1
|
Yuan Q, Shi X, Ma H, Yao Y, Zhang B, Zhao L. Recent progress in marine chondroitin sulfate, dermatan sulfate, and chondroitin sulfate/dermatan sulfate hybrid chains as potential functional foods and therapeutic agents. Int J Biol Macromol 2024; 262:129969. [PMID: 38325688 DOI: 10.1016/j.ijbiomac.2024.129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Chondroitin sulfate (CS), dermatan sulfate (DS), and CS/DS hybrid chains are natural complex glycosaminoglycans with high structural diversity and widely distributed in marine organisms, such as fish, shrimp, starfish, and sea cucumber. Numerous CS, DS, and CS/DS hybrid chains with various structures and activities have been obtained from marine animals and have received extensive attention. However, only a few of these hybrid chains have been well-characterized and commercially developed. This review presents information on the extraction, purification, structural characterization, biological activities, potential action mechanisms, and structure-activity relationships of marine CS, DS, and CS/DS hybrid chains. We also discuss the challenges and perspectives in the research of CS, DS, and CS/DS hybrid chains. This review may provide a useful reference for the further investigation, development, and application of CS, DS, and CS/DS hybrid chains in the fields of functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Xiang Shi
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Haiqiong Ma
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Yue Yao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| |
Collapse
|
2
|
Bento ADA, Maciel MC, Bezerra FF, Mourão PADS, Pavão MSG, Stelling MP. Extraction, Isolation, Characterization, and Biological Activity of Sulfated Polysaccharides Present in Ascidian Viscera Microcosmus exasperatus. Pharmaceuticals (Basel) 2023; 16:1401. [PMID: 37895872 PMCID: PMC10609765 DOI: 10.3390/ph16101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/17/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Ascidians are marine invertebrates that synthesize sulfated glycosaminoglycans (GAGs) within their viscera. Ascidian GAGs are considered analogues of mammalian GAGs and possess great potential as bioactive compounds, presenting antitumoral and anticoagulant activity. Due to its worldwide occurrence and, therefore, being a suitable organism for large-scale mariculture in many marine environments, our main objectives are to study Microcosmus exasperatus GAGs regarding composition, structure, and biological activity. We also aim to develop efficient protocols for sulfated polysaccharides extraction and purification for large-scale production and clinical applications. GAGs derived from M. exasperatus viscera were extracted by proteolytic digestion, purified by ion-exchange liquid chromatography, and characterized by agarose gel electrophoresis and enzymatic treatments. Anticoagulant activity was evaluated by APTT assays. Antitumoral activity was assessed in an in vitro model of tumor cell culture using MTT, clonogenic, and wound healing assays, respectively. Our results show that M. exasperatus presents three distinct polysaccharides; among them, two were identified: a dermatan sulfate and a fucosylated dermatan sulfate. Antitumoral activity was confirmed for the total polysaccharides (TP). While short-term incubation does not affect tumor cell viability at low concentrations, long-term TP incubation decreases LLC tumor cell growth/proliferation at different concentrations. In addition, TP decreased tumor cell migration at different concentrations. In conclusion, we state that M. exasperatus presents great potential as an alternative GAG source, producing compounds with antitumoral properties at low concentrations that do not possess anticoagulant activity and do not enhance other aspects of malignancy, such as tumor cell migration. Our perspectives are to apply these molecules in future preclinical studies for cancer treatment as antitumoral agents to be combined with current treatments to potentiate therapeutic efficacy.
Collapse
Affiliation(s)
- Ananda de Araujo Bento
- Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro 20271-110, Brazil; (A.d.A.B.); (M.C.M.)
| | - Marianna Cardoso Maciel
- Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro 20271-110, Brazil; (A.d.A.B.); (M.C.M.)
| | - Francisco Felipe Bezerra
- Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-971, Brazil; (F.F.B.); (P.A.d.S.M.); (M.S.G.P.)
| | - Paulo Antônio de Souza Mourão
- Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-971, Brazil; (F.F.B.); (P.A.d.S.M.); (M.S.G.P.)
| | - Mauro Sérgio Gonçalves Pavão
- Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-971, Brazil; (F.F.B.); (P.A.d.S.M.); (M.S.G.P.)
| | - Mariana Paranhos Stelling
- Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro 20271-110, Brazil; (A.d.A.B.); (M.C.M.)
| |
Collapse
|
3
|
Ascidian (Chordata-Tunicata) Glycosaminoglycans: Extraction, Purification, Biochemical, and Spectroscopic Analysis. Methods Mol Biol 2021. [PMID: 34626373 DOI: 10.1007/978-1-0716-1398-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Sulfate polysaccharides with unique structures of the chondroitin/dermatan and heparin/heparan families of sulfated glycosaminoglycans have been described in several species of ascidians (Chordata-Tunicata). These unique sulfated glycans have been isolated from the ascidians and characterized by biochemical and spectroscopic methods. The ascidian glycans can be extracted by different tissues or cells by proteolytic digestion followed by cetylpyridinium chloride/ethanol precipitation. The total glycans are then fractionated by ion-exchange chromatography on DEAE-cellulose and/or Mono Q (HR 5/5) columns. Alternatively, precipitation with different ethanol concentrations can be employed. An initial analysis of the purified ascidian glycans is carried out by agarose gel electrophoresis on diaminopropane/acetate buffer, before or after digestion with specific glycosaminoglycan lyases or deaminative cleavage with nitrous acid. The disaccharides formed by exhaustive degradation of the glycans are purified by gel-filtration chromatography on a Superdex Peptide column and analyzed by HPLC on a strong ion-exchange Sax Spherisorb column. 1H- or 13C-nuclear magnetic resonance spectroscopy in one or two dimensions is used to confirm the structure of the intact glycans.
Collapse
|
4
|
Silva CFS, Motta JM, Teixeira FCOB, Gomes AM, Vilanova E, Kozlowski EO, Borsig L, Pavão MSG. Non-Anticoagulant Heparan Sulfate from the Ascidian Phallusia nigra Prevents Colon Carcinoma Metastasis in Mice by Disrupting Platelet-Tumor Cell Interaction. Cancers (Basel) 2020; 12:E1353. [PMID: 32466418 PMCID: PMC7352385 DOI: 10.3390/cancers12061353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Although metastasis is the primary cause of death in patients with malignant solid tumors, efficient anti-metastatic therapies are not clinically available currently. Sulfated glycosaminoglycans from marine sources have shown promising pharmacological effects, acting on different steps of the metastatic process. Oversulfated dermatan sulfates from ascidians are effective in preventing metastasis by inhibition of P-selectin, a platelet surface protein involved in the platelet-tumor cell emboli formation. We report in this work that the heparan sulfate isolated from the viscera of the ascidian Phallusia nigra drastically attenuates metastases of colon carcinoma cells in mice. Our in vitro and in vivo assessments demonstrate that the P. nigra glycan has very low anticoagulant and antithrombotic activities and a reduced hypotension potential, although it efficiently prevented metastasis. Therefore, it may be a promising candidate for the development of a novel anti-metastatic drug.
Collapse
Affiliation(s)
- Christiane F. S. Silva
- Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-913, Brazil; (C.F.S.S.); (J.M.M.); (F.C.O.B.T.); (E.V.); (E.O.K.)
| | - Juliana M. Motta
- Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-913, Brazil; (C.F.S.S.); (J.M.M.); (F.C.O.B.T.); (E.V.); (E.O.K.)
| | - Felipe C. O. B. Teixeira
- Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-913, Brazil; (C.F.S.S.); (J.M.M.); (F.C.O.B.T.); (E.V.); (E.O.K.)
| | - Angélica M. Gomes
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - Eduardo Vilanova
- Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-913, Brazil; (C.F.S.S.); (J.M.M.); (F.C.O.B.T.); (E.V.); (E.O.K.)
| | - Eliene O. Kozlowski
- Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-913, Brazil; (C.F.S.S.); (J.M.M.); (F.C.O.B.T.); (E.V.); (E.O.K.)
| | - Lubor Borsig
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Mauro S. G. Pavão
- Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-913, Brazil; (C.F.S.S.); (J.M.M.); (F.C.O.B.T.); (E.V.); (E.O.K.)
| |
Collapse
|
5
|
Aldairi AF, Ogundipe OD, Pye DA. Antiproliferative Activity of Glycosaminoglycan-Like Polysaccharides Derived from Marine Molluscs. Mar Drugs 2018; 16:md16020063. [PMID: 29462890 PMCID: PMC5852491 DOI: 10.3390/md16020063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
Despite the increasing availability of new classes of cancer treatment, such as immune- and targeted therapies, there remains a need for the development of new antiproliferative/cytotoxic drugs with improved pharmacological profiles that can also overcome drug resistant forms of cancer. In this study, we have identified, and characterised, a novel marine polysaccharide with the potential to be developed as an anticancer agent. Sulphated polysaccharides isolated from the common cockle (Cerastoderma edule) were shown to have antiproliferative activity on chronic myelogenous leukaemia and relapsed acute lymphoblastic leukaemia cell lines. Disaccharide and monosaccharide analysis of these marine polysaccharides confirmed the presence of glycosaminoglycan-like structures that were enriched in ion-exchange purified fractions containing antiproliferative activity. The antiproliferative activity of these glycosaminoglycan-like marine polysaccharides was shown to be susceptible to heparinase but not chondrotinase ABC digestion. This pattern of enzymatic and antiproliferative activity has not previously been seen, with either marine or mammalian glycosaminoglycans. As such, our findings suggest we have identified a new type of marine derived heparan sulphate/heparin-like polysaccharide with potent anticancer properties.
Collapse
Affiliation(s)
- Abdullah Faisal Aldairi
- School of Environment and Life Sciences, Cockcroft Building, University of Salford, Manchester M5 4WT, UK.
| | - Olanrewaju Dorcas Ogundipe
- School of Environment and Life Sciences, Cockcroft Building, University of Salford, Manchester M5 4WT, UK.
| | - David Alexander Pye
- School of Environment and Life Sciences, Cockcroft Building, University of Salford, Manchester M5 4WT, UK.
| |
Collapse
|
6
|
Restrepo-Espinosa DC, Román Y, Colorado-Ríos J, de Santana-Filho AP, Sassaki GL, Cipriani TR, Martínez A, Iacomini M, Pavão MSG. Structural analysis of a sulfated galactan from the tunic of the ascidian Microcosmus exasperatus and its inhibitory effect of the intrinsic coagulation pathway. Int J Biol Macromol 2017; 105:1391-1400. [PMID: 28867226 DOI: 10.1016/j.ijbiomac.2017.08.166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/24/2017] [Accepted: 08/30/2017] [Indexed: 01/22/2023]
Abstract
Several bioactive sulfated galactans have been isolated from the tunic of different species of ascidians. The biological activity of this kind of polysaccharides has been related with the presence and position of sulfate groups, and by the chemical composition of this kind of polysaccharides. A sulfated galactan (1000RS) was isolated from the tunic of the Brazilian ascidia Microcosmus exasperatus through proteolytic digestion, ethanol precipitation, dialysis and freeze-thaw cycles. Homogeneity and molecular weight were estimated by using size exclusion chromatography. Monosaccharide composition and type of linkage were assessed by Gas chromatography coupled to mass spectrometry and the sulfate content was quantified through gelatin/BaCl2 method. These experiments along with NMR and FTIR analysis allowed to claim that the galactan backbone is mainly composed of 4-linked α-l-Galp units. In addition, they permitted to establish that some of the galactose residues are sulfated at the 3-position. This sulfated polysaccharide, which has an average molecular mass of 439.5kDa, presents anticoagulant effect in a dose-dependent manner through the inhibition of the intrinsic coagulation pathway.
Collapse
Affiliation(s)
- Diana C Restrepo-Espinosa
- Productos Naturales Marinos, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 N° 52-21, CP 050010234, Medellín, Colombia.
| | - Yony Román
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Paraná, CEP 81531-980, CP 19046, Curitiba, Paraná, Brazil.
| | - Jhonny Colorado-Ríos
- Productos Naturales Marinos, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 N° 52-21, CP 050010234, Medellín, Colombia.
| | | | - Guilherme Lanzi Sassaki
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Paraná, CEP 81531-980, CP 19046, Curitiba, Paraná, Brazil.
| | - Thales R Cipriani
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Paraná, CEP 81531-980, CP 19046, Curitiba, Paraná, Brazil.
| | - Alejandro Martínez
- Productos Naturales Marinos, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 N° 52-21, CP 050010234, Medellín, Colombia.
| | - Marcello Iacomini
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Paraná, CEP 81531-980, CP 19046, Curitiba, Paraná, Brazil.
| | - Mauro S G Pavão
- Laboratório de Bioquímica e Biologia Celular de Glicoconjugados, Instituto de Bioquímica Médica Leopoldo de Méis-Universidade Federal do Rio de Janeiro, CEP 21941-913, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
NMR structural determination of unique invertebrate glycosaminoglycans endowed with medical properties. Carbohydr Res 2015; 413:41-50. [DOI: 10.1016/j.carres.2015.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 01/29/2023]
|
8
|
Frank P, Hedman B, Hodgson KO. XAS spectroscopy, sulfur, and the brew within blood cells from Ascidia ceratodes. J Inorg Biochem 2014; 131:99-108. [PMID: 24333825 PMCID: PMC3913562 DOI: 10.1016/j.jinorgbio.2013.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 02/02/2023]
Abstract
We report the first use of K-edge X-ray absorption spectroscopy (XAS) as a direct spectroscopic probe of pH and cytosolic emf within living cells. A new accuracy metric of model-based fits to K-edge spectra is further developed. Sulfur functional groups in three collections of living blood cells and one sample of cleared blood plasma from the tunicate Ascidia ceratodes were speciated using K-edge XAS. Cysteine and cystine, the preferred thiol-disulfide model, averaged about 12% of total sulfur. Sulfate monoesters and cyclic diesters unexpectedly constituted 36% of blood cell sulfur. Soluble sulfate averaged about 25% across the three blood cell samples, while the ratio of SO4(2-) to HSO4(-) implied average signet ring vacuolar pH values of 0.85, 1.4, or 3.1. Intracellular (VSO4)(+) was unobserved, while [V(RSO3)n]((3-n)+) was detected in the two lowest pH blood cell samples. About 5% of sulfur was distributed as mono- or dibenzothiophene or ethylene-epi-sulfide, or as a thiadiazole reminiscent of the polycarpathiamines. Blood plasma was dominated by sulfate (83%), but with 15% of an alkylsulfate ester and about 2% of low-valent sulfur. Gravimetric analysis of soluble sulfate yielded average concentrations of blood cell sulfur. Average [cysteine] and [cystine] (ranging ~10-30 mM and ~20-90 mM, respectively) implied blood-cell cytosolic emf values of approximately -0.20 V. High cellular [cysteine] is consistent with the proposed model for enzymatic reduction of vanadate by endogenous thiol, wherein the trajectory of metal site-symmetry is controlled and directed through to a thermodynamically favored 7-coordinate V(III) product.
Collapse
Affiliation(s)
- Patrick Frank
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford Synchrotron Radiation Lightsource, SLAC, Stanford University, Stanford, CA 94309, USA.
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC, Stanford University, Stanford, CA 94309, USA
| | - Keith O Hodgson
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
| |
Collapse
|
9
|
Fine structure of glycosaminoglycans from fresh and decellularized porcine cardiac valves and pericardium. Biochem Res Int 2012; 2012:979351. [PMID: 22461983 PMCID: PMC3296293 DOI: 10.1155/2012/979351] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 10/18/2011] [Accepted: 10/27/2011] [Indexed: 11/21/2022] Open
Abstract
Cardiac valves are dynamic structures, exhibiting a highly specialized architecture consisting of cells and extracellular matrix with a relevant proteoglycan and glycosaminoglycan content, collagen and elastic fibers. Biological valve substitutes are obtained from xenogenic cardiac and pericardial tissues. To overcome the limits of such non viable substitutes, tissue engineering approaches emerged to create cell repopulated decellularized scaffolds. This study was performed to determine the glycosaminoglycans content, distribution, and disaccharides composition in porcine aortic and pulmonary valves and in pericardium before and after a detergent-based decellularization procedure. The fine structural characteristics of galactosaminoglycans chondroitin sulfate and dermatan sulfate were examined by FACE. Furthermore, the mechanical properties of decellularized pericardium and its propensity to be repopulated by in vitro seeded fibroblasts were investigated. Results show that galactosaminoglycans and hyaluronan are differently distributed between pericardium and valves and within heart valves themselves before and after decellularization. The distribution of glycosaminoglycans is also dependent from the vascular district and topographic localization. The decellularization protocol adopted resulted in a relevant but not selective depletion of galactosaminoglycans. As a whole, data suggest that both decellularized porcine heart valves and bovine pericardium represent promising materials bearing the potential for future development of tissue engineered heart valve scaffolds.
Collapse
|
10
|
Affiliation(s)
- L R Zacharski
- Department of Medicine, Section of Hematology/Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
11
|
Correction: Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfate)β-1→3GalNAc(4-Sulfate)β-1→] motifs in dermatan sulfate on heparin cofactor II activity. BMC BIOCHEMISTRY 2011. [PMCID: PMC3152891 DOI: 10.1186/1471-2091-12-37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
After the publication of the work entitled "Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfate)β-1→3GalNAc(4-Sulfate)β-1→] motifs in dermatan sulfate on heparin cofactor II activity", by Kozlowski et al., BMC Biochemistry 2011, 12:29, we found that the legends to Figures 2 to 5 contain serious mistakes that compromise the comprehension of the work. This correction article contains the correct text of the legends to Figures 2 to 5.
Collapse
|