1
|
Zhou X, A Zezi MY, Li D, Wang J. Telmisartan ameliorates LPS-induced pneumonia in rats through regulation of the PPARγ/NF-κB pathway. Microbiol Immunol 2022; 66:371-378. [PMID: 35485217 DOI: 10.1111/1348-0421.12981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
Pneumonia is a common disorder of the respiratory system associated with inflammation. Telmisartan (TEL) has been reported to treat inflammatory-related diseases. The current study is aimed to make investigations for the possible role and action mechanism of TEL on lipopolysaccharide (LPS)-induced pneumonia rats. Forty male Sprague Dawley (SD) rats aged 8 weeks were assigned into four groups ad libitum: a control group received saline only, an experimental group received LPS, a group received TEL (5 mg/kg), followed by LPS treatment, and a group received TEL (10 mg/kg), followed by LPS treatment. LPS (2 mg/kg) and equal saline were administered intratracheally. TEL was orally administrated 5 days before LPS. After LPS treatment for 24 h, bronchoalveolar lavage fluid (BALF) and serum were collected for the analysis of cell counts and/or cytokines. Lung tissues were used to perform histological examination, assess oxidative stress levels, and determine the levels of PPARγ/NF-κB pathway-related proteins. Rats received LPS treatment exhibited high levels of lung wet/dry ratio, ALP, LDH, BALF polymorphonuclear leukocytes count, inflammatory cytokines, and oxidative stress. Meanwhile, LPS also resulted in severe interstitial edema and inflammatory cells infiltration. Interestingly, TEL by oral administration remarkably ameliorated the adverse effects on pneumonia rats caused by LPS. In addition, western blotting further revealed that TEL could activate PPARγ and repress NF-κB (p65). TEL is protective against pneumonia through inhibition of the inflammation and oxidative stress via the PPARγ/NF-κB pathway. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiuhong Zhou
- Department of respiration, Midong hospital, People's Hospital of Xinjiang Autonomous Region, Urumqi, Xinjiang, 830000, China
| | - Ma Yire A Zezi
- Department of respiration, Midong hospital, People's Hospital of Xinjiang Autonomous Region, Urumqi, Xinjiang, 830000, China
| | - Dandan Li
- Department of Gastroenterology, Midong hospital, people's Hospital of Xinjiang Autonomous Region, Urumqi, Xinjiang, 830000, China
| | - Jian Wang
- Department of respiration, Midong hospital, People's Hospital of Xinjiang Autonomous Region, Urumqi, Xinjiang, 830000, China
| |
Collapse
|
2
|
Protective Effects of N-Acetylcysteine on Lipopolysaccharide-Induced Respiratory Inflammation and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11050879. [PMID: 35624744 PMCID: PMC9137500 DOI: 10.3390/antiox11050879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 01/18/2023] Open
Abstract
As the leading cause of bovine respiratory disease (BRD), bacterial pneumonia can result in tremendous losses in the herd farming industry worldwide. N-acetylcysteine (NAC), an acetylated precursor of the amino acid L-cysteine, has been reported to have anti-inflammatory and antioxidant properties. To explore the protective effect and underlying mechanisms of NAC in ALI, we investigated its role in lipopolysaccharide (LPS)-induced bovine embryo tracheal cells (EBTr) and mouse lung injury models. We found that NAC pretreatment attenuated LPS-induced inflammation in EBTr and mouse models. Moreover, LPS suppressed the expression of oxidative-related factors in EBTr and promoted gene expression and the secretion of inflammatory cytokines. Conversely, the pretreatment of NAC alleviated the secretion of inflammatory cytokines and decreased their mRNA levels, maintaining stable levels of antioxidative gene expression. In vivo, NAC helped LPS-induced inflammatory responses and lung injury in ALI mice. The relative protein concentration, total cells, and percentage of neutrophils in BALF; the level of secretion of IL-6, IL-8, TNF-α, and IL-1β; MPO activity; lung injury score; and the expression level of inflammatory-related genes were decreased significantly in the NAC group compared with the LPS group. NAC also ameliorated LPS-induced mRNA level changes in antioxidative genes. In conclusion, our findings suggest that NAC affects the inflammatory and oxidative response, alleviating LPS-induced EBTr inflammation and mouse lung injury, which offers a natural therapeutic strategy for BRD.
Collapse
|
3
|
Zou X, Gao C, Shang R, Chen H, Wang B. Knockdown of lncRNA LINC00707 alleviates LPS-induced injury in MRC-5 cells by acting as a ceRNA of miR-223-5p. Biosci Biotechnol Biochem 2021; 85:315-323. [PMID: 33604647 DOI: 10.1093/bbb/zbaa069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Pneumonia is a common respiratory disease worldwide. Long noncoding RNAs have been implicated in the pathogenesis of pneumonia. However, the effect and mechanism of long intergenic nonprotein-coding RNA (LINC00707) on pneumonia pathogenesis were still unclear. Lipopolysaccharide (LPS) reduced cell viability and promoted apoptosis and inflammation in MRC-5 cells. LINC00707 was increased, and miR-223-5p was decreased in LPS-treated MRC-5 cells. LINC00707 knockdown relieved LPS-triggered injury in MRC-5 cells. LINC00707 directly interacted with miR-223-5p through acting as a miR-223-5p sponge. Moreover, miR-223-5p mediated the regulation of LINC00707 silencing on LPS-stimulated cytotoxicity in MRC-5 cells. p38 mitogen-activated protein kinases and nuclear factor-κB signaling pathways were modulated by the LINC00707/miR-223-5p axis in LPS-induced MRC-5 cells. Our present study indicated that LINC00707 depletion alleviated LPS-induced injury in MRC-5 cells at least partly by acting as a sponge of miR-223-5p, highlighting a new potential therapeutic avenue for pneumonia treatment.
Collapse
Affiliation(s)
- Xiequn Zou
- Department of Intensive Care Unit (ICU), Jingzhou Central Hospital (The Second Clinical Medical College, Yangtze University), Jingzhou, Hubei, China
| | - Cheng Gao
- Department of Intensive Care Unit (ICU), Jingzhou Central Hospital (The Second Clinical Medical College, Yangtze University), Jingzhou, Hubei, China
| | - Rong Shang
- Department of Orthopaedics, Jingzhou Central Hospital (The Second Clinical Medical College, Yangtze University), Jingzhou, Hubei, China
| | - Huan Chen
- Department of Obstetrics, Jingzhou Central Hospital (The Second Clinical Medical College, Yangtze University), Jingzhou, HuBei, China
| | - Bing Wang
- Department of Intensive Care Unit (ICU), Jingzhou Central Hospital (The Second Clinical Medical College, Yangtze University), Jingzhou, Hubei, China
| |
Collapse
|
4
|
Fan Y, Wang J, Feng Z, Cao K, Xu H, Liu J. Pinitol attenuates LPS-induced pneumonia in experimental animals: Possible role via inhibition of the TLR-4 and NF-κB/IκBα signaling cascade pathway. J Biochem Mol Toxicol 2020; 35:e22622. [PMID: 32926510 DOI: 10.1002/jbt.22622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/12/2020] [Accepted: 08/25/2020] [Indexed: 11/07/2022]
Abstract
Pneumonia is a chronic disorder of the respiratory system associated with worsening quality of life and a significant economic burden. Pinitol, a plant cyclic polyol, has been documented for immune-inflammatory potential. The aim of present investigation was to evaluate the potential and possible mechanism of action of pinitol against lipopolysaccharide (LPS)-induced pneumonia in the experimental animal model. Pneumonia was induced in Sprague-Dawley rats by intratracheal administration of LPS (2 mg/kg). Animals were treated with either vehicle or dexamethasone or pinitol (5 or 10 or 20 mg/kg). Potential of pinitol against LPS-induced pulmonary insult was assessed based on behavioral, biochemical, molecular, and ultrastructural studies. Intratracheal instillation of LPS induced significant (P < .05) inflammatory infiltration in bronchoalveolar lavage fluid (BALF) and lung tissue reflected by elevated pleural effusion volume, lung edema, BALF polymorphonuclear leukocytes count and lung myeloperoxidase levels, which was attenuated by pinitol (10 and 20 mg/kg) administration. Pinitol also markedly (P < .05) inhibited LPS-induced alterations in electrocardiographic, hemodynamic changes, right ventricular, and lung function tests. The LPS-induced downregulated nuclear factor erythroid 2-related factor 2 (Nrf-2) and heme oxygenase-1 (HO-1), whereas upregulated transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3), and inducible nitric oxide synthase (iNOs) lung messenger RNA expressions were significantly (P < .05) inhibited by pinitol. Western blot analysis suggested pinitol markedly (P < .05) decreased nuclear factor-κB (NF-κB), inhibitor of nuclear factor κB (IkBα), toll-like receptor 4 (TLR-4), and cyclooxygenase-II (COX-II) protein expressions in the lung. These findings were further supported by histological and ultrastructural analyses of lung tissue that show pinitol significantly (P < .05) ameliorates LPS-induced aberrations in lung tissue. In conclusion, pinitol attenuated LPS-induced pneumonia via inhibition of TLR-4 to downregulate the NF-κB/IκBα signaling cascade and thus ameliorated the production of proinflammatory cytokines (TNF-α, ILs, NLRP3, and TGF-β), inflammatory mediators (COX-II and iNOs) and elevated oxidative stress (Nrf-2 and HO-1).
Collapse
Affiliation(s)
- Yingying Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jian Wang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhihui Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ke Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hao Xu
- Basic of Medical Science, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Jiankang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Myocardial Function during Low versus Intermediate Tidal Volume Ventilation in Patients without Acute Respiratory Distress Syndrome. Anesthesiology 2020; 132:1102-1113. [PMID: 32053557 DOI: 10.1097/aln.0000000000003175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mechanical ventilation with low tidal volumes has the potential to mitigate ventilation-induced lung injury, yet the clinical effect of tidal volume size on myocardial function has not been clarified. This cross-sectional study investigated whether low tidal volume ventilation has beneficial effects on myocardial systolic and diastolic function compared to intermediate tidal volume ventilation. METHODS Forty-two mechanically ventilated patients without acute respiratory distress syndrome (ARDS) underwent transthoracic echocardiography after more than 24 h of mechanical ventilation according to the Protective Ventilation in Patients without ARDS (PReVENT) trial comparing a low versus intermediate tidal volume strategy. The primary outcome was left ventricular and right ventricular myocardial performance index as measure for combined systolic and diastolic function, with lower values indicating better myocardial function and a right ventricular myocardial performance index greater than 0.54 regarded as the abnormality threshold. Secondary outcomes included specific systolic and diastolic parameters. RESULTS One patient was excluded due to insufficient acoustic windows, leaving 21 patients receiving low tidal volumes with a tidal volume size (mean ± SD) of 6.5 ± 1.8 ml/kg predicted body weight, while 20 patients were subjected to intermediate tidal volumes receiving a tidal volume size of 9.5 ± 1.6 ml/kg predicted body weight (mean difference, -3.0 ml/kg; 95% CI, -4.1 to -2.0; P < 0.001). Right ventricular dysfunction was reduced in the low tidal volume group compared to the intermediate tidal volume group (myocardial performance index, 0.41 ± 0.13 vs. 0.64 ± 0.15; mean difference, -0.23; 95% CI, -0.32 to -0.14; P < 0.001) as was left ventricular dysfunction (myocardial performance index, 0.50 ± 0.17 vs. 0.63 ± 0.19; mean difference, -0.13; 95% CI, -0.24 to -0.01; P = 0.030). Similarly, most systolic parameters were superior in the low tidal volume group compared to the intermediate tidal volume group, yet diastolic parameters did not differ between both groups. CONCLUSIONS In patients without ARDS, intermediate tidal volume ventilation decreased left ventricular and right ventricular systolic function compared to low tidal volume ventilation, although without an effect on diastolic function.
Collapse
|
6
|
Ohyama M, Horie I, Isohama Y, Azuma K, Adachi S, Minejima C, Takenaka N. Effects of nitrous acid exposure on baseline pulmonary resistance and Muc5ac in rats. Inhal Toxicol 2018; 30:149-158. [PMID: 29860904 DOI: 10.1080/08958378.2018.1476628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
We examined the baseline pulmonary resistance (RLung), baseline dynamic lung compliance (Cdyn), cytokine inductions, and histological alterations in rats exposed to nitrous acid (HONO) with secondary products of nitrogen dioxide (NO2) and nitric oxide (NO) to assess its biological effects. We exposed three groups of nine male F344 rats to different doses of HONO for six weeks (24 h/day). The cumulative values of HONO concentration were measured twice. The average concentrations of nitrogen oxide for each group were 5.8 parts per million (ppm) HONO with secondary products of 0.7 ppm NO2 and 2.3 ppm NO, 4.1 ppm HONO with 0.1 ppm NO2 and 0.6 ppm NO, and a clean air control. We measured baseline RLung and baseline Cdyn using tracheal cannulation. A tracheal tube was inserted into the trachea by tracheostomy, and lung function measurements (baseline RLung and baseline Cdyn) were conducted in mechanically ventilated rats. We measured mRNA levels of Cxcl-1, TNF-α, and Muc5ac in the right lung using quantitative RT-PCR, and observed histological alterations and the alveolar mean linear intercept (Lm) on the left lung. Our results demonstrated that HONO exposure significantly increased baseline RLung, Lm and Muc5ac expression, but did not affect baseline Cdyn or expression of Cxcl-1 and TNF-α. Further, we identified bronchial smooth muscle hypertrophy, pulmonary emphysema-like alterations in the alveolar duct centriacinar regions, and increased goblet cells in HONO-exposed rats. The present results suggest that HONO (with secondary products) adversely affects respiratory function, but that these pathologies may be unrelated to inflammation.
Collapse
Affiliation(s)
- Masayuki Ohyama
- a Department of Environmental Health , Osaka Prefectural Institute of Public Health , Osaka , Japan
| | - Ichiro Horie
- b Laboratory of Applied Pharmacology , Tokyo University of Science , Noda , Japan
| | - Yoichiro Isohama
- b Laboratory of Applied Pharmacology , Tokyo University of Science , Noda , Japan
| | - Kenichi Azuma
- c Department of Environmental Medicine and Behavioural Science , Kindai University Faculty of medicine , Osakasayama , Japan
| | - Shuichi Adachi
- d Department of Public Health , Sagami Women's University , Sagamihara , Japan
| | - Chika Minejima
- e Department of Natural Sciences , College of Liberal Arts, International Christian University , Mitaka , Japan
| | - Norimichi Takenaka
- f Department of Applied Chemistry , Graduate School of Engineering, Osaka Prefecture University , Sakai , Japan
| |
Collapse
|
7
|
Huang B, You J, Qiao Y, Wu Z, Liu D, Yin D, He H, He M. Tetramethylpyrazine attenuates lipopolysaccharide-induced cardiomyocyte injury via improving mitochondrial function mediated by 14-3-3γ. Eur J Pharmacol 2018; 832:67-74. [PMID: 29782860 DOI: 10.1016/j.ejphar.2018.05.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/07/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022]
Abstract
Lipopolysaccharide (LPS) is one of the many reasons that can cause myocardial injury. Our previous works have demonstrated that 14-3-3γ could protect myocardium against LPS-induced injury. Tetramethylpyrazine (TMP), an alkaloid found in Chinese herbs, exerts myocardial protection in many ways with multiple targets. We hypothesized that the cardioprotection of TMP against LPS-induced injury is attributed to upregulation of 14-3-3γ and improvement of mitochondrial function. To test the hypothesis, we investigated the effects of TMP on LPS-induced injury to cardiomyocytes by determining cell viability, LDH and caspase-3 activities, reactive oxygen species and MMP levels, mPTP openness, and apoptosis rate. The expression of 14-3-3γ and Bcl-2, and the phosphorylation of Bad (S112) were examined by Western blot. LPS-induced injury to cardiomyocytes was attenuated by TMP via upregulating expression of 14-3-3γ, and Bcl-2 on mitochondria, activating Bad (S112) phosphorylation, increasing cell viability and MMP levels, decreasing LDH and caspase-3 activity, reactive oxygen species generation, mPTP opening and apoptosis rate. However, the cardioprotection of TMP was attenuated by pAD/14-3-3γ-shRNA, an adenovirus that knocked down intracellular 14-3-3γ expression. In conclusion, the cardioprotection of TMP against LPS-induced injury was through up-regulating the expression of 14-3-3γ, promoting the translocation of Bcl-2 to mitochondria, and improving the function of mitochondria.
Collapse
Affiliation(s)
- Bowei Huang
- Jiangxi Medical School, Nanchang University, Nanchang 330006, China
| | - Jiegeng You
- Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Yang Qiao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Zelong Wu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Dan Liu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Dong Yin
- Jiangxi Provincial Key Laboratory of Molecular Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang 330006, China
| | - Huan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China.
| | - Ming He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| |
Collapse
|
8
|
Cherpanath TGV, Smeding L, Hirsch A, Lagrand WK, Schultz MJ, Groeneveld ABJ. Low tidal volume ventilation ameliorates left ventricular dysfunction in mechanically ventilated rats following LPS-induced lung injury. BMC Anesthesiol 2015; 15:140. [PMID: 26446079 PMCID: PMC4597388 DOI: 10.1186/s12871-015-0123-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 10/03/2015] [Indexed: 01/06/2023] Open
Abstract
Background High tidal volume ventilation has shown to cause ventilator-induced lung injury (VILI), possibly contributing to concomitant extrapulmonary organ dysfunction. The present study examined whether left ventricular (LV) function is dependent on tidal volume size and whether this effect is augmented during lipopolysaccharide(LPS)-induced lung injury. Methods Twenty male Wistar rats were sedated, paralyzed and then randomized in four groups receiving mechanical ventilation with tidal volumes of 6 ml/kg or 19 ml/kg with or without intrapulmonary administration of LPS. A conductance catheter was placed in the left ventricle to generate pressure-volume loops, which were also obtained within a few seconds of vena cava occlusion to obtain relatively load-independent LV systolic and diastolic function parameters. The end-systolic elastance / effective arterial elastance (Ees/Ea) ratio was used as the primary parameter of LV systolic function with the end-diastolic elastance (Eed) as primary LV diastolic function. Results Ees/Ea decreased over time in rats receiving LPS (p = 0.045) and high tidal volume ventilation (p = 0.007), with a lower Ees/Ea in the rats with high tidal volume ventilation plus LPS compared to the other groups (p < 0.001). Eed increased over time in all groups except for the rats receiving low tidal volume ventilation without LPS (p = 0.223). A significant interaction (p < 0.001) was found between tidal ventilation and LPS for Ees/Ea and Eed, and all rats receiving high tidal volume ventilation plus LPS died before the end of the experiment. Conclusions Low tidal volume ventilation ameliorated LV systolic and diastolic dysfunction while preventing death following LPS-induced lung injury in mechanically ventilated rats. Our data advocates the use of low tidal volumes, not only to avoid VILI, but to avert ventilator-induced myocardial dysfunction as well.
Collapse
Affiliation(s)
- Thomas G V Cherpanath
- Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Lonneke Smeding
- Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Alexander Hirsch
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Wim K Lagrand
- Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Marcus J Schultz
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - A B Johan Groeneveld
- Department of Intensive Care Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Cardio-Pulmonary-Renal Interactions: A Multidisciplinary Approach. J Am Coll Cardiol 2015; 65:2433-48. [PMID: 26046738 DOI: 10.1016/j.jacc.2015.04.024] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/18/2015] [Accepted: 04/20/2015] [Indexed: 12/16/2022]
Abstract
Over the past decade, science has greatly advanced our understanding of interdependent feedback mechanisms involving the heart, lung, and kidney. Organ injury is the consequence of maladaptive neurohormonal activation, oxidative stress, abnormal immune cell signaling, and a host of other mechanisms that precipitate adverse functional and structural changes. The presentation of interorgan crosstalk may include an acute, chronic, or acute on chronic timeframe. We review the current, state-of-the-art understanding of cardio-pulmonary-renal interactions and their related pathophysiology, perpetuating nature, and cycles of increased susceptibility and reciprocal progression. To this end, we present a multidisciplinary approach to frame the diverse spectrum of published observations on the topic. Assessment of organ functional reserve and use of biomarkers are valuable clinical strategies to screen and detect disease, assist in diagnosis, assess prognosis, and predict recovery or progression to chronic disease.
Collapse
|
10
|
Xue HC, Li ZX, Zheng WW, Guo YZ, Feng DY, Liu JW. Injuries of myocardial cells and changes of myocardial enzymes after firearm wound-induced intestinal perforation in porcine abdomen. Int J Clin Exp Med 2015; 8:2273-2278. [PMID: 25932162 PMCID: PMC4402809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
This study aims to observe the changes of myocardial injuries after the firearm wound-induced intestinal perforation in porcine abdomen. 42 healthy Landrace piglets were randomly divided into the control group and the injury group, which was then subdivided into the post-injury 1 h, 2 h, 4 h, 8 h, 12 h and 24 h subgroup. the LDH, CK and CK-MB levels of each group, as well as the plasma endotoxin, were determined and compared. The plasma endotoxin levels of the experimental groups were significantly higher than the control group, and the light microscope observation revealed that the 8 h, 12 h and 24 h subgroup appeared the gradually-aggravated myocardial cell edema and degeneration; the electron microscope revealed that the 4 h, 8 h, 12 h and 24 h subgroup appeared the mitochondrial swelling and dissolution gradually; the serum levels of LDH, CK and CK-MB of each experimental group were higher than the control group. The abdominal firearm wound-induced intestinal perforation would lead to the damaged changes of myocardial morphology and enzymes, which would aggravate as time went along.
Collapse
Affiliation(s)
- Hui-Chao Xue
- First Division, Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, China
| | - Ze-Xin Li
- First Division, Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, China
| | - Wei-Wei Zheng
- First Division, Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, China
| | - Yun-Zhen Guo
- First Division, Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, China
| | - De-Yuan Feng
- Department of Hepatobiliary Surgery, Urumqi General Hospital of Lanzhou Military RegionUrumqi 830000, China
| | - Jiang-Wei Liu
- Department of Hepatobiliary Surgery, Urumqi General Hospital of Lanzhou Military RegionUrumqi 830000, China
| |
Collapse
|
11
|
Prevalence and outcome of diastolic dysfunction in children with fluid refractory septic shock--a prospective observational study. Pediatr Crit Care Med 2014; 15:e370-8. [PMID: 25230313 DOI: 10.1097/pcc.0000000000000249] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Our primary objective was to determine the prevalence and outcome of diastolic dysfunction in children with fluid refractory septic shock. The secondary objective was to determine possible early predictors of diastolic dysfunction. DESIGN Prospective observational study. SETTING PICU of a tertiary care teaching hospital. PATIENTS Consecutive children 17 years old or younger with fluid refractory septic shock and not on mechanical ventilation admitted to our ICU from June 2011 to August 2012 were included. Survivors were followed up till 1 year of discharge (July 2013). INTERVENTIONS Children were subjected to 2D echocardiography and qualitative cardiac troponin-T test within the first 6 hours of admission. MEASUREMENTS AND MAIN RESULTS A total of 56 children were included. Median age was 7 years (interquartile range, 1.5, 14) and majority (52%) were males. Most common underlying diagnoses were meningitis and pneumonia. The prevalence of diastolic dysfunction was 41.1% (95% CI, 27.8-54.4), and mortality rate was 43% in those with diastolic dysfunction. At 1-year follow-up, residual dysfunction was present in only one of 11 of the survivors (11%). On univariable analysis of possible early predictors of diastolic dysfunction, we observed that these children tended to have higher mean central venous pressure (13 vs 6; p < 0.0001) and greater positivity for cardiac troponin-T (70% vs 36%; p = 0.01) compared with others. Although factors such as duration of illness and diastolic blood pressure were also lower in children with diastolic dysfunction compared with others, the difference was not statistically significant. On multivariable analysis, only the variable central venous pressure remained significant (adjusted odds ratio, 1.6; 95% CI, 1.12-2.14; p = 0.008). CONCLUSIONS Diastolic dysfunction is common in children with fluid refractory septic shock, and immediate outcomes may be poorer in such patients. Increased central venous pressure after initial fluid resuscitation may be an early indicator of diastolic dysfunction and warrant urgent bedside echocardiography to guide further management.
Collapse
|