1
|
Su J, Wang Y, Bai M, Peng T, Li H, Xu HJ, Guo G, Bai H, Rong N, Sahu SK, He H, Liang X, Jin C, Liu W, Strube ML, Gram L, Li Y, Wang E, Liu H, Wu H. Soil conditions and the plant microbiome boost the accumulation of monoterpenes in the fruit of Citrus reticulata 'Chachi'. MICROBIOME 2023; 11:61. [PMID: 36973820 PMCID: PMC10044787 DOI: 10.1186/s40168-023-01504-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The medicinal material quality of Citrus reticulata 'Chachi' differs depending on the bioactive components influenced by the planting area. Environmental factors, such as soil nutrients, the plant-associated microbiome and climatic conditions, play important roles in the accumulation of bioactive components in citrus. However, how these environmental factors mediate the production of bioactive components of medicinal plants remains understudied. RESULTS Here, a multi-omics approach was used to clarify the role of environmental factors such as soil nutrients and the root-associated microbiome on the accumulation of monoterpenes in the peel of C. reticulata 'Chachi' procured from core (geo-authentic product region) and non-core (non-geo-authentic product region) geographical regions. The soil environment (high salinity, Mg, Mn and K) enhanced the monoterpene content by promoting the expression of salt stress-responsive genes and terpene backbone synthase in the host plants from the core region. The microbial effects on the monoterpene accumulation of citrus from the core region were further verified by synthetic community (SynCom) experiments. Rhizosphere microorganisms activated terpene synthesis and promoted monoterpene accumulation through interactions with the host immune system. Endophyte microorganisms derived from soil with the potential for terpene synthesis might enhance monoterpene accumulation in citrus by providing precursors of monoterpenes. CONCLUSIONS Overall, this study demonstrated that both soil properties and the soil microbiome impacted monoterpene production in citrus peel, thus providing an essential basis for increasing fruit quality via reasonable fertilization and precision microbiota management. Video Abstract.
Collapse
Affiliation(s)
- Jianmu Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yayu Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800, Kgs. Lyngby, Denmark
| | - Mei Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Tianhua Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huisi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hui-Juan Xu
- Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Guifang Guo
- Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Haiyi Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ning Rong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hanjun He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangxiu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Canzhi Jin
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Wei Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800, Kgs. Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800, Kgs. Lyngby, Denmark
| | - Yongtao Li
- Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Genomic and Functional Variation of the Chlorophyll d-Producing Cyanobacterium Acaryochloris marina. Microorganisms 2022; 10:microorganisms10030569. [PMID: 35336144 PMCID: PMC8949462 DOI: 10.3390/microorganisms10030569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
The Chlorophyll d-producing cyanobacterium Acaryochloris marina is widely distributed in marine environments enriched in far-red light, but our understanding of its genomic and functional diversity is limited. Here, we take an integrative approach to investigate A. marina diversity for 37 strains, which includes twelve newly isolated strains from previously unsampled locations in Europe and the Pacific Northwest of North America. A genome-wide phylogeny revealed both that closely related A. marina have migrated within geographic regions and that distantly related A. marina lineages can co-occur. The distribution of traits mapped onto the phylogeny provided evidence of a dynamic evolutionary history of gene gain and loss during A. marina diversification. Ancestral genes that were differentially retained or lost by strains include plasmid-encoded sodium-transporting ATPase and bidirectional NiFe-hydrogenase genes that may be involved in salt tolerance and redox balance under fermentative conditions, respectively. The acquisition of genes by horizontal transfer has also played an important role in the evolution of new functions, such as nitrogen fixation. Together, our results resolve examples in which genome content and ecotypic variation for nutrient metabolism and environmental tolerance have diversified during the evolutionary history of this unusual photosynthetic bacterium.
Collapse
|
3
|
Popova LG, Matalin DA, Balnokin YV. Electrogenesis in Plasma Membrane Fraction of Halotolerant Microalga Dunaliella maritima and Effects of N,N'-Dicyclohexylcarbodiimide. BIOCHEMISTRY (MOSCOW) 2021; 85:930-937. [PMID: 33045953 DOI: 10.1134/s0006297920080088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effects of N,N'-dicyclohexylcarbodiimide (DCCD), non-specific inhibitor of various transport systems functioning in biological membranes, on Na+-transporting P-type ATPase of the green halotolerant microalga Dunaliella maritima were studied in the experiments with vesicular plasma membranes isolated from the alga cells. The effects of DCCD on electrogenic/ion transport function of the enzyme and its ATP hydrolase activity were investigated. Electrogenic/ion transport function of the enzyme was recorded as a Na+-dependent generation of electric potential on the vesicle membranes with the help of the potential-sensitive probe oxonol VI. It was found that unlike many other ion-transporting ATPases, the Na+-ATPase of D. maritima is insensitive to DCCD. This agent did not inhibit either ATP hydrolysis catalyzed by this enzyme or its transport activity. At the same time DCCD affected the ability of the vesicle membranes to maintain electric potential generated by the D. maritima Na+-ATPase. The observed effects can be explained based on the assumption that DCCD interacts with the Na+/H+ antiporter in the plasma membrane of D. maritima.
Collapse
Affiliation(s)
- L G Popova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia.
| | - D A Matalin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Yu V Balnokin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| |
Collapse
|
4
|
Chatterjee P, Kanagendran A, Samaddar S, Pazouki L, Sa TM, Niinemets Ü. Methylobacterium oryzae CBMB20 influences photosynthetic traits, volatile emission and ethylene metabolism in Oryza sativa genotypes grown in salt stress conditions. PLANTA 2019; 249:1903-1919. [PMID: 30877435 PMCID: PMC6875431 DOI: 10.1007/s00425-019-03139-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/12/2019] [Indexed: 05/05/2023]
Abstract
MAIN CONCLUSION Inoculation of endophytic Methylobacterium oryzae CBMB20 in salt-stressed rice plants improves photosynthesis and reduces stress volatile emissions due to mellowing of ethylene-dependent responses and activating vacuolar H+-ATPase. The objective of this study was to analyze the impact of ACC (1-aminocyclopropane-1-carboxylate) deaminase-producing Methylobacterium oryzae CBMB20 in acclimation of plant to salt stress by controlling photosynthetic characteristics and volatile emission in salt-sensitive (IR29) and moderately salt-resistant (FL478) rice (Oryza sativa L.) cultivars. Saline levels of 50 mM and 100 mM NaCl with and without bacteria inoculation were applied, and the temporal changes in stress response and salinity resistance were assessed by monitoring photosynthetic characteristics, ACC accumulation, ACC oxidase activity (ACO), vacuolar H+ ATPase activity, and volatile organic compound (VOC) emissions. Salt stress considerably reduced photosynthetic rate, stomatal conductance, PSII efficiency and vacuolar H+ ATPase activity, but it increased ACC accumulation, ACO activity, green leaf volatiles, mono- and sesquiterpenes, and other stress volatiles. These responses were enhanced with increasing salt stress and time. However, rice cultivars treated with CBMB20 showed improved plant vacuolar H+ ATPase activity, photosynthetic characteristics and decreased ACC accumulation, ACO activity and VOC emission. The bacteria-dependent changes were greater in the IR29 cultivar. These results indicate that decreasing photosynthesis and vacuolar H+ ATPase activity rates and increasing VOC emission rates in response to high-salinity stress were effectively mitigated by M. oryzae CBMB20 inoculation.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Sandipan Samaddar
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
- Department of Biology, University of Louisville, Louisville, KY, 40292, USA
| | - Tong-Min Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia.
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia.
| |
Collapse
|
5
|
Chatterjee P, Samaddar S, Niinemets Ü, Sa TM. Brevibacterium linens RS16 confers salt tolerance to Oryza sativa genotypes by regulating antioxidant defense and H + ATPase activity. Microbiol Res 2018; 215:89-101. [PMID: 30172313 DOI: 10.1016/j.micres.2018.06.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/01/2018] [Accepted: 06/16/2018] [Indexed: 01/07/2023]
Abstract
Soil salinity is one of the major limitations that affects both plant and its soil environment, leading to reduced agricultural production. Evaluation of stress severity by plant physical and biochemical characteristics is an established way to study plant-salt stress interaction, but the halotolerant properties of plant growth promoting bacteria (PGPB) along with plant growth promotion is less studied till date. The aim of the present study was to elucidate the strategy, used by ACC deaminase-containing halotolerant Brevibacterium linens RS16 to confer salt stress tolerance in moderately salt-tolerant (FL478) and salt-sensitive (IR29) rice (Oryza sativa L.) cultivars. The plants were exposed to salt stress using 0, 50, and 100 mM of NaCl with and without bacteria. Plant physiological and biochemical characteristics were estimated after 1, 5, 10 days of stress application. H+ ATPase activity and the presence of hydroxyectoine gene (ectD) that is responsible for compatible solute accumulation were also analyzed in bacteria. The height and dry mass of bacteria inoculated plants significantly increased compared to salt-stressed plants, and the differences increased in time dependent manner. Bacteria priming reduced the plant antioxidant enzyme activity, lipid peroxidation and it also regulated the salt accumulation by modulating vacuolar H+ ATPase activity. ATPase activity and presence of hydroxyectoine gene in RS16 might have played a vital role in providing salt tolerance in bacteria inoculated rice cultivars. We conclude that dual benefits provided by the halotolerant plant growth promoting bacteria (PGPB) can provide a major way to improve rice yields in saline soil.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sandipan Samaddar
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| | - Tong-Min Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
6
|
Distinct Biological Potential of Streptococcus gordonii and Streptococcus sanguinis Revealed by Comparative Genome Analysis. Sci Rep 2017; 7:2949. [PMID: 28592797 PMCID: PMC5462765 DOI: 10.1038/s41598-017-02399-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 04/03/2017] [Indexed: 02/06/2023] Open
Abstract
Streptococcus gordonii and Streptococcus sanguinis are pioneer colonizers of dental plaque and important agents of bacterial infective endocarditis (IE). To gain a greater understanding of these two closely related species, we performed comparative analyses on 14 new S. gordonii and 5 S. sanguinis strains using various bioinformatics approaches. We revealed S. gordonii and S. sanguinis harbor open pan-genomes and share generally high sequence homology and number of core genes including virulence genes. However, we observed subtle differences in genomic islands and prophages between the species. Comparative pathogenomics analysis identified S. sanguinis strains have genes encoding IgA proteases, mitogenic factor deoxyribonucleases, nickel/cobalt uptake and cobalamin biosynthesis. On the contrary, genomic islands of S. gordonii strains contain additional copies of comCDE quorum-sensing system components involved in genetic competence. Two distinct polysaccharide locus architectures were identified, one of which was exclusively present in S. gordonii strains. The first evidence of genes encoding the CylA and CylB system by the α-haemolytic S. gordonii is presented. This study provides new insights into the genetic distinctions between S. gordonii and S. sanguinis, which yields understanding of tooth surfaces colonization and contributions to dental plaque formation, as well as their potential roles in the pathogenesis of IE.
Collapse
|
7
|
Dibrova DV, Galperin MY, Koonin EV, Mulkidjanian AY. Ancient Systems of Sodium/Potassium Homeostasis as Predecessors of Membrane Bioenergetics. BIOCHEMISTRY (MOSCOW) 2016; 80:495-516. [PMID: 26071768 DOI: 10.1134/s0006297915050016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cell cytoplasm of archaea, bacteria, and eukaryotes contains substantially more potassium than sodium, and potassium cations are specifically required for many key cellular processes, including protein synthesis. This distinct ionic composition and requirements have been attributed to the emergence of the first cells in potassium-rich habitats. Different, albeit complementary, scenarios have been proposed for the primordial potassium-rich environments based on experimental data and theoretical considerations. Specifically, building on the observation that potassium prevails over sodium in the vapor of inland geothermal systems, we have argued that the first cells could emerge in the pools and puddles at the periphery of primordial anoxic geothermal fields, where the elementary composition of the condensed vapor would resemble the internal milieu of modern cells. Marine and freshwater environments generally contain more sodium than potassium. Therefore, to invade such environments, while maintaining excess of potassium over sodium in the cytoplasm, primordial cells needed means to extrude sodium ions. The foray into new, sodium-rich habitats was the likely driving force behind the evolution of diverse redox-, light-, chemically-, or osmotically-dependent sodium export pumps and the increase of membrane tightness. Here we present a scenario that details how the interplay between several, initially independent sodium pumps might have triggered the evolution of sodium-dependent membrane bioenergetics, followed by the separate emergence of the proton-dependent bioenergetics in archaea and bacteria. We also discuss the development of systems that utilize the sodium/potassium gradient across the cell membranes.
Collapse
Affiliation(s)
- D V Dibrova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | | | | | | |
Collapse
|
8
|
Adaptation in Haloalkaliphiles and Natronophilic Bacteria. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2013. [DOI: 10.1007/978-94-007-6488-0_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Qin H, Peng C, Liu Y, Li D. DIFFERENTIAL RESPONSES OF ANABAENA SP. PCC 7120 (CYANOPHYCEAE) CULTURED IN NITROGEN-DEFICIENT AND NITROGEN-ENRICHED MEDIA TO ULTRAVIOLET-B RADIATION(1). JOURNAL OF PHYCOLOGY 2012; 48:615-625. [PMID: 27011077 DOI: 10.1111/j.1529-8817.2012.01162.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Stratospheric ozone depletion increases the amount of ultraviolet-B radiation (UVBR) (280-320 nm) reaching the surface of the earth, potentially affecting phytoplankton. In this work, Anabaena sp. PCC 7120, a typically nitrogen (N)-fixing filamentous bloom-forming cyanobacterium in freshwater, was individually cultured in N-deficient and N-enriched media for long-term acclimation before being subjected to ultraviolet-B (UVB) exposure experiments. Results suggested that the extent of breakage in the filaments induced by UVBR increases with increasing intensity of UVB stress. In general, except for the 0.1 W · m(-2) treatment, which showed a mild increase, UVB exposure inhibits photosynthesis as evidenced by the decrease in the chl fluorescence parameters maximum photochemical efficiency of PSII (Fv /Fm ) and maximum relative electron transport rate. Complementary chromatic acclimation was also observed in Anabaena under different intensities of UVB stress. Increased total carbohydrate and soluble protein may provide some protection for the culture against damaging UVB exposure. In addition, N-deficient cultures with higher recovery capacity showed overcompensatory growth under low UVB (0.1 W · m(-2) ) exposure during the recovery period. Significantly increased (∼830%) ATPase activity may provide enough energy to repair the damage caused by exposure to UVB.
Collapse
Affiliation(s)
- Hongjie Qin
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China Graduate University of Chinese Academy of Sciences, Beijing 100049, ChinaInstitute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chengrong Peng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China Graduate University of Chinese Academy of Sciences, Beijing 100049, ChinaInstitute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongding Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China Graduate University of Chinese Academy of Sciences, Beijing 100049, ChinaInstitute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dunhai Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China Graduate University of Chinese Academy of Sciences, Beijing 100049, ChinaInstitute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|