1
|
Malta TM, Silva IT, Pinheiro DG, Santos AR, Pinto MT, Panepucci RA, Takayanagui OM, Tanaka Y, Covas DT, Kashima S. Altered expression of degranulation-related genes in CD8+ T cells in human T lymphotropic virus type I infection. AIDS Res Hum Retroviruses 2013; 29:826-36. [PMID: 23301858 DOI: 10.1089/aid.2012.0205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human T lymphotropic virus type I (HTLV-1) is the etiological agent of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). CD8+ T cells may contribute to the protection or development of HAM/TSP. In this study we used SAGE methodology to screen for differentially expressed genes in CD8+ T cells isolated from HTLV-1 asymptomatic carriers (HAC) and from HAM/TSP patients to identify genes involved in HAM/TSP development. SAGE analysis was conducted by pooling samples according to clinical status. The comparison of gene expression profiles between HAC and HAM/TSP libraries identified 285 differentially expressed tags. We focus on cytotoxicity and cytokine-related genes due to their potential biological role in HTLV-1 infection. Our results showed that patients with HAM/TSP have high expression levels of degranulation-related genes, namely GZMH and PRF1, and of the cytoskeletal adaptor PXN. We found that GZMB and ZAP70 were overexpressed in HTLV-infected patients compared to the noninfected group. We also detected that CCL5 was higher in the HAM/TSP group compared to the HAC and CT groups. Our findings showed that CD8+ T cells of HAM/TSP patients have an inflammatory and active profile. PXN and ZAP70 overexpression in HTLV-1-infected patients was described for the first time here and reinforces this concept. However, although active and abundant, CD8+ T cells are not able to completely eliminate infected cells and prevent the development of HAM/TSP and, moreover, these cells might contribute to the pathogenesis of the disease by migrating to the central nervous system (CNS). These results should be further tested with biological functional assays to increase our understanding on the role of these molecules in the development of HTLV-1-related diseases.
Collapse
Affiliation(s)
- Tathiane M. Malta
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell Therapy and Regional Blood Center, Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Israel T. Silva
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell Therapy and Regional Blood Center, Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Daniel G. Pinheiro
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell Therapy and Regional Blood Center, Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Anemarie R.D. Santos
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell Therapy and Regional Blood Center, Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Mariana T. Pinto
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell Therapy and Regional Blood Center, Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo A. Panepucci
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell Therapy and Regional Blood Center, Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
- Faculty of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Dimas T. Covas
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell Therapy and Regional Blood Center, Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
- Faculty of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Simone Kashima
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell Therapy and Regional Blood Center, Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
2
|
de Lima DS, Martins CS, Paixao BMDC, Amaral FC, Colli LM, Saggioro FP, Neder L, Machado HR, dos Santos ARD, Pinheiro DG, Moreira AC, Silva WA, Castro M. SAGE analysis highlights the putative role of underexpression of ribosomal proteins in GH-secreting pituitary adenomas. Eur J Endocrinol 2012; 167:759-68. [PMID: 22992986 DOI: 10.1530/eje-12-0760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Although the molecular pathogenesis of pituitary adenomas has been assessed by several different techniques, it still remains partially unclear. Ribosomal proteins (RPs) have been recently related to human tumorigenesis, but they have not yet been evaluated in pituitary tumorigenesis. OBJECTIVE The aim of this study was to introduce serial analysis of gene expression (SAGE), a high-throughput method, in pituitary research in order to compare differential gene expression. METHODS Two SAGE cDNA libraries were constructed, one using a pool of mRNA obtained from five GH-secreting pituitary tumors and another from three normal pituitaries. Genes differentially expressed between the libraries were further validated by real-time PCR in 22 GH-secreting pituitary tumors and in 15 normal pituitaries. RESULTS Computer-generated genomic analysis tools identified 13,722 and 14,993 exclusive genes in normal and adenoma libraries respectively. Both shared 6497 genes, 2188 were underexpressed and 4309 overexpressed in tumoral library. In adenoma library, 33 genes encoding RPs were underexpressed. Among these, RPSA, RPS3, RPS14, and RPS29 were validated by real-time PCR. CONCLUSION We report the first SAGE library from normal pituitary tissue and GH-secreting pituitary tumor, which provide quantitative assessment of cellular transcriptome. We also validated some downregulated genes encoding RPs. Altogether, the present data suggest that the underexpression of the studied RP genes possibly collaborates directly or indirectly with other genes to modify cell cycle arrest, DNA repair, and apoptosis, leading to an environment that might have a putative role in the tumorigenesis, introducing new perspectives for further studies on molecular genesis of somatotrophinomas.
Collapse
Affiliation(s)
- Deison Soares de Lima
- Department of Internal Medicine, School of Medicine of Ribeirao Preto, University of Sao Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirao Preto, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|