1
|
Benner SA. Rethinking nucleic acids from their origins to their applications. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220027. [PMID: 36633284 PMCID: PMC9835595 DOI: 10.1098/rstb.2022.0027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/17/2022] [Indexed: 01/13/2023] Open
Abstract
Reviewed are three decades of synthetic biology research in our laboratory that has generated alternatives to standard DNA and RNA as possible informational systems to support Darwinian evolution, and therefore life, and to understand their natural history, on Earth and throughout the cosmos. From this, we have learned that: • the core structure of nucleic acids appears to be a natural outcome of non-biological chemical processes probably in constrained, intermittently irrigated, sub-aerial aquifers on the surfaces of rocky planets like Earth and/or Mars approximately 4.36 ± 0.05 billion years ago; • however, this core is not unique. Synthetic biology has generated many different molecular systems able to support the evolution of molecular information; • these alternatives to standard DNA and RNA support biotechnology, including DNA synthesis, human diagnostics, biomedical research and medicine; • in particular, they support laboratory in vitro evolution (LIVE) with performance to generate catalysts at least 104-105 fold better than standard DNA libraries, enhancing access to receptors and catalysts on demand. Coupling nanostructures to the products of LIVE with expanded DNA offers new approaches for disease therapy; and • nevertheless, a polyelectrolyte structure and size regular building blocks are required for any informational polymer to support Darwinian evolution. These features serve as universal and agnostic biosignatures, useful for seeking life throughout the Solar System. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Steven A. Benner
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard no. 7, Alachua, FL 32615, USA
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard no. 17, Alachua, FL 32615, USA
| |
Collapse
|
2
|
Roberts WE, Mangum JE, Schneider PM. Pathophysiology of Demineralization, Part I: Attrition, Erosion, Abfraction, and Noncarious Cervical Lesions. Curr Osteoporos Rep 2022; 20:90-105. [PMID: 35129809 PMCID: PMC8930910 DOI: 10.1007/s11914-022-00722-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE OF THE REVIEW Compare pathophysiology for infectious and noninfectious demineralization disease relative to mineral maintenance, physiologic fluoride levels, and mechanical degradation. RECENT FINDINGS Environmental acidity, biomechanics, and intercrystalline percolation of endemic fluoride regulate resistance to demineralization relative to osteopenia, noncarious cervical lesions, and dental caries. Demineralization is the most prevalent chronic disease in the world: osteoporosis (OP) >10%, dental caries ~100%. OP is severely debilitating while caries is potentially fatal. Mineralized tissues have a common physiology: cell-mediated apposition, protein matrix, fluid logistics (blood, saliva), intercrystalline ion percolation, cyclic demineralization/remineralization, and acid-based degradation (microbes, clastic cells). Etiology of demineralization involves fluid percolation, metabolism, homeostasis, biomechanics, mechanical wear (attrition or abrasion), and biofilm-related infections. Bone mineral density measurement assesses skeletal mass. Attrition, abrasion, erosion, and abfraction are diagnosed visually, but invisible subsurface caries <400μm cannot be detected. Controlling demineralization at all levels is an important horizon for cost-effective wellness worldwide.
Collapse
Affiliation(s)
- W. Eugene Roberts
- grid.257413.60000 0001 2287 3919Indiana University & Purdue University at Indianapolis, 8260 Skipjack Drive, Indianapolis, IN 46236 USA
| | - Jonathan E. Mangum
- grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Pharmacology, Dentistry and Health Sciences, University of Melbourne, Corner Grattan Street and Royal Parade, Parkville, Victoria 3010 Australia
| | - Paul M. Schneider
- grid.1008.90000 0001 2179 088XMelbourne Dental School, University of Melbourne, 720 Swanston St, Melbourne, Victoria 3010 Australia
| |
Collapse
|
3
|
Carbamoyl phosphate and its substitutes for the uracil synthesis in origins of life scenarios. Sci Rep 2021; 11:19356. [PMID: 34588537 PMCID: PMC8481487 DOI: 10.1038/s41598-021-98747-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022] Open
Abstract
The first step of pyrimidine synthesis along the orotate pathway is studied to test the hypothesis of geochemical continuity of protometabolic pathways at the origins of life. Carbamoyl phosphate (CP) is the first high-energy building block that intervenes in the in vivo synthesis of the uracil ring of UMP. Thus, the likelihood of its occurrence in prebiotic conditions is investigated herein. The evolution of carbamoyl phosphate in water and in ammonia aqueous solutions without enzymes was characterised using ATR-IR, 31P and 13C spectroscopies. Carbamoyl phosphate initially appears stable in water at ambient conditions before transforming to cyanate and carbamate/hydrogenocarbonate species within a matter of hours. Cyanate, less labile than CP, remains a potential carbamoylating agent. In the presence of ammonia, CP decomposition occurs more rapidly and generates urea. We conclude that CP is not a likely prebiotic reagent by itself. Alternatively, cyanate and urea may be more promising substitutes for CP, because they are both “energy-rich” (high free enthalpy molecules in aqueous solutions) and kinetically inert regarding hydrolysis. Energy-rich inorganic molecules such as trimetaphosphate or phosphoramidates were also explored for their suitability as sources of carbamoyl phosphate. Although these species did not generate CP or other carbamoylating agents, they exhibited energy transduction, specifically the formation of high-energy P–N bonds. Future efforts should aim to evaluate the role of carbamoylating agents in aspartate carbamoylation, which is the following reaction in the orotate pathway.
Collapse
|
4
|
Did Cyclic Metaphosphates Have a Role in the Origin of Life? ORIGINS LIFE EVOL B 2021; 51:1-60. [PMID: 33721178 DOI: 10.1007/s11084-021-09604-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
How life began still eludes science life, the initial progenote in the context presented herein, being a chemical aggregate of primordial inorganic and organic molecules capable of self-replication and evolution into ever increasingly complex forms and functions.Presented is a hypothesis that a mineral scaffold generated by geological processes and containing polymerized phosphate units was present in primordial seas that provided the initiating factor responsible for the sequestration and organization of primordial life's constituents. Unlike previous hypotheses proposing phosphates as the essential initiating factor, the key phosphate described here is not a polynucleotide or just any condensed phosphate but a large (in the range of at least 1 kilo-phosphate subunits), water soluble, cyclic metaphosphate, which is a closed loop chain of polymerized inorganic phosphate residues containing only phosphate middle groups. The chain forms an intrinsic 4-phosphate helix analogous to its structure in Na Kurrol's salt, and as with DNA, very large metaphosphates may fold into hairpin structures. Using a Holliday-junction-like scrambling mechanism, also analogous to DNA, rings may be manipulated (increased, decreased, exchanged) easily with little to no need for additional energy, the reaction being essentially an isomerization.A literature review is presented describing findings that support the above hypothesis. Reviewed is condensed phosphate inorganic chemistry including its geological origins, biological occurrence, enzymes and their genetics through eukaryotes, polyphosphate functions, circular polynucleotides and the role of the Holliday junction, previous biogenesis hypotheses, and an Eoarchean Era timeline.
Collapse
|
5
|
Kim HJ, Benner SA. Abiotic Synthesis of Nucleoside 5'-Triphosphates with Nickel Borate and Cyclic Trimetaphosphate (CTMP). ASTROBIOLOGY 2021; 21:298-306. [PMID: 33533695 DOI: 10.1089/ast.2020.2264] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
While nucleoside 5'-triphosphates are precursors for RNA in modern biology, the presumed difficulty of making these triphosphates on Hadean Earth has caused many prebiotic researchers to consider other activated species for the prebiotic synthesis of RNA. We report here that nickel(II), in the presence of borate, gives substantial amounts (2-3%) of nucleoside 5'-triphosphates upon evaporative heating in the presence of urea, salts, and cyclic trimetaphosphate (CTMP). Also recovered are nucleoside 5'-diphosphates and nucleoside 5'-monophosphates, both likely arising from 5'-triphosphate intermediates. The total level of 5'-phosphorylation is typically 30%. Borate enhances the regiospecificity of phosphorylation, with increased amounts of other phosphorylated species seen in its absence. Experimentally supported paths are already available to make nucleosides in environments likely to have been present on Hadean Earth soon after a midsized 1021 to 1023 kg impactor, which would also have delivered nickel to the Hadean surface. Further, sources of prebiotic CTMP continue to be proposed. Thus, these results fill in one of the few remaining steps needed to demystify the prebiotic synthesis of RNA and support a continuous model from atmospheric components to oligomeric RNA that is lacking only a mechanism to obtain homochirality in the product RNA.
Collapse
Affiliation(s)
- Hyo-Joong Kim
- Foundation for Applied Molecular Evolution and Firebird Biomolecular Sciences LLC, Alachua, Florida, USA
| | - Steven A Benner
- Foundation for Applied Molecular Evolution and Firebird Biomolecular Sciences LLC, Alachua, Florida, USA
| |
Collapse
|
6
|
Burcar B, Castañeda A, Lago J, Daniel M, Pasek MA, Hud NV, Orlando TM, Menor‐Salván C. A Stark Contrast to Modern Earth: Phosphate Mineral Transformation and Nucleoside Phosphorylation in an Iron‐ and Cyanide‐Rich Early Earth Scenario. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bradley Burcar
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 33000 USA
- NSF-NASA Center for Chemical Evolution Georgia Institute of Technology Atlanta GA 33000 USA
| | - Alma Castañeda
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 33000 USA
- NSF-NASA Center for Chemical Evolution Georgia Institute of Technology Atlanta GA 33000 USA
| | - Jennifer Lago
- School of Geosciences University of South Florida, Tampa Tampa FL 33620 USA
- NSF-NASA Center for Chemical Evolution Georgia Institute of Technology Atlanta GA 33000 USA
| | - Mischael Daniel
- NSF-NASA Center for Chemical Evolution Georgia Institute of Technology Atlanta GA 33000 USA
| | - Matthew A. Pasek
- School of Geosciences University of South Florida, Tampa Tampa FL 33620 USA
- NSF-NASA Center for Chemical Evolution Georgia Institute of Technology Atlanta GA 33000 USA
| | - Nicholas V. Hud
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 33000 USA
- NSF-NASA Center for Chemical Evolution Georgia Institute of Technology Atlanta GA 33000 USA
| | - Thomas M. Orlando
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 33000 USA
- NSF-NASA Center for Chemical Evolution Georgia Institute of Technology Atlanta GA 33000 USA
| | - César Menor‐Salván
- NSF-NASA Center for Chemical Evolution Georgia Institute of Technology Atlanta GA 33000 USA
- Dep. de Biología de Sistemas-Instituto de Investigación Química Andrés del Río (IQAR) Universidad de Alcalá 28805 Alcalá de Henares Spain
| |
Collapse
|
7
|
Burcar B, Castañeda A, Lago J, Daniel M, Pasek MA, Hud NV, Orlando TM, Menor-Salván C. A Stark Contrast to Modern Earth: Phosphate Mineral Transformation and Nucleoside Phosphorylation in an Iron- and Cyanide-Rich Early Earth Scenario. Angew Chem Int Ed Engl 2019; 58:16981-16987. [PMID: 31460687 DOI: 10.1002/anie.201908272] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Indexed: 11/08/2022]
Abstract
Organophosphates were likely an important class of prebiotic molecules. However, their presence on the early Earth is strongly debated because the low availability of phosphate, which is generally assumed to have been sequestered in insoluble calcium and iron minerals, is widely viewed as a major barrier to organophosphate generation. Herein, we demonstrate that cyanide (an essential prebiotic precursor) and urea-based solvents could promote nucleoside phosphorylation by transforming insoluble phosphate minerals in a "warm little pond" scenario into more soluble and reactive species. Our results suggest that cyanide and its derivatives (metal cyanide complexes, urea, ammonium formate, and formamide) were key reagents for the participation of phosphorus in chemical evolution. These results allow us to propose a holistic scenario in which an evaporitic environment could concentrate abiotically formed organics and transform the underlying minerals, allowing significant organic phosphorylation under plausible prebiotic conditions.
Collapse
Affiliation(s)
- Bradley Burcar
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 33000, USA.,NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 33000, USA
| | - Alma Castañeda
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 33000, USA.,NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 33000, USA
| | - Jennifer Lago
- School of Geosciences, University of South Florida, Tampa, Tampa, FL, 33620, USA.,NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 33000, USA
| | - Mischael Daniel
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 33000, USA
| | - Matthew A Pasek
- School of Geosciences, University of South Florida, Tampa, Tampa, FL, 33620, USA.,NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 33000, USA
| | - Nicholas V Hud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 33000, USA.,NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 33000, USA
| | - Thomas M Orlando
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 33000, USA.,NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 33000, USA
| | - César Menor-Salván
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 33000, USA.,Dep. de Biología de Sistemas-Instituto de Investigación Química Andrés del Río (IQAR), Universidad de Alcalá, 28805, Alcalá de Henares, Spain
| |
Collapse
|
8
|
Karki M, Gibard C, Bhowmik S, Krishnamurthy R. Nitrogenous Derivatives of Phosphorus and the Origins of Life: Plausible Prebiotic Phosphorylating Agents in Water. Life (Basel) 2017; 7:E32. [PMID: 28758921 PMCID: PMC5617957 DOI: 10.3390/life7030032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 12/02/2022] Open
Abstract
Phosphorylation under plausible prebiotic conditions continues to be one of the defining issues for the role of phosphorus in the origins of life processes. In this review, we cover the reactions of alternative forms of phosphate, specifically the nitrogenous versions of phosphate (and other forms of reduced phosphorus species) from a prebiotic, synthetic organic and biochemistry perspective. The ease with which such amidophosphates or phosphoramidate derivatives phosphorylate a wide variety of substrates suggests that alternative forms of phosphate could have played a role in overcoming the "phosphorylation in water problem". We submit that serious consideration should be given to the search for primordial sources of nitrogenous versions of phosphate and other versions of phosphorus.
Collapse
Affiliation(s)
- Megha Karki
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA.
| | - Clémentine Gibard
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA.
| | - Subhendu Bhowmik
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA.
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA.
| |
Collapse
|
9
|
Fernández-García C, Coggins AJ, Powner MW. A Chemist's Perspective on the Role of Phosphorus at the Origins of Life. Life (Basel) 2017; 7:E31. [PMID: 28703763 PMCID: PMC5617956 DOI: 10.3390/life7030031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 11/17/2022] Open
Abstract
The central role that phosphates play in biological systems, suggests they also played an important role in the emergence of life on Earth. In recent years, numerous important advances have been made towards understanding the influence that phosphates may have had on prebiotic chemistry, and here, we highlight two important aspects of prebiotic phosphate chemistry. Firstly, we discuss prebiotic phosphorylation reactions; we specifically contrast aqueous electrophilic phosphorylation, and aqueous nucleophilic phosphorylation strategies, with dry-state phosphorylations that are mediated by dissociative phosphoryl-transfer. Secondly, we discuss the non-structural roles that phosphates can play in prebiotic chemistry. Here, we focus on the mechanisms by which phosphate has guided prebiotic reactivity through catalysis or buffering effects, to facilitating selective transformations in neutral water. Several prebiotic routes towards the synthesis of nucleotides, amino acids, and core metabolites, that have been facilitated or controlled by phosphate acting as a general acid-base catalyst, pH buffer, or a chemical buffer, are outlined. These facile and subtle mechanisms for incorporation and exploitation of phosphates to orchestrate selective, robust prebiotic chemistry, coupled with the central and universally conserved roles of phosphates in biochemistry, provide an increasingly clear message that understanding phosphate chemistry will be a key element in elucidating the origins of life on Earth.
Collapse
|
10
|
Dass AV, Hickman-Lewis K, Brack A, Kee TP, Westall F. Stochastic Prebiotic Chemistry within Realistic Geological Systems. ChemistrySelect 2016. [DOI: 10.1002/slct.201600829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | | | - André Brack
- CNRS Centre de Biophysique Moléculaire; Rue Charles Sadron 45071 Orléans France
| | - Terence P. Kee
- School of Chemistry; University of Leeds; Leeds LS2 9JT UK
| | - Frances Westall
- CNRS Centre de Biophysique Moléculaire; Rue Charles Sadron 45071 Orléans France
| |
Collapse
|
11
|
Sleep NH, Zahnle KJ, Lupu RE. Terrestrial aftermath of the Moon-forming impact. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:20130172. [PMID: 25114303 DOI: 10.1098/rsta.2013.0172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Much of the Earth's mantle was melted in the Moon-forming impact. Gases that were not partially soluble in the melt, such as water and CO2, formed a thick, deep atmosphere surrounding the post-impact Earth. This atmosphere was opaque to thermal radiation, allowing heat to escape to space only at the runaway greenhouse threshold of approximately 100 W m(-2). The duration of this runaway greenhouse stage was limited to approximately 10 Myr by the internal energy and tidal heating, ending with a partially crystalline uppermost mantle and a solid deep mantle. At this point, the crust was able to cool efficiently and solidified at the surface. After the condensation of the water ocean, approximately 100 bar of CO2 remained in the atmosphere, creating a solar-heated greenhouse, while the surface cooled to approximately 500 K. Almost all this CO2 had to be sequestered by subduction into the mantle by 3.8 Ga, when the geological record indicates the presence of life and hence a habitable environment. The deep CO2 sequestration into the mantle could be explained by a rapid subduction of the old oceanic crust, such that the top of the crust would remain cold and retain its CO2. Kinematically, these episodes would be required to have both fast subduction (and hence seafloor spreading) and old crust. Hadean oceanic crust that formed from hot mantle would have been thicker than modern crust, and therefore only old crust underlain by cool mantle lithosphere could subduct. Once subduction started, the basaltic crust would turn into dense eclogite, increasing the rate of subduction. The rapid subduction would stop when the young partially frozen crust from the rapidly spreading ridge entered the subduction zone.
Collapse
Affiliation(s)
- Norman H Sleep
- Department of Geophysics, Stanford University, Stanford, CA 94305, USA
| | | | - Roxana E Lupu
- NASA Ames Research Center, Moffett Field, CA 94035, USA
| |
Collapse
|