical Service Center for Biological Material Drug-Ability Evaluation, Shanghai, PR China.
| |
Collapse
|
2
|
Anthracopoulos MB, Everard ML. Asthma: A Loss of Post-natal Homeostatic Control of Airways Smooth Muscle With Regression Toward a Pre-natal State. Front Pediatr 2020; 8:95. [PMID: 32373557 PMCID: PMC7176812 DOI: 10.3389/fped.2020.00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
The defining feature of asthma is loss of normal post-natal homeostatic control of airways smooth muscle (ASM). This is the key feature that distinguishes asthma from all other forms of respiratory disease. Failure to focus on impaired ASM homeostasis largely explains our failure to find a cure and contributes to the widespread excessive morbidity associated with the condition despite the presence of effective therapies. The mechanisms responsible for destabilizing the normal tight control of ASM and hence airways caliber in post-natal life are unknown but it is clear that atopic inflammation is neither necessary nor sufficient. Loss of homeostasis results in excessive ASM contraction which, in those with poor control, is manifest by variations in airflow resistance over short periods of time. During viral exacerbations, the ability to respond to bronchodilators is partially or almost completely lost, resulting in ASM being "locked down" in a contracted state. Corticosteroids appear to restore normal or near normal homeostasis in those with poor control and restore bronchodilator responsiveness during exacerbations. The mechanism of action of corticosteroids is unknown and the assumption that their action is solely due to "anti-inflammatory" effects needs to be challenged. ASM, in evolutionary terms, dates to the earliest land dwelling creatures that required muscle to empty primitive lungs. ASM appears very early in embryonic development and active peristalsis is essential for the formation of the lungs. However, in post-natal life its only role appears to be to maintain airways in a configuration that minimizes resistance to airflow and dead space. In health, significant constriction is actively prevented, presumably through classic negative feedback loops. Disruption of this robust homeostatic control can develop at any age and results in asthma. In order to develop a cure, we need to move from our current focus on immunology and inflammatory pathways to work that will lead to an understanding of the mechanisms that contribute to ASM stability in health and how this is disrupted to cause asthma. This requires a radical change in the focus of most of "asthma research."
Collapse
Affiliation(s)
| | - Mark L. Everard
- Division of Paediatrics & Child Health, Perth Children's Hospital, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
3
|
Menzies-Gow A, Bafadhel M, Busse WW, Casale TB, Kocks JWH, Pavord ID, Szefler SJ, Woodruff PG, de Giorgio-Miller A, Trudo F, Fageras M, Ambrose CS. An expert consensus framework for asthma remission as a treatment goal. J Allergy Clin Immunol 2019; 145:757-765. [PMID: 31866436 DOI: 10.1016/j.jaci.2019.12.006] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/23/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022]
Abstract
With novel therapies in development, there is an opportunity to consider asthma remission as a treatment goal. In this Rostrum, we present a generalized framework for clinical and complete remission in asthma, on and off treatment, developed on the basis of medical literature and expert consensus. A modified Delphi survey approach was used to ascertain expert consensus on core components of asthma remission as a treatment target. Phase 1 identified other chronic inflammatory diseases with remission definitions. Phase 2 evaluated components of those definitions as well as published definitions of spontaneous asthma remission. Phase 3 evaluated a remission framework created using consensus findings. Clinical remission comprised 12 or more months with (1) absence of significant symptoms by validated instrument, (2) lung function optimization/stabilization, (3) patient/provider agreement regarding remission, and (4) no use of systemic corticosteroids. Complete remission was defined as clinical remission plus objective resolution of asthma-related inflammation and, if appropriate, negative bronchial hyperresponsiveness. Remission off treatment required no asthma treatment for 12 or more months. The proposed framework is a first step toward developing asthma remission as a treatment target and should be refined through future research, patient input, and clinical study.
Collapse
Affiliation(s)
| | - Mona Bafadhel
- Respiratory Medicine Unit and Oxford Biomedical Research Centre, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - William W Busse
- Department of Medicine, Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wis
| | - Thomas B Casale
- Department of Internal Medicine, Division of Allergy and Immunology, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Janwillem W H Kocks
- General Practitioners Research Institute, Groningen, The Netherlands; Observational and Pragmatic Research Institute, Singapore; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands
| | - Ian D Pavord
- Respiratory Medicine Unit and Oxford Biomedical Research Centre, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Stanley J Szefler
- Breathing Institute, Children's Hospital Colorado and Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colo
| | - Prescott G Woodruff
- UCSF, Division of Pulmonary and Critical Care Medicine, Department of Medicine and CVRI, San Francisco, Calif
| | | | | | | | | |
Collapse
|
4
|
Carpaij OA, Burgess JK, Kerstjens HAM, Nawijn MC, van den Berge M. A review on the pathophysiology of asthma remission. Pharmacol Ther 2019; 201:8-24. [PMID: 31075356 DOI: 10.1016/j.pharmthera.2019.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/02/2019] [Indexed: 01/28/2023]
Abstract
Asthma is a chronic respiratory condition, which is highly prevalent worldwide. Although no cure is currently available, it is well recognized that some asthma patients can spontaneously enter remission of the disease later in life. Asthma remission is characterized by absence of symptoms and lack of asthma-medication use. Subjects in asthma remission can be divided into two groups: those in clinical remission and those in complete remission. In clinical asthma remission, subjects still have a degree of lung functional impairment or bronchial hyperresponsiveness, while in complete asthma remission, these features are no longer present. Over longer periods, the latter group is less likely to relapse. This remission group is of great scientific interest due to the higher potential to find biomarkers or biological pathways that elicit or are associated with asthma remission. Despite the fact that the definition of asthma remission varies between studies, some factors are reproducibly observed to be associated with remitted asthma. Among these are lower levels of inflammatory markers, which are lowest in complete remission. Additionally, in both groups some degree of airway remodeling is present. Still, the pathological disease state of asthma remission has been poorly investigated. Future research should focus on at least two aspects: further characterisation of the small airways and airway walls in order to determine histologically true remission, and more thorough biological pathway analyses to explore triggers that elicit this phenomenon. Ultimately, this will result in pharmacological targets that provide the potential to steer the course of asthma towards remission.
Collapse
Affiliation(s)
- Orestes A Carpaij
- University of Groningen, University Medical Center Groningen, Groningen, Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, the Netherlands.
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Groningen, Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Huib A M Kerstjens
- University of Groningen, University Medical Center Groningen, Groningen, Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, the Netherlands
| | - Martijn C Nawijn
- University of Groningen, University Medical Center Groningen, Groningen, Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen, Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, the Netherlands
| |
Collapse
|
5
|
Vonk JM, Nieuwenhuis MAE, Dijk FN, Boudier A, Siroux V, Bouzigon E, Probst-Hensch N, Imboden M, Keidel D, Sin D, Bossé Y, Hao K, van den Berge M, Faiz A, Koppelman GH, Postma DS. Novel genes and insights in complete asthma remission: A genome-wide association study on clinical and complete asthma remission. Clin Exp Allergy 2018; 48:1286-1296. [PMID: 29786918 DOI: 10.1111/cea.13181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/25/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Asthma is a chronic respiratory disease without a cure, although there exists spontaneous remission. Genome-wide association (GWA) studies have pinpointed genes associated with asthma development, but did not investigate asthma remission. OBJECTIVE We performed a GWA study to develop insights in asthma remission. METHODS Clinical remission (ClinR) was defined by the absence of asthma treatment and wheezing in the last year and asthma attacks in the last 3 years and complete remission (ComR) similarly but additionally with normal lung function and absence of bronchial hyperresponsiveness (BHR). A GWA study on both ClinR and ComR was performed in 790 asthmatics with initial doctor diagnosis of asthma and BHR and long-term follow-up. We assessed replication of the 25 top single nucleotide polymorphisms (SNPs) in 2 independent cohorts (total n = 456), followed by expression quantitative loci (eQTL) analyses of the 4 replicated SNPs in lung tissue and epithelium. RESULTS Of the 790 asthmatics, 178 (23%) had ClinR and 55 ComR (7%) after median follow-up of 15.5 (range 3.3-47.8) years. In ClinR, 1 of the 25 SNPs, rs2740102, replicated in a meta-analysis of the replication cohorts, which was an eQTL for POLI in lung tissue. In ComR, 3 SNPs replicated in a meta-analysis of the replication cohorts. The top-hit, rs6581895, almost reached genome-wide significance (P-value 4.68 × 10-7 ) and was an eQTL for FRS2 and CCT in lung tissue. Rs1420101 was a cis-eQTL in lung tissue for IL1RL1 and IL18R1 and a trans-eQTL for IL13. CONCLUSIONS AND CLINICAL RELEVANCE By defining a strict remission phenotype, we identified 3 SNPs to be associated with complete asthma remission, where 2 SNPs have plausible biological relevance in FRS2, CCT, IL1RL1, IL18R1 and IL13.
Collapse
Affiliation(s)
- J M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - M A E Nieuwenhuis
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
| | - F N Dijk
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, The Netherlands
| | - A Boudier
- INSERM, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, IAB, Grenoble, France
| | - V Siroux
- INSERM, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, IAB, Grenoble, France.,Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, IAB, Univ. Grenoble Alpes, Grenoble, France.,CHU de Grenoble, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, IAB, Grenoble, France
| | - E Bouzigon
- UMR-946, Inserm, Paris, France.,Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| | - N Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - M Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - D Keidel
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - D Sin
- St Paul's Hospital, The University of British Columbia James Hogg Research Laboratory, Vancouver, BC, Canada.,Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Y Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec, QC, Canada
| | - K Hao
- Merck Research Laboratories, Boston, MA, USA
| | - M van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
| | - A Faiz
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
| | - G H Koppelman
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, The Netherlands
| | - D S Postma
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
| |
Collapse
|
6
|
Park YA, Park HB, Kim YH, Sul IS, Yoon SH, Kim HR, Kim KW, Kim KE, Sohn MH. Airway hyperresponsiveness to mannitol and methacholine and exhaled nitric oxide in children with asthma. J Asthma 2017; 54:644-651. [PMID: 28055271 DOI: 10.1080/02770903.2016.1255751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Asthma is characterized by airway hyperresponsiveness (AHR), inflammation, and obstruction. AHR to stimuli that indirectly cause bronchial smooth muscle (BSM) contractions via release of endogenous mediators is thought to better reflect airway inflammation than AHR to stimuli that act directly on BSM. Fractional exhaled nitric oxide (FeNO) is a useful parameter for noninvasive clinical airway inflammation assessments. Accordingly, this study aimed to examine the relationships of mannitol and methacholine challenge test outcomes with FeNO and the influence of inhaled corticosteroid treatment in children with asthma. METHODS One hundred thirty-four asthmatic children (89 males; ages: 5-17 years, median: 9 years) underwent spirometry, FeNO measurement, serum total/specific IgE testing, and blood eosinophil count. All subjects were challenged with mannitol dry powder (MDP; AridolH, Pharmaxis, Australia) and methacholine at 7-day intervals. Data of steroid-treated and steroid-naïve children were compared. RESULTS Positive responses to MDP and methacholine challenge tests were observed in 74.6% and 67.2% of total subject group, respectively, and 72 children had positive response to both challenge tests. The median FeNO level, response-dose ratio (RDR) of PC20 methacholine, and RDR of PD15 MDP were significantly higher in the steroid-treated group than in the steroid-naïve group (p < 0.001, 0.226, and 0.004, respectively). FeNO levels associated significantly with PD15 MDP and RDR PD15 MDP in total subject populations (p = 0.016 and 0.003, respectively); however, a significant correlation between FeNO and RDR PD15 MDP was observed only in the steroid-naïve group. CONCLUSIONS Compared with AHR to methacholine, AHR to MDP more closely reflected the level of FeNO in steroid-naïve asthmatic children.
Collapse
Affiliation(s)
- Young A Park
- a Department of Pediatrics , Severance Children's Hospital , Seoul , Republic of Korea
| | - Hyun Bin Park
- a Department of Pediatrics , Severance Children's Hospital , Seoul , Republic of Korea
| | - Yoon Hee Kim
- b Gangnam Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine , Seoul , Republic of Korea
| | - In Sook Sul
- a Department of Pediatrics , Severance Children's Hospital , Seoul , Republic of Korea
| | - Seo Hee Yoon
- a Department of Pediatrics , Severance Children's Hospital , Seoul , Republic of Korea
| | - Hye Ran Kim
- a Department of Pediatrics , Severance Children's Hospital , Seoul , Republic of Korea
| | - Kyung Won Kim
- a Department of Pediatrics , Severance Children's Hospital , Seoul , Republic of Korea
| | - Kyu-Earn Kim
- b Gangnam Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine , Seoul , Republic of Korea
| | - Myung Hyun Sohn
- a Department of Pediatrics , Severance Children's Hospital , Seoul , Republic of Korea
| |
Collapse
|
7
|
Abstract
Asthma is the most common inflammatory disease of the lungs. The prevalence of asthma is increasing in many parts of the world that have adopted aspects of the Western lifestyle, and the disease poses a substantial global health and economic burden. Asthma involves both the large-conducting and the small-conducting airways, and is characterized by a combination of inflammation and structural remodelling that might begin in utero. Disease progression occurs in the context of a developmental background in which the postnatal acquisition of asthma is strongly linked with allergic sensitization. Most asthma cases follow a variable course, involving viral-induced wheezing and allergen sensitization, that is associated with various underlying mechanisms (or endotypes) that can differ between individuals. Each set of endotypes, in turn, produces specific asthma characteristics that evolve across the lifecourse of the patient. Strong genetic and environmental drivers of asthma interconnect through novel epigenetic mechanisms that operate prenatally and throughout childhood. Asthma can spontaneously remit or begin de novo in adulthood, and the factors that lead to the emergence and regression of asthma, irrespective of age, are poorly understood. Nonetheless, there is mounting evidence that supports a primary role for structural changes in the airways with asthma acquisition, on which altered innate immune mechanisms and microbiota interactions are superimposed. On the basis of the identification of new causative pathways, the subphenotyping of asthma across the lifecourse of patients is paving the way for more-personalized and precise pathway-specific approaches for the prevention and treatment of asthma, creating the real possibility of total prevention and cure for this chronic inflammatory disease.
Collapse
Affiliation(s)
- Stephen T. Holgate
- Clinical and Experimental Sciences, Mail Point 810, Level F, Sir Henry Wellcome Building
- Southampton General Hospital, Southampton, SO16 6YD UK
| | - Sally Wenzel
- Subsection Chief of Allergy, Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Asthma Institute at UPMC/UPSOM, Pittsburgh, Pennsylvania USA
| | - Dirkje S. Postma
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Scott T. Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts USA
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, University Hospital Giessen and Marburg GmbH, Campus Marburg, Marburg, Germany
| | - Peter D. Sly
- Queensland Children's Medical Research Institute and Centre for Child Health Research, University of Queensland, Brisbane, Australia
| |
Collapse
|
8
|
Brewczyński PZ, Brodziak A. Have recent investigations into remission from childhood asthma helped in understanding the pathogenesis of this disease? Med Sci Monit 2015; 21:570-5. [PMID: 25701655 PMCID: PMC4345915 DOI: 10.12659/msm.893575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Studies show that a significant proportion of young people suffering from childhood onset asthma later recovered, usually in adolescence. In this article we argue that an understanding of the differences between children who recover from asthma and those who do not would contribute to increased understanding of the pathogenic mechanisms of the disease and could provide new clues about prevention and treatment. We note that some researchers have recently published results from these kinds of investigations. This paper reports results regarding genetic determinants, distorted mechanisms of inflammation, and mind/body relationships. We also try to integrate findings from these 3 areas to formulate general conclusions about the pathogenesis of asthma.
Collapse
Affiliation(s)
- Piotr Z Brewczyński
- Department of Biohazard and Immunoallergology & Allergological Outpatient Clinics for Adults and Children, Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland
| | - Andrzej Brodziak
- Independent Researcher, Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland
| |
Collapse
|
9
|
Koh YY. Long-term asthma remission during adolescence. ALLERGY ASTHMA & RESPIRATORY DISEASE 2013. [DOI: 10.4168/aard.2013.1.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Young Yull Koh
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Manso L, Madero MF, Ruiz-García M, Fernández-Nieto M, Sastre J. Comparison of bronchial hyperresponsiveness to methacholine and adenosine and airway inflammation markers in patients with suspected asthma. J Asthma 2011; 48:335-40. [PMID: 21504347 DOI: 10.3109/02770903.2011.565850] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Bronchial hyperresponsiveness is usually measured by bronchial challenge test with direct (e.g., methacholine) and indirect (e.g., adenosine) agonists. There are few studies comparing both types of agents and they have had conflicting concordance. OBJECTIVE We sought to compare the results of both tests in a population with symptoms suggestive of asthma so as to determine their relationship with bronchial inflammatory markers. METHODS Seventy-nine patients whose age ranged from 14 to 81 years were recruited for this study. Challenge tests were performed using the tidal volume method. PC₂₀ methacholine and PC₁₅ and PC₂₀ adenosine were calculated. Induced sputum and fraction of exhaled nitric oxide measurements were also performed. RESULTS Atopy was found in 69% of the patients. Methacholine PC₂₀ and adenosine PC₁₅ were positive in 32 patients (40.5%), both having a sensitivity of 73%. Percentage of agreement was 45.45% and κ index was only 0.369. Adenosine PC₂₀ elicited lower sensitivity and agreement. No correlation between methacholine PC₂₀ and adenosine PC₁₅ was observed. Higher fraction of exhaled nitric oxide values and sputum eosinophil counts were seen in patients with positive adenosine challenge results. The use of adenosine PC₁₅ or PC₂₀ did not alter the association with inflammatory markers. CONCLUSIONS The concordance between both techniques was low. Methacholine is not a reliable predictor of hyperresponsiveness to adenosine, leading us to conclude that the two tests are complementary but not interchangeable in clinical practice. Additionally, responsiveness to the two bronchoconstrictor stimuli does not indicate presence of the same airway abnormality. Indirect stimuli provide a better reflection of bronchial inflammation.
Collapse
Affiliation(s)
- Luis Manso
- Allergy Department, Fundación Jiménez Díaz and CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | | | | | | |
Collapse
|