1
|
Marquez-Lona EM, Torres-Machorro AL, Gonzales FR, Pillus L, Patrick GN. Phosphorylation of the 19S regulatory particle ATPase subunit, Rpt6, modifies susceptibility to proteotoxic stress and protein aggregation. PLoS One 2017; 12:e0179893. [PMID: 28662109 PMCID: PMC5491056 DOI: 10.1371/journal.pone.0179893] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
The ubiquitin proteasome system (UPS) is a highly conserved and tightly regulated biochemical pathway that degrades the majority of proteins in eukaryotic cells. Importantly, the UPS is responsible for counteracting altered protein homeostasis induced by a variety of proteotoxic stresses. We previously reported that Rpt6, the ATPase subunit of the 19S regulatory particle (RP) of the 26S proteasome, is phosphorylated in mammalian neurons at serine 120 in response to neuronal activity. Furthermore, we found that Rpt6 S120 phosphorylation, which regulates the activity and distribution of proteasomes in neurons, is relevant for proteasome-dependent synaptic remodeling and function. To better understand the role of proteasome phosphorylation, we have constructed models of altered Rpt6 phosphorylation in S. cerevisiae by introducing chromosomal point mutations that prevent or mimic phosphorylation at the conserved serine (S119). We find that mutants which prevent Rpt6 phosphorylation at this site (rpt6-S119A), had increased susceptibility to proteotoxic stress, displayed abnormal morphology and had reduced proteasome activity. Since impaired proteasome function has been linked to the aggregation of toxic proteins including the Huntington's disease (HD) related huntingtin (Htt) protein with expanded polyglutamine repeats, we evaluated the extent of Htt aggregation in our phospho-dead (rpt6-S119A) and phospho-mimetic (rpt6-S119D) mutants. We showed Htt103Q aggregate size to be significantly larger in rpt6-S119A mutants compared to wild-type or rpt6-S119D strains. Furthermore, we observed that phosphorylation of endogenous Rpt6 at S119 is increased in response to various stress conditions. Together, these data suggest that Rpt6 phosphorylation at S119 may play an important function in proteasome-dependent relief of proteotoxic stress that can be critical in protein aggregation pathologies.
Collapse
Affiliation(s)
- Esther Magdalena Marquez-Lona
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ana Lilia Torres-Machorro
- Section of Molecular Biology and UCSD Moores Cancer Center, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Frankie R. Gonzales
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Lorraine Pillus
- Section of Molecular Biology and UCSD Moores Cancer Center, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Gentry N. Patrick
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
2
|
Wani PS, Rowland MA, Ondracek A, Deeds EJ, Roelofs J. Maturation of the proteasome core particle induces an affinity switch that controls regulatory particle association. Nat Commun 2015; 6:6384. [PMID: 25812915 PMCID: PMC4380239 DOI: 10.1038/ncomms7384] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 01/25/2015] [Indexed: 01/09/2023] Open
Abstract
Proteasome assembly is a complex process, requiring 66 subunits distributed over several subcomplexes to associate in a coordinated fashion. Ten proteasome-specific chaperones have been identified that assist in this process. For two of these, the Pba1-Pba2 dimer, it is well established that they only bind immature core particles (CP) in vivo. In contrast, the regulatory particle (RP) utilizes the same binding surface but only interacts with the mature CP in vivo. It is unclear how these binding events are regulated. Here, we show that Pba1-Pba2 binds tightly to immature CP, preventing RP binding. Changes in the CP that occur upon maturation significantly reduce its affinity for Pba1-Pba2, enabling the RP to displace the chaperone. Mathematical modeling indicates that this “affinity switch” mechanism has likely evolved to improve assembly efficiency by preventing the accumulation of stable, non-productive intermediates. Our work thus provides mechanistic insights into a crucial step in proteasome biogenesis.
Collapse
Affiliation(s)
- Prashant S Wani
- Graduate Biochemistry Group, Department of Biochemistry and Molecular Biophysics, Kansas State University, 336 Ackert Hall, Manhattan, Kansas 66506, USA
| | - Michael A Rowland
- Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| | - Alex Ondracek
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, Kansas 66506, USA
| | - Eric J Deeds
- 1] Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA [2] Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, USA [3] Santa Fe Institute, Santa Fe, New Mexico 87501, USA
| | - Jeroen Roelofs
- 1] Graduate Biochemistry Group, Department of Biochemistry and Molecular Biophysics, Kansas State University, 336 Ackert Hall, Manhattan, Kansas 66506, USA [2] Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, Kansas 66506, USA
| |
Collapse
|
3
|
Bousquet-Dubouch MP, Fabre B, Monsarrat B, Burlet-Schiltz O. Proteomics to study the diversity and dynamics of proteasome complexes: from fundamentals to the clinic. Expert Rev Proteomics 2012; 8:459-81. [PMID: 21819302 DOI: 10.1586/epr.11.41] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This article covers the latest contributions of proteomics to the structural and functional characterization of proteasomes and their associated proteins, but also to the detection of proteasomes as clinical biomarkers in diseases. Proteasomes are highly heterogenous supramolecular complexes and constitute important cellular proteases controlling the pool of proteins involved in key cellular functions. The comprehension of the structure/function relationship of proteasomes is therefore of major interest in biology. Numerous biochemical methods have been employed to purify proteasomes, and have led to the identification of complexes of various compositions - depending on the experimental conditions and the type of strategy used. In association with protein separation and enrichment techniques, modern mass spectrometry instruments and mass spectrometry-based quantitative methods, they have led to unprecedented breakthroughs in the in-depth analysis of the diversity and dynamics of proteasome composition and localization under various stimuli or pathological contexts. Proteasome inhibitors are now used in clinics for the treatment of cancer, and recent studies propose that the proteasome should be considered as a predictive biomarker for various pathologies.
Collapse
|
4
|
Abstract
The ubiquitin-proteasomal system is an essential element of the protein quality control machinery in cells. The central part of this system is the 20S proteasome. The proteasome is a barrel-shaped multienzyme complex, containing several active centers hidden at the inner surface of the hollow cylinder. So, the regulation of the substrate entry toward the inner proteasomal surface is a key control mechanism of the activity of this protease. This chapter outlines the knowledge on the structure of the subunits of the 20S proteasome, the binding and structure of some proteasomal regulators and inducible proteasomal subunits. Therefore, this chapter imparts the knowledge on proteasomal structure which is required for the understanding of the following chapters.
Collapse
|