1
|
Dekkers BG, Saad SI, van Spelde LJ, Burgess JK. Basement membranes in obstructive pulmonary diseases. Matrix Biol Plus 2021; 12:100092. [PMID: 34877523 PMCID: PMC8632995 DOI: 10.1016/j.mbplus.2021.100092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 12/24/2022] Open
Abstract
Basement membrane composition is changed in the airways of patients with obstructive airway diseases. Basement membrane changes are linked to disease characteristics in patients. Mechanisms behind the altered BM composition remain to be elucidated. Laminin and collagen IV affect key pathological processes in obstructive airway diseases.
Increased and changed deposition of extracellular matrix proteins is a key feature of airway wall remodeling in obstructive pulmonary diseases, including asthma and chronic obstructive pulmonary disease. Studies have highlighted that the deposition of various basement membrane proteins in the lung tissue is altered and that these changes reflect tissue compartment specificity. Inflammatory responses in both diseases may result in the deregulation of production and degradation of these proteins. In addition to their role in tissue development and integrity, emerging evidence indicates that basement membrane proteins also actively modulate cellular processes in obstructive airway diseases, contributing to disease development, progression and maintenance. In this review, we summarize the changes in basement membrane composition in airway remodeling in obstructive airway diseases and explore their potential application as innovative targets for treatment development.
Collapse
Key Words
- ADAM9, a metalloproteinase domain 9
- ASM, airway smooth muscle
- Airway inflammation
- Airway remodeling
- Asthma
- BM, basement membrane
- COPD, chronic obstructive pulmonary disease
- Chronic obstructive pulmonary disease
- Col IV, collagen IV
- Collagen IV
- ECM, extracellular matrix
- LN, laminin
- Laminin
- MMP, matrix metalloproteinase
- TIMP, tissue inhibitors of metalloproteinase
- Th2, T helper 2
- VSM, vascular smooth muscle
Collapse
Affiliation(s)
- Bart G.J. Dekkers
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Corresponding author at: Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Shehab I. Saad
- University of Groningen, University Medical Centre Groningen, Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands
| | - Leah J. van Spelde
- University of Groningen, University Medical Centre Groningen, Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Centre Groningen, Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands
| |
Collapse
|
2
|
Role of Airway Smooth Muscle in Inflammation Related to Asthma and COPD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:139-172. [PMID: 33788192 DOI: 10.1007/978-3-030-63046-1_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Airway smooth muscle contributes to both contractility and inflammation in the pathophysiology of asthma and COPD. Airway smooth muscle cells can change the degree of a variety of functions, including contraction, proliferation, migration, and the secretion of inflammatory mediators (phenotype plasticity). Airflow limitation, airway hyperresponsiveness, β2-adrenergic desensitization, and airway remodeling, which are fundamental characteristic features of these diseases, are caused by phenotype changes in airway smooth muscle cells. Alterations between contractile and hyper-contractile, synthetic/proliferative phenotypes result from Ca2+ dynamics and Ca2+ sensitization. Modulation of Ca2+ dynamics through the large-conductance Ca2+-activated K+ channel/L-type voltage-dependent Ca2+ channel linkage and of Ca2+ sensitization through the RhoA/Rho-kinase pathway contributes not only to alterations in the contractile phenotype involved in airflow limitation, airway hyperresponsiveness, and β2-adrenergic desensitization but also to alteration of the synthetic/proliferative phenotype involved in airway remodeling. These Ca2+ signal pathways are also associated with synergistic effects due to allosteric modulation between β2-adrenergic agonists and muscarinic antagonists. Therefore, airway smooth muscle may be a target tissue in the therapy for these diseases. Moreover, the phenotype changing in airway smooth muscle cells with focuses on Ca2+ signaling may provide novel strategies for research and development of effective remedies against both bronchoconstriction and inflammation.
Collapse
|
3
|
Amrani Y, Panettieri RA, Ramos-Ramirez P, Schaafsma D, Kaczmarek K, Tliba O. Important lessons learned from studies on the pharmacology of glucocorticoids in human airway smooth muscle cells: Too much of a good thing may be a problem. Pharmacol Ther 2020; 213:107589. [PMID: 32473159 DOI: 10.1016/j.pharmthera.2020.107589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GCs) are the treatment of choice for chronic inflammatory diseases such as asthma. Despite proven effective anti-inflammatory and immunosuppressive effects, long-term and/or systemic use of GCs can potentially induce adverse effects. Strikingly, some recent experimental evidence suggests that GCs may even exacerbate some disease outcomes. In asthma, airway smooth muscle (ASM) cells are among the targets of GC therapy and have emerged as key contributors not only to bronchoconstriction, but also to airway inflammation and remodeling, as implied by experimental and clinical evidence. We here will review the beneficial effects of GCs on ASM cells, emphasizing the differential nature of GC effects on pro-inflammatory genes and on other features associated with asthma pathogenesis. We will also summarize evidence describing how GCs can potentially promote pro-inflammatory and remodeling features in asthma with a specific focus on ASM cells. Finally, some of the possible solutions to overcome these unanticipated effects of GCs will be discussed.
Collapse
Affiliation(s)
- Yassine Amrani
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Leicester Biomedical Research Center Respiratory, Leicester, UK
| | - Reynold A Panettieri
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Patricia Ramos-Ramirez
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | | | - Klaudia Kaczmarek
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | - Omar Tliba
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA.
| |
Collapse
|
4
|
Prabhala P, Wright DB, Robbe P, Bitter C, Pera T, Ten Hacken NHT, van den Berge M, Timens W, Meurs H, Dekkers BGJ. Laminin α4 contributes to airway remodeling and inflammation in asthma. Am J Physiol Lung Cell Mol Physiol 2019; 317:L768-L777. [PMID: 31553662 DOI: 10.1152/ajplung.00222.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Airway inflammation and remodeling are characteristic features of asthma, with both contributing to airway hyperresponsiveness (AHR) and lung function limitation. Airway smooth muscle (ASM) accumulation and extracellular matrix deposition are characteristic features of airway remodeling, which may contribute to persistent AHR. Laminins containing the α2-chain contribute to characteristics of ASM remodeling in vitro and AHR in animal models of asthma. The role of other laminin chains, including the laminin α4 and α5 chains, which contribute to leukocyte migration in other diseases, is currently unknown. The aim of the current study was to investigate the role of these laminin chains in ASM function and in AHR, remodeling, and inflammation in asthma. Expression of both laminin α4 and α5 was observed in the human and mouse ASM bundle. In vitro, laminin α4 was found to promote a pro-proliferative, pro-contractile, and pro-fibrotic ASM cell phenotype. In line with this, treatment with laminin α4 and α5 function-blocking antibodies reduced allergen-induced increases in ASM mass in a mouse model of allergen-induced asthma. Moreover, eosinophilic inflammation was reduced by the laminin α4 function-blocking antibody as well. Using airway biopsies from healthy subjects and asthmatic patients, we found inverse correlations between ASM α4-chain expression and lung function and AHR, whereas eosinophil numbers correlated positively with expression of laminin α4 in the ASM bundle. This study, for the first time, indicates a prominent role for laminin α4 in ASM function and in inflammation, AHR, and remodeling in asthma, whereas the role of laminin α5 is more subtle.
Collapse
Affiliation(s)
- Pavan Prabhala
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | - David B Wright
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | - Patricia Robbe
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | - Catrin Bitter
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | - Tonio Pera
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nick H T Ten Hacken
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Herman Meurs
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | - Bart G J Dekkers
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, Groningen Research Institute for Pharmacy, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| |
Collapse
|
5
|
Teoh CM, Tan SSL, Langenbach SY, Wong AH, Cheong DHJ, Tam JKC, New CS, Tran T. Integrin α7 expression is increased in asthmatic patients and its inhibition reduces Kras protein abundance in airway smooth muscle cells. Sci Rep 2019; 9:9892. [PMID: 31289310 PMCID: PMC6616330 DOI: 10.1038/s41598-019-46260-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Airway smooth muscle (ASM) cells exhibit plastic phenotypic behavior marked by reversible modulation and maturation between contractile and proliferative phenotypic states. Integrins are a class of transmembrane proteins that have been implicated as novel therapeutic targets for asthma treatment. We previously showed that integrin α7 is a novel marker of the contractile ASM phenotype suggesting that targeting this protein may offer new avenues to counter the increase in ASM cell mass that underlies airways hyperresponsiveness (AHR) in asthma. We now determine whether inhibition of integrin α7 expression would revert ASM cells back to a proliferative phenotype to cause an increase in ASM cell mass. This would be detrimental to asthmatic patients who already exhibit increased ASM mass in their airways. Using immunohistochemical analysis of the Melbourne Epidemiological Study of Childhood Asthma (MESCA) cohort, we show for the first time that integrin α7 expression in patients with severe asthma is increased, supporting a clinically relevant role for this protein in asthma pathophysiology. Moreover, inhibition of the laminin-integrin α7 signaling axis results in a reduction in smooth muscle-alpha actin abundance and does not revert ASM cells back to a proliferative phenotype. We determined that integrin α7-induced Kras isoform of p21 Ras acts as a point of convergence between contractile and proliferative ASM phenotypic states. Our study provides further support for targeting integrin α7 for the development of novel anti-asthma therapies.
Collapse
Affiliation(s)
- Chun Ming Teoh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sheryl S L Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shenna Y Langenbach
- Department of Pharmacology and Therapeutics, and Lung Health Research Centre, University of Melbourne, Melbourne, Australia
| | - Amanda H Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dorothy H J Cheong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John K C Tam
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chih Sheng New
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Neonatal Streptococcus pneumoniae Pneumonia Induces an Aberrant Airway Smooth Muscle Phenotype and AHR in Mice Model. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1948519. [PMID: 30723734 PMCID: PMC6339730 DOI: 10.1155/2019/1948519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/12/2018] [Accepted: 12/23/2018] [Indexed: 12/21/2022]
Abstract
Our previous study showed that neonatal S. pneumoniae infection aggravated airway inflammation and airway hyperresponsiveness (AHR) in an OVA-induced allergic asthma model. As airway smooth muscle (ASM) plays a pivotal role in AHR development, we aim to investigate the effects of neonatal S. pneumoniae pneumonia on ASM structure and AHR development. Non-lethal neonatal pneumonia was established by intranasally infecting 1-week-old BALB/C mice with the S. pneumoniae strain D39. Five weeks after infection, the lungs were collected to assess the levels of α-SMA and the contractile proteins of ASM. Our results indicate that neonatal S. pneumoniae pneumonia significantly increased adulthood lung α-SMA and SMMHC proteins production and aggravated airway inflammatory cells infiltration and cytokines release. In addition, the neonatal S. pneumoniae pneumonia group had significantly higher Penh values compared to the uninfected controls. These data suggest that neonatal S. pneumoniae pneumonia promoted an aberrant ASM phenotype and AHR development in mice model.
Collapse
|
7
|
Kim YY, Li H, Song YS, Jeong HS, Yun HY, Baek KJ, Kwon NS, Shin YK, Park KC, Kim DS. Laminin peptide YIGSR enhances epidermal development of skin equivalents. J Tissue Viability 2018; 27:117-121. [DOI: 10.1016/j.jtv.2018.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 01/25/2018] [Accepted: 02/01/2018] [Indexed: 11/29/2022]
|
8
|
Airway remodeling in asthma: what really matters. Cell Tissue Res 2017; 367:551-569. [PMID: 28190087 PMCID: PMC5320023 DOI: 10.1007/s00441-016-2566-8] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
Abstract
Airway remodeling is generally quite broadly defined as any change in composition, distribution, thickness, mass or volume and/or number of structural components observed in the airway wall of patients relative to healthy individuals. However, two types of airway remodeling should be distinguished more clearly: (1) physiological airway remodeling, which encompasses structural changes that occur regularly during normal lung development and growth leading to a normal mature airway wall or as an acute and transient response to injury and/or inflammation, which ultimately results in restoration of a normal airway structures; and (2) pathological airway remodeling, which comprises those structural alterations that occur as a result of either disturbed lung development or as a response to chronic injury and/or inflammation leading to persistently altered airway wall structures and function. This review will address a few major aspects: (1) what are reliable quantitative approaches to assess airway remodeling? (2) Are there any indications supporting the notion that airway remodeling can occur as a primary event, i.e., before any inflammatory process was initiated? (3) What is known about airway remodeling being a secondary event to inflammation? And (4), what can we learn from the different animal models ranging from invertebrate to primate models in the study of airway remodeling? Future studies are required addressing particularly pheno-/endotype-specific aspects of airway remodeling using both endotype-specific animal models and “endotyped” human asthmatics. Hopefully, novel in vivo imaging techniques will be further advanced to allow monitoring development, growth and inflammation of the airways already at a very early stage in life.
Collapse
|
9
|
Wang H, Li Q, Yang J, Guo J, Ren X, Feng Y, Zhang W. Comb-shaped polymer grafted with REDV peptide, PEG and PEI as targeting gene carrier for selective transfection of human endothelial cells. J Mater Chem B 2017; 5:1408-1422. [DOI: 10.1039/c6tb02379g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several REDV peptide molecules are covalently linked onto an amphiphilic block copolymer to obtain REDV-modified polycationic polymer as a gene carrier with targeting function. The targeting gene complexes show high cell recognition and binding affinity to human endothelial cells.
Collapse
Affiliation(s)
- Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Key Laboratory of Systems Bioengineering (Ministry of Education)
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300309
- China
| |
Collapse
|
10
|
McGovern AE, Mazzone SB. Guinea pig models of asthma. CURRENT PROTOCOLS IN PHARMACOLOGY 2014; 67:5.26.1-5.26.38. [PMID: 25446291 DOI: 10.1002/0471141755.ph0526s67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Described in this unit are methods for establishing guinea pig models of asthma. Sufficient detail is provided to enable investigators to study bronchoconstriction, cough, airway hyperresponsiveness, inflammation, and remodeling.
Collapse
Affiliation(s)
- Alice E McGovern
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | - Stuart B Mazzone
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| |
Collapse
|
11
|
Chu M, Ji X, Chen W, Zhang R, Sun C, Wang T, Luo C, Gong J, Zhu M, Fan J, Hou Z, Dai J, Jin G, Wu T, Chen F, Hu Z, Ni C, Shen H. A genome-wide association study identifies susceptibility loci of silica-related pneumoconiosis in Han Chinese. Hum Mol Genet 2014; 23:6385-94. [DOI: 10.1093/hmg/ddu333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
12
|
Rebuttal from Gunst and Panettieri. J Appl Physiol (1985) 2013; 113:842-3. [PMID: 22942221 DOI: 10.1152/japplphysiol.00483.2012b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Tran T, Teoh CM, Tam JKC, Qiao Y, Chin CY, Chong OK, Stewart AG, Harris T, Wong WSF, Guan SP, Leung BP, Gerthoffer WT, Unruh H, Halayko AJ. Laminin drives survival signals to promote a contractile smooth muscle phenotype and airway hyperreactivity. FASEB J 2013; 27:3991-4003. [PMID: 23756649 DOI: 10.1096/fj.12-221341] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Increased airway smooth muscle (ASM) mass is believed to underlie the relatively fixed airway hyperresponsiveness (AHR) in asthma. Developments of therapeutic approaches to reverse airway remodeling are impeded by our lack of insight on the mechanisms behind the increase in mass of contractile ASM cells. Increased expression of laminin, an extracellular matrix protein, is associated with asthma. Our studies investigate the role of laminin-induced ASM survival signals in the development of increased ASM and AHR. Antagonizing laminin integrin binding using the laminin-selective competing peptide, YIGSR, and mimicking laminin with exogenous α2-chain laminin, we show that laminin is both necessary and sufficient to induce ASM cell survival, concomitant with the induction of ASM contractile phenotype. Using siRNA, we show that the laminin-binding integrin α7β1 mediates this process. Moreover, in laminin-211-deficient mice, allergen-induced AHR was not observed. Notably, ASM cells from asthmatic airways express a higher abundance of intracellular cell survival proteins, consistent with a role for reduced rates of cell apoptosis in development of ASM hyperplasia. Targeting the laminin-integrin α7β1 signaling pathway may offer new avenues for the development of therapies to reduce the increase in mass of contractile phenotype ASM cells that underlie AHR in asthma.
Collapse
Affiliation(s)
- Thai Tran
- 2Department of Physiology, National University of Singapore, Block MD9, 2 Medical Dr., Singapore 117597. E-Mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wright DB, Trian T, Siddiqui S, Pascoe CD, Johnson JR, Dekkers BG, Dakshinamurti S, Bagchi R, Burgess JK, Kanabar V, Ojo OO. Phenotype modulation of airway smooth muscle in asthma. Pulm Pharmacol Ther 2013; 26:42-9. [DOI: 10.1016/j.pupt.2012.08.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/11/2012] [Accepted: 08/13/2012] [Indexed: 01/26/2023]
|
15
|
Malik M, Segars J, Catherino WH. Integrin β1 regulates leiomyoma cytoskeletal integrity and growth. Matrix Biol 2012; 31:389-97. [PMID: 23023061 DOI: 10.1016/j.matbio.2012.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 09/14/2012] [Accepted: 09/18/2012] [Indexed: 11/17/2022]
Abstract
Uterine leiomyomas are characterized by an excessive extracellular matrix, increased mechanical stress, and increased active RhoA. Previously, we observed that mechanical signaling was attenuated in leiomyoma, but the mechanisms responsible remain unclear. Integrins, especially integrin β1, are transmembrane adhesion receptors that couple extracellular matrix stresses to the intracellular cytoskeleton to influence cell proliferation and differentiation. Here we characterized integrin and laminin to signaling in leiomyoma cells. We observed a 2.25±0.32 fold increased expression of integrin β1 in leiomyoma cells, compared to myometrial cells. Antibody-mediated inhibition of integrin β1 led to significant growth inhibition in leiomyoma cells and a loss of cytoskeletal integrity. Specifically, polymerization of actin filaments and formation of focal adhesions were reduced by inhibition of integrin β1. Inhibition of integrin β1 in leiomyoma cells led to 0.81±0.02 fold decrease in active RhoA, and resembled levels found in serum-starved cells. Likewise, inhibition of integrin β1 was accompanied by a decrease in phospho-ERK. Compared to myometrial cells, leiomyoma cells demonstrated increased expression of integrin α6 subunit to laminin receptor (1.91±0.11 fold), and increased expression of laminin 5α (1.52±0.02), laminin 5β (3.06±0.92), and laminin 5γ (1.66±0.06). Of note, leiomyoma cells grown on laminin matrix appear to realign themselves. Taken together, the findings reveal that the attenuated mechanical signaling in leiomyoma cells is accompanied by an increased expression and a dependence on integrin β1 signaling in leiomyoma cells, compared to myometrial cells.
Collapse
Affiliation(s)
- Minnie Malik
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | | | | |
Collapse
|