1
|
Vural-Ozdeniz M, Calisir K, Acar R, Yavuz A, Ozgur MM, Dalgıc E, Konu O. CAP-RNAseq: an integrated pipeline for functional annotation and prioritization of co-expression clusters. Brief Bioinform 2024; 25:bbad536. [PMID: 38279653 PMCID: PMC10818169 DOI: 10.1093/bib/bbad536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/04/2023] [Accepted: 12/21/2024] [Indexed: 01/28/2024] Open
Abstract
Cluster analysis is one of the most widely used exploratory methods for visualization and grouping of gene expression patterns across multiple samples or treatment groups. Although several existing online tools can annotate clusters with functional terms, there is no all-in-one webserver to effectively prioritize genes/clusters using gene essentiality as well as congruency of mRNA-protein expression. Hence, we developed CAP-RNAseq that makes possible (1) upload and clustering of bulk RNA-seq data followed by identification, annotation and network visualization of all or selected clusters; and (2) prioritization using DepMap gene essentiality and/or dependency scores as well as the degree of correlation between mRNA and protein levels of genes within an expression cluster. In addition, CAP-RNAseq has an integrated primer design tool for the prioritized genes. Herein, we showed using comparisons with the existing tools and multiple case studies that CAP-RNAseq can uniquely aid in the discovery of co-expression clusters enriched with essential genes and prioritization of novel biomarker genes that exhibit high correlations between their mRNA and protein expression levels. CAP-RNAseq is applicable to RNA-seq data from different contexts including cancer and available at http://konulabapps.bilkent.edu.tr:3838/CAPRNAseq/ and the docker image is downloadable from https://hub.docker.com/r/konulab/caprnaseq.
Collapse
Affiliation(s)
| | - Kubra Calisir
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Türkiye
| | - Rana Acar
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Türkiye
| | - Aysenur Yavuz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Türkiye
| | - Mustafa M Ozgur
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Türkiye
| | - Ertugrul Dalgıc
- Department of Medical Biology, School of Medicine, Zonguldak Bülent Ecevit University, Zonguldak, Türkiye
| | - Ozlen Konu
- Department of Neuroscience, Bilkent University, Ankara, Türkiye
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Türkiye
| |
Collapse
|
2
|
Xia H, Zhang Z, Luo C, Wei K, Li X, Mu X, Duan M, Zhu C, Jin L, He X, Tang L, Hu L, Guan Y, Lam DCC, Yang J. MultiPrime: A reliable and efficient tool for targeted next-generation sequencing. IMETA 2023; 2:e143. [PMID: 38868227 PMCID: PMC10989836 DOI: 10.1002/imt2.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 06/14/2024]
Abstract
We present multiPrime, a novel tool that automatically designs minimal primer sets for targeted next-generation sequencing, tailored to specific microbiomes or genes. MultiPrime enhances primer coverage by designing primers with mismatch tolerance and ensures both high compatibility and specificity. We evaluated the performance of multiPrime using a data set of 43,016 sequences from eight viruses. Our results demonstrated that multiPrime outperformed conventional tools, and the primer set designed by multiPrime successfully amplified the target amplicons. Furthermore, we expanded the application of multiPrime to 30 types of viruses and validated the work efficacy of multiPrime-designed primers in 80 clinical specimens. The subsequent sequencing outcomes from these primers indicated a sensitivity of 94% and a specificity of 89%.
Collapse
Affiliation(s)
- Han Xia
- School of Automation Science and Engineering, Faculty of Electronic and Information EngineeringXi'an Jiaotong UniversityXi'anChina
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information EngineeringXi'an Jiaotong UniversityXi'anChina
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Zhe Zhang
- Department of Mechanical and Aerospace EngineeringThe Hong Kong University of Science and TechnologyHong KongChina
| | - Chen Luo
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Kangfei Wei
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Xuming Li
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Xiyu Mu
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Meilin Duan
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Chuanlong Zhu
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Luyi Jin
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Xiaoqing He
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Lingjie Tang
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Long Hu
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Yuanlin Guan
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - David C. C. Lam
- Department of Mechanical and Aerospace EngineeringThe Hong Kong University of Science and TechnologyHong KongChina
| | - Junbo Yang
- Department of Research and DevelopmentHugobiotechBeijingChina
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
3
|
Guo J, Starr D, Guo H. Classification and review of free PCR primer design software. Bioinformatics 2021; 36:5263-5268. [PMID: 33104196 DOI: 10.1093/bioinformatics/btaa910] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 01/31/2023] Open
Abstract
MOTIVATION Polymerase chain reaction (PCR) has been a revolutionary biomedical advancement. However, for PCR to be appropriately used, one must spend a significant amount of effort on PCR primer design. Carefully designed PCR primers not only increase sensitivity and specificity, but also decrease effort spent on experimental optimization. Computer software removes the human element by performing and automating the complex and rigorous calculations required in PCR primer design. Classification and review of the available software options and their capabilities should be a valuable resource for any PCR application. RESULTS This article focuses on currently available free PCR primer design software and their major functions (https://pcrprimerdesign.github.io/). The software are classified according to their PCR applications, such as Sanger sequencing, reverse transcription quantitative PCR, single nucleotide polymorphism detection, splicing variant detection, methylation detection, microsatellite detection, multiplex PCR and targeted next generation sequencing, and conserved/degenerate primers to clone orthologous genes from related species, new gene family members in the same species, or to detect a group of related pathogens. Each software is summarized to provide a technical review of their capabilities and utilities.
Collapse
Affiliation(s)
- Jingwen Guo
- Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - David Starr
- Department of Pathology, Saint Louis University, St. Louis, MO 63104, USA
| | - Huazhang Guo
- Department of Pathology, Saint Louis University, St. Louis, MO 63104, USA
| |
Collapse
|
4
|
Ren J, Chen L, Jin X, Zhang M, You FM, Wang J, Frenkel V, Yin X, Nevo E, Sun D, Luo MC, Peng J. Solar Radiation-Associated Adaptive SNP Genetic Differentiation in Wild Emmer Wheat, Triticum dicoccoides. FRONTIERS IN PLANT SCIENCE 2017; 8:258. [PMID: 28352272 PMCID: PMC5348526 DOI: 10.3389/fpls.2017.00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/10/2017] [Indexed: 05/06/2023]
Abstract
Whole-genome scans with large number of genetic markers provide the opportunity to investigate local adaptation in natural populations and identify candidate genes under positive selection. In the present study, adaptation genetic differentiation associated with solar radiation was investigated using 695 polymorphic SNP markers in wild emmer wheat originated in a micro-site at Yehudiyya, Israel. The test involved two solar radiation niches: (1) sun, in-between trees; and (2) shade, under tree canopy, separated apart by a distance of 2-4 m. Analysis of molecular variance showed a small (0.53%) but significant portion of overall variation between the sun and shade micro-niches, indicating a non-ignorable genetic differentiation between sun and shade habitats. Fifty SNP markers showed a medium (0.05 ≤ FST ≤ 0.15) or high genetic differentiation (FST > 0.15). A total of 21 outlier loci under positive selection were identified by using four different FST -outlier testing algorithms. The markers and genome locations under positive selection are consistent with the known patterns of selection. These results suggested that genetic differentiation between sun and shade habitats is substantial, radiation-associated, and therefore ecologically determined. Hence, the results of this study reflected effects of natural selection through solar radiation on EST-related SNP genetic diversity, resulting presumably in different adaptive complexes at a micro-scale divergence. The present work highlights the evolutionary theory and application significance of solar radiation-driven natural selection in wheat improvement.
Collapse
Affiliation(s)
- Jing Ren
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou UniversityDezhou, China
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of SciencesWuhan, China
| | - Xiaoli Jin
- Department of Agronomy and the Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang UniversityHangzhou, China
| | - Miaomiao Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of SciencesWuhan, China
| | - Frank M. You
- Cereal Research Centre, Agriculture and Agri-Food CanadaWinnipeg, MB, Canada
| | - Jirui Wang
- Department of Plant Sciences, University of CaliforniaDavis, CA, USA
| | - Vladimir Frenkel
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of HaifaHaifa, Israel
| | - Xuegui Yin
- Department of Biotechnology, College of Agriculture, Guangdong Ocean UniversityZhanjiang, China
| | - Eviatar Nevo
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of HaifaHaifa, Israel
| | - Dongfa Sun
- Department of Agronomy, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of CaliforniaDavis, CA, USA
| | - Junhua Peng
- Department of Biotechnology, College of Agriculture, Guangdong Ocean UniversityZhanjiang, China
- The State Key Lab of Crop Breeding Technology Innovation and Integration, China National Seed Group Co. Ltd.Wuhan, China
| |
Collapse
|
5
|
Kassa MT, You FM, Hiebert CW, Pozniak CJ, Fobert PR, Sharpe AG, Menzies JG, Humphreys DG, Rezac Harrison N, Fellers JP, McCallum BD, McCartney CA. Highly predictive SNP markers for efficient selection of the wheat leaf rust resistance gene Lr16. BMC PLANT BIOLOGY 2017; 17:45. [PMID: 28202046 PMCID: PMC5311853 DOI: 10.1186/s12870-017-0993-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/31/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Lr16 is a widely deployed leaf rust resistance gene in wheat (Triticum aestivum L.) that is highly effective against the North American Puccinia triticina population when pyramided with the gene Lr34. Lr16 is a seedling leaf rust resistance gene conditioning an incompatible interaction with a distinct necrotic ring surrounding the uredinium. Lr16 was previously mapped to the telomeric region of the short arm of wheat chromosome 2B. The goals of this study were to develop numerous single nucleotide polymorphism (SNP) markers for the Lr16 region and identify diagnostic gene-specific SNP marker assays for marker-assisted selection (MAS). RESULTS Forty-three SNP markers were developed and mapped on chromosome 2BS tightly linked with the resistance gene Lr16 across four mapping populations representing a total of 1528 gametes. Kompetitive Allele Specific PCR (KASP) assays were designed for all identified SNPs. Resistance gene analogs (RGAs) linked with the Lr16 locus were identified and RGA-based SNP markers were developed. The diagnostic potential of the SNPs co-segregating with Lr16 was evaluated in a diverse set of 133 cultivars and breeding lines. Six SNP markers were consistent with the Lr16 phenotype and are accurately predictive of Lr16 for all wheat lines/cultivars in the panel. CONCLUSIONS Lr16 was mapped relative to SNP markers in four populations. Six SNP markers exhibited high quality clustering in the KASP assay and are suitable for MAS of Lr16 in wheat breeding programs.
Collapse
Affiliation(s)
- Mulualem T. Kassa
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB R6M 1Y5 Canada
- National Research Council, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Frank M. You
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB R6M 1Y5 Canada
| | - Colin W. Hiebert
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB R6M 1Y5 Canada
| | - Curtis J. Pozniak
- University of Saskatchewan, Crop Development Centre, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Pierre R. Fobert
- National Research Council, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Andrew G. Sharpe
- National Research Council, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
- University of Saskatchewan, Global Institute for Food Security, 110 Gymnasium Place, Saskatoon, SK S7N 4J8 Canada
| | - James G. Menzies
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB R6M 1Y5 Canada
| | - D. Gavin Humphreys
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 1341 Baseline Road, Ottawa, ON K1A 0C5 Canada
| | | | - John P. Fellers
- USDA–ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506 USA
| | - Brent D. McCallum
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB R6M 1Y5 Canada
| | - Curt A. McCartney
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB R6M 1Y5 Canada
| |
Collapse
|
6
|
Abstract
Design of primers and probes is one of the most crucial factors affecting the success and quality of quantitative real-time PCR (qPCR) analyses, since an accurate and reliable quantification depends on using efficient primers and probes. Design of primers and probes should meet several criteria to find potential primers and probes for specific qPCR assays. The formation of primer-dimers and other non-specific products should be avoided or reduced. This factor is especially important when designing primers for SYBR(®) Green protocols but also in designing probes to ensure specificity of the developed qPCR protocol. To design primers and probes for qPCR, multiple software programs and websites are available being numerous of them free. These tools often consider the default requirements for primers and probes, although new research advances in primer and probe design should be progressively added to different algorithm programs. After a proper design, a precise validation of the primers and probes is necessary. Specific consideration should be taken into account when designing primers and probes for multiplex qPCR and reverse transcription qPCR (RT-qPCR). This chapter provides guidelines for the design of suitable primers and probes and their subsequent validation through the development of singlex qPCR, multiplex qPCR, and RT-qPCR protocols.
Collapse
|
7
|
Guo J, Zhang X, Hou Y, Cai J, Shen X, Zhou T, Xu H, Ohm HW, Wang H, Li A, Han F, Wang H, Kong L. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015. [PMID: 26220223 DOI: 10.1007/s00122-015-2586-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Wheat lines with shortened Th. ponticum chromatin carrying Fhb7 and molecular markers linked to Fhb7 will accelerate the transfer of Fhb7 to breeding lines and provide an important resource for future map-based cloning of this gene. Fusarium head blight is a major wheat disease globally. A major FHB resistance gene, designated as Fhb7, derived from Thinopyrum ponticum, was earlier transferred to common wheat, but was not used in wheat breeding due to linkage drag. The aims of this study were to (1) saturate this FHB resistance gene region; (2) develop and characterize secondary translocation lines with shortened Thinopyrum segments carrying Fhb7 using ph1b; (3) pyramid Fhb7 and Fhb1 by marker-assisted selection. Fhb7 was mapped in a 1.7 cM interval that was flanked by molecular markers XsdauK66 and Xcfa2240 with SSR, diversity arrays technology, EST-derived and conserved markers. KS24-2 carrying Fhb7 was analyzed with molecular markers and genomic in situ hybridization, confirming it was a 7DS.7el2L Robertsonian translocation. To reduce the Thinopyrum chromatin segments carrying Fhb7, a BC1F2 population (Chinese Spring ph1bph1b*2/KS24-2) was developed and genotyped with the markers linked to Fhb7. Two new translocation lines (SDAU1881 and SDAU1886) carrying Fhb7 on shortened alien segments (approximately 16.1 and 17.3% of the translocation chromosome, respectively) were developed. Furthermore, four wheat lines (SDAU1902, SDAU1903, SDAU1904, and SDAU1906) with the pyramided markers flanking Fhb1 and Fhb7 were developed and the FHB responses indicated lines with mean NDS ranging from 1.3 to 1.6 had successfully combined Fhb7 and Fhb1. Three new molecular markers associated with Fhb7 were identified and validated in 35 common wheat varieties. The translocation lines with shortened alien segments carrying Fhb7 (and Fhb1) and the markers closely linked to Fhb7 will be useful for improving wheat scab resistance.
Collapse
Affiliation(s)
- Jun Guo
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Xiuli Zhang
- College of Life Science, Northeast Forest University, Harbin, 150040, Jilin, China
| | - Yanlin Hou
- State Key Lab of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinjin Cai
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Xiaorong Shen
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907-1150, USA
| | - Tingting Zhou
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Huihui Xu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Herbert W Ohm
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907-1150, USA
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Anfei Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Fangpu Han
- State Key Lab of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Honggang Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
8
|
Salazar JK, Wang Y, Yu S, Wang H, Zhang W. Polymerase chain reaction-based serotyping of pathogenic bacteria in food. J Microbiol Methods 2015; 110:18-26. [DOI: 10.1016/j.mimet.2015.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 10/24/2022]
|
9
|
Ouyang S, Zhang D, Han J, Zhao X, Cui Y, Song W, Huo N, Liang Y, Xie J, Wang Z, Wu Q, Chen YX, Lu P, Zhang DY, Wang L, Sun H, Yang T, Keeble-Gagnere G, Appels R, Doležel J, Ling HQ, Luo M, Gu Y, Sun Q, Liu Z. Fine physical and genetic mapping of powdery mildew resistance gene MlIW172 originating from wild emmer (Triticum dicoccoides). PLoS One 2014; 9:e100160. [PMID: 24955773 PMCID: PMC4067302 DOI: 10.1371/journal.pone.0100160] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/22/2014] [Indexed: 11/18/2022] Open
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases in the world. In this study, a single dominant powdery mildew resistance gene MlIW172 was identified in the IW172 wild emmer accession and mapped to the distal region of chromosome arm 7AL (bin7AL-16-0.86-0.90) via molecular marker analysis. MlIW172 was closely linked with the RFLP probe Xpsr680-derived STS marker Xmag2185 and the EST markers BE405531 and BE637476. This suggested that MlIW172 might be allelic to the Pm1 locus or a new locus closely linked to Pm1. By screening genomic BAC library of durum wheat cv. Langdon and 7AL-specific BAC library of hexaploid wheat cv. Chinese Spring, and after analyzing genome scaffolds of Triticum urartu containing the marker sequences, additional markers were developed to construct a fine genetic linkage map on the MlIW172 locus region and to delineate the resistance gene within a 0.48 cM interval. Comparative genetics analyses using ESTs and RFLP probe sequences flanking the MlIW172 region against other grass species revealed a general co-linearity in this region with the orthologous genomic regions of rice chromosome 6, Brachypodium chromosome 1, and sorghum chromosome 10. However, orthologous resistance gene-like RGA sequences were only present in wheat and Brachypodium. The BAC contigs and sequence scaffolds that we have developed provide a framework for the physical mapping and map-based cloning of MlIW172.
Collapse
Affiliation(s)
- Shuhong Ouyang
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Dong Zhang
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Jun Han
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
- Agriculture University of Beijing, Beijing, China
| | - Xiaojie Zhao
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Yu Cui
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Wei Song
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
- Maize Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Naxin Huo
- USDA-ARS West Regional Research Center, Albany, California, United States of America
| | - Yong Liang
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Jingzhong Xie
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Zhenzhong Wang
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Qiuhong Wu
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Yong-Xing Chen
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Ping Lu
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - De-Yun Zhang
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Lili Wang
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Hua Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institutes of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tsomin Yang
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | | | - Rudi Appels
- Murdoch University, Perth, Western Australia, Australia
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institutes of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mingcheng Luo
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
| | - Yongqiang Gu
- USDA-ARS West Regional Research Center, Albany, California, United States of America
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Pauthenier C, Faulon JL. PrecisePrimer: an easy-to-use web server for designing PCR primers for DNA library cloning and DNA shuffling. Nucleic Acids Res 2014; 42:W205-9. [PMID: 24829457 PMCID: PMC4086104 DOI: 10.1093/nar/gku393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
PrecisePrimer is a web-based primer design software made to assist experimentalists in any repetitive primer design task such as preparing, cloning and shuffling DNA libraries. Unlike other popular primer design tools, it is conceived to generate primer libraries with popular PCR polymerase buffers proposed as pre-set options. PrecisePrimer is also meant to design primers in batches, such as for DNA libraries creation of DNA shuffling experiments and to have the simplest interface possible. It integrates the most up-to-date melting temperature algorithms validated with experimental data, and cross validated with other computational tools. We generated a library of primers for the extraction and cloning of 61 genes from yeast DNA genomic extract using default parameters. All primer pairs efficiently amplified their target without any optimization of the PCR conditions.
Collapse
Affiliation(s)
- Cyrille Pauthenier
- Institute of System and Synthetic Biology, Université d'Évry val d'Éssonnes, Bt. Geneavenir 6 Genopole Campus 1, 5 rue Henry Desbruères 91000, Évry, France
| | - Jean-Loup Faulon
- Institute of System and Synthetic Biology, Université d'Évry val d'Éssonnes, Bt. Geneavenir 6 Genopole Campus 1, 5 rue Henry Desbruères 91000, Évry, France
| |
Collapse
|
11
|
Ruiqi Z, Mingyi Z, Xiue W, Peidu C. Introduction of chromosome segment carrying the seed storage protein genes from chromosome 1V of Dasypyrum villosum showed positive effect on bread-making quality of common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:523-533. [PMID: 24408374 DOI: 10.1007/s00122-013-2244-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
Development of wheat- D. villosum 1V#4 translocation lines; physically mapping the Glu - V1 and Gli - V1 / Glu - V3 loci; and assess the effects of the introduced Glu - V1 and Gli - V1 / Glu - V3 on wheat bread-making quality. Glu-V1 and Gli-V1/Glu-V3 loci, located in the chromosome 1V of Dasypyrum villosum, were proved to have positive effects on grain quality. However, there are very few reports about the transfer of the D. villosum-derived seed storage protein genes into wheat background by chromosome manipulation. In the present study, a total of six CS-1V#4 introgression lines with different alien-fragment sizes were developed through ionizing radiation of the mature female gametes of CS--D. villosum 1V#4 disomic addition line and confirmed by cytogenetic analysis. Genomic in situ hybridization (GISH), chromosome C-banding, twelve 1V#4-specific EST-STS markers and seed storage protein analysis enabled the cytological physical mapping of Glu-V1 and Gli-V1/Glu-V3 loci to the region of FL 0.50-1.00 of 1V#4S of D. villosum. The Glu-V1 allele of D. villosum was Glu-V1a and its coded protein was V71 subunit. Quality analysis indicated that Glu-V1a together with Gli-V1/Glu-V3 loci showed a positive effect on protein content, Zeleny sedimentation value and the rheological characteristics of wheat flour dough. In addition, the positive effect could be maintained when specific Glu-V1 and Gli-V1/Glu-V3 loci were transferred to the wheat genetic background as in the case of T1V#4S-6BS · 6BL, T1V#4S · 1BL and T1V#4S · 1DS translocation lines. These results showed that the chromosome segment carrying the Glu-V1 and Gli-V1/Glu-V3 loci in 1V#4S of D. villosum had positive effect on bread-making quality, and the T1V#4S-6BS · 6BL and T1V#4S · 1BL translocation lines could be useful germplasms for bread wheat improvement. The developed 1V#4S-specific molecular markers could be used to rapidly identify and trace the alien chromatin of 1V#4S in wheat background.
Collapse
Affiliation(s)
- Zhang Ruiqi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | | | | | | |
Collapse
|
12
|
Riley MC, Aubrey W, Young M, Clare A. PD5: a general purpose library for primer design software. PLoS One 2013; 8:e80156. [PMID: 24278254 PMCID: PMC3836914 DOI: 10.1371/journal.pone.0080156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 09/30/2013] [Indexed: 02/02/2023] Open
Abstract
Background Complex PCR applications for large genome-scale projects require fast, reliable and often highly sophisticated primer design software applications. Presently, such applications use pipelining methods to utilise many third party applications and this involves file parsing, interfacing and data conversion, which is slow and prone to error. A fully integrated suite of software tools for primer design would considerably improve the development time, the processing speed, and the reliability of bespoke primer design software applications. Results The PD5 software library is an open-source collection of classes and utilities, providing a complete collection of software building blocks for primer design and analysis. It is written in object-oriented C++ with an emphasis on classes suitable for efficient and rapid development of bespoke primer design programs. The modular design of the software library simplifies the development of specific applications and also integration with existing third party software where necessary. We demonstrate several applications created using this software library that have already proved to be effective, but we view the project as a dynamic environment for building primer design software and it is open for future development by the bioinformatics community. Therefore, the PD5 software library is published under the terms of the GNU General Public License, which guarantee access to source-code and allow redistribution and modification. Conclusions The PD5 software library is downloadable from Google Code and the accompanying Wiki includes instructions and examples: http://code.google.com/p/primer-design
Collapse
Affiliation(s)
- Michael C. Riley
- Department of Computer Science, Aberystwyth University, Aberystwyth, United Kingdom
- * E-mail:
| | - Wayne Aubrey
- Department of Computer Science, Aberystwyth University, Aberystwyth, United Kingdom
| | - Michael Young
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Amanda Clare
- Department of Computer Science, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
13
|
Chapman MA, Hiscock SJ, Filatov DA. Genomic divergence during speciation driven by adaptation to altitude. Mol Biol Evol 2013; 30:2553-67. [PMID: 24077768 PMCID: PMC3840311 DOI: 10.1093/molbev/mst168] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Even though Darwin's "On the Origin of Species" implied selection being the main driver of species formation, the role of natural selection in speciation remains poorly understood. In particular, it remains unclear how selection at a few genes can lead to genomewide divergence and the formation of distinct species. We used a particularly attractive clear-cut case of recent plant ecological speciation to investigate the demography and genomic bases of species formation driven by adaptation to contrasting conditions. High-altitude Senecio aethnensis and low-altitude S. chrysanthemifolius live at the extremes of a mountain slope on Mt. Etna, Sicily, and form a hybrid zone at intermediate altitudes but remain morphologically distinct. Genetic differentiation of these species was analyzed at the DNA polymorphism and gene expression levels by high-throughput sequencing of transcriptomes from multiple individuals. Out of ≈ 18,000 genes analyzed, only a small number (90) displayed differential expression between the two species. These genes showed significantly elevated species differentiation (FST and Dxy), consistent with diversifying selection acting on these genes. Genomewide genetic differentiation of the species is surprisingly low (FST = 0.19), while ≈ 200 genes showed significantly higher (false discovery rate < 1%; mean outlier FST > 0.6) interspecific differentiation and evidence for local adaptation. Diversifying selection at only a handful of loci may be enough for the formation and maintenance of taxonomically well-defined species, despite ongoing gene flow. This provides an explanation of why many closely related species (in plants, in particular) remain phenotypically and ecologically distinct despite ongoing hybridization, a question that has long puzzled naturalists and geneticists alike.
Collapse
Affiliation(s)
- Mark A Chapman
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
14
|
Ren J, Chen L, Sun D, You FM, Wang J, Peng Y, Nevo E, Beiles A, Sun D, Luo MC, Peng J. SNP-revealed genetic diversity in wild emmer wheat correlates with ecological factors. BMC Evol Biol 2013; 13:169. [PMID: 23937410 PMCID: PMC3751623 DOI: 10.1186/1471-2148-13-169] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 08/02/2013] [Indexed: 11/10/2022] Open
Abstract
Background Patterns of genetic diversity between and within natural plant populations and their driving forces are of great interest in evolutionary biology. However, few studies have been performed on the genetic structure and population divergence in wild emmer wheat using a large number of EST-related single nucleotide polymorphism (SNP) markers. Results In the present study, twenty-five natural wild emmer wheat populations representing a wide range of ecological conditions in Israel and Turkey were used. Genetic diversity and genetic structure were investigated using over 1,000 SNP markers. A moderate level of genetic diversity was detected due to the biallelic property of SNP markers. Clustering based on Bayesian model showed that grouping pattern is related to the geographical distribution of the wild emmer wheat. However, genetic differentiation between populations was not necessarily dependent on the geographical distances. A total of 33 outlier loci under positive selection were identified using a FST-outlier method. Significant correlations between loci and ecogeographical factors were observed. Conclusions Natural selection appears to play a major role in generating adaptive structures in wild emmer wheat. SNP markers are appropriate for detecting selectively-channeled adaptive genetic diversity in natural populations of wild emmer wheat. This adaptive genetic diversity is significantly associated with ecological factors.
Collapse
Affiliation(s)
- Jing Ren
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Terracciano I, Maccaferri M, Bassi F, Mantovani P, Sanguineti MC, Salvi S, Simková H, Doležel J, Massi A, Ammar K, Kolmer J, Tuberosa R. Development of COS-SNP and HRM markers for high-throughput and reliable haplotype-based detection of Lr14a in durum wheat (Triticum durum Desf.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1077-101. [PMID: 23292293 DOI: 10.1007/s00122-012-2038-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/17/2012] [Indexed: 05/09/2023]
Abstract
Leaf rust (Puccinia triticina Eriks. & Henn.) is a major disease affecting durum wheat production. The Lr14a-resistant gene present in the durum wheat cv. Creso and its derivative cv. Colosseo is one of the best characterized leaf-rust resistance sources deployed in durum wheat breeding. Lr14a has been mapped close to the simple sequence repeat markers gwm146, gwm344 and wmc10 in the distal portion of the chromosome arm 7BL, a gene-dense region. The objectives of this study were: (1) to enrich the Lr14a region with single nucleotide polymorphisms (SNPs) and high-resolution melting (HRM)-based markers developed from conserved ortholog set (COS) genes and from sequenced Diversity Array Technology (DArT(®)) markers; (2) to further investigate the gene content and colinearity of this region with the Brachypodium and rice genomes. Ten new COS-SNP and five HRM markers were mapped within an 8.0 cM interval spanning Lr14a. Two HRM markers pinpointed the locus in an interval of <1.0 cM and eight COS-SNPs were mapped 2.1-4.1 cM distal to Lr14a. Each marker was tested for its capacity to predict the state of Lr14a alleles (in particular, Lr14-Creso associated to resistance) in a panel of durum wheat elite germplasm including 164 accessions. Two of the most informative markers were converted into KASPar(®) markers. Single assay markers ubw14 and wPt-4038-HRM designed for agarose gel electrophoresis/KASPar(®) assays and high-resolution melting analysis, respectively, as well as the double-marker combinations ubw14/ubw18, ubw14/ubw35 and wPt-4038-HRM-ubw35 will be useful for germplasm haplotyping and for molecular-assisted breeding.
Collapse
Affiliation(s)
- Irma Terracciano
- Department of Agricultural Sciences (DipSA), University of Bologna, Viale Fanin 44, Bologna 40127, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhang X, Han D, Zeng Q, Duan Y, Yuan F, Shi J, Wang Q, Wu J, Huang L, Kang Z. Fine mapping of wheat stripe rust resistance gene Yr26 based on collinearity of wheat with Brachypodium distachyon and rice. PLoS One 2013; 8:e57885. [PMID: 23526955 PMCID: PMC3589488 DOI: 10.1371/journal.pone.0057885] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/27/2013] [Indexed: 11/18/2022] Open
Abstract
The Yr26 gene, conferring resistance to all currently important races of Puccinia striiformis f. sp. tritici (Pst) in China, was previously mapped to wheat chromosome deletion bin C-1BL-6-0.32 with low-density markers. In this study, collinearity of wheat to Brachypodium distachyon and rice was used to develop markers to saturate the chromosomal region containing the Yr26 locus, and a total of 2,341 F2 plants and 551 F2∶3 progenies derived from Avocet S×92R137 were used to develop a fine map of Yr26. Wheat expressed sequence tags (ESTs) located in deletion bin C-1BL-6-0.32 were used to develop sequence tagged site (STS) markers. The EST-STS markers flanking Yr26 were used to identify collinear regions of the rice and B. distachyon genomes. Wheat ESTs with significant similarities in the two collinear regions were selected to develop conserved markers for fine mapping of Yr26. Thirty-one markers were mapped to the Yr26 region, and six of them cosegregated with the resistance gene. Marker orders were highly conserved between rice and B. distachyon, but some rearrangements were observed between rice and wheat. Two flanking markers (CON-4 and CON-12) further narrowed the genomic region containing Yr26 to a 1.92 Mb region in B. distachyon chromosome 3 and a 1.17 Mb region in rice chromosome 10, and two putative resistance gene analogs were identified in the collinear region of B. distachyon. The markers developed in this study provide a potential target site for further map-based cloning of Yr26 and should be useful in marker assisted selection for pyramiding the gene with other resistance genes.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yinghui Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Fengping Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jingdong Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
- * E-mail:
| |
Collapse
|
17
|
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3--new capabilities and interfaces. Nucleic Acids Res 2012; 40:e115. [PMID: 22730293 PMCID: PMC3424584 DOI: 10.1093/nar/gks596] [Citation(s) in RCA: 5869] [Impact Index Per Article: 489.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Polymerase chain reaction (PCR) is a basic molecular biology technique with a multiplicity of uses, including deoxyribonucleic acid cloning and sequencing, functional analysis of genes, diagnosis of diseases, genotyping and discovery of genetic variants. Reliable primer design is crucial for successful PCR, and for over a decade, the open-source Primer3 software has been widely used for primer design, often in high-throughput genomics applications. It has also been incorporated into numerous publicly available software packages and web services. During this period, we have greatly expanded Primer3’s functionality. In this article, we describe Primer3’s current capabilities, emphasizing recent improvements. The most notable enhancements incorporate more accurate thermodynamic models in the primer design process, both to improve melting temperature prediction and to reduce the likelihood that primers will form hairpins or dimers. Additional enhancements include more precise control of primer placement—a change motivated partly by opportunities to use whole-genome sequences to improve primer specificity. We also added features to increase ease of use, including the ability to save and re-use parameter settings and the ability to require that individual primers not be used in more than one primer pair. We have made the core code more modular and provided cleaner programming interfaces to further ease integration with other software. These improvements position Primer3 for continued use with genome-scale data in the decade ahead.
Collapse
Affiliation(s)
- Andreas Untergasser
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Xue F, Ji W, Wang C, Zhang H, Yang B. High-density mapping and marker development for the powdery mildew resistance gene PmAS846 derived from wild emmer wheat (Triticum turgidum var. dicoccoides). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1549-1560. [PMID: 22350087 DOI: 10.1007/s00122-012-1809-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/28/2012] [Indexed: 05/31/2023]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is an important foliar disease of wheat worldwide. The dominant powdery mildew resistance gene PmAS846 was transferred to the hexaploid wheat lines N9134 and N9738 from wild emmer wheat (Triticum dicoccoides) in 1995, and it is still one of the most effective resistance genes in China. A high resolution genetic map for PmAS846 locus was constructed using two F(2) populations and corresponding F(2:3) families developed from the crosses of N9134/Shaanyou 225 and N9738/Huixianhong. Synteny between wheat and Brachypodium distachyon and rice was used to develop closely linked molecular markers to reduce the genetic interval around PmAS846. Twenty-six expressed sequence tag-derived markers were mapped to the PmAS846 locus. Five markers co-segregated with PmAS846 in the F(2) population of N9134/Shaanyou 225. PmAS846 was physically located to wheat chromosome 5BL bin 0.75-0.76 within a gene-rich region. The markers order is conserved between wheat and Brachypodium distachyon, but rearrangements are present in rice. Two markers, BJ261635 and CJ840011 flanked PmAS846 and narrowed PmAS846 to a region that is collinear with 197 and 112 kb genomic regions on Brachypodium chromosome 4 and rice chromosome 9, respectively. The genes located on the corresponding homologous regions in Brachypodium, rice and barley could be considered for further marker saturation and identification of potential candidate genes for PmAS846. The markers co-segregating with PmAS846 provide a potential target site for positional cloning of PmAS846, and can be used for marker-assisted selection of this gene.
Collapse
Affiliation(s)
- Fei Xue
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | |
Collapse
|
19
|
Paux E, Sourdille P, Mackay I, Feuillet C. Sequence-based marker development in wheat: advances and applications to breeding. Biotechnol Adv 2011; 30:1071-88. [PMID: 21989506 DOI: 10.1016/j.biotechadv.2011.09.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 08/24/2011] [Accepted: 09/25/2011] [Indexed: 01/04/2023]
Abstract
In the past two decades, the wheat community has made remarkable progress in developing molecular resources for breeding. A wide variety of molecular tools has been established to accelerate genetic and physical mapping for facilitating the efficient identification of molecular markers linked to genes and QTL of agronomic interest. Already, wheat breeders are benefiting from a wide range of techniques to follow the introgression of the most favorable alleles in elite material and develop improved varieties. Breeders soon will be able to take advantage of new technological developments based on Next Generation Sequencing. In this paper, we review the molecular toolbox available to wheat scientists and breeders for performing fundamental genomic studies and breeding. Special emphasis is given on the production and detection of single nucleotide polymorphisms (SNPs) that should enable a step change in saturating the wheat genome for more efficient genetic studies and for the development of new selection methods. The perspectives offered by the access to an ordered full genome sequence for further marker development and enhanced precision breeding is also discussed. Finally, we discuss the advantages and limitations of marker-assisted selection for supporting wheat improvement.
Collapse
Affiliation(s)
- Etienne Paux
- INRA-UBP 1095, Genetics Diversity and Ecophysiology of Cereals, 234 Avenue du Brézet, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
20
|
Qin B, Cao A, Wang H, Chen T, You FM, Liu Y, Ji J, Liu D, Chen P, Wang XE. Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:207-18. [PMID: 21468676 DOI: 10.1007/s00122-011-1577-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/15/2011] [Indexed: 05/07/2023]
Abstract
The genome sequences of rice (Oryza sativa L.) and Brachypodium distachyon and the comprehensive Triticeae EST (Expressed Sequence Tag) resources provide invaluable information for comparative genomics analysis. The powdery mildew resistance gene, Pm6, which was introgressed into common wheat from Triticum timopheevii, was previously mapped to the wheat chromosome bin of 2BL [fraction length (FL) 0.50-1.00] with limited DNA markers. In this study, we saturated the Pm6 locus in wheat using the collinearity-based markers by extensively exploiting these genomic resources. All wheat ESTs located in the bin 2BL FL 0.50-1.00 and their corresponding orthologous genes on rice chromosome 4 were firstly used to develop STS (Sequence Tagged Site) markers. Those identified markers that flanked the Pm6 locus were then used to identify the collinear regions in the genomes of rice and Brachypodium. Triticeae ESTs with orthologous genes in these collinear regions were further used to develop new conserved markers for the fine mapping of Pm6. Using two F(2) populations derived from crosses of IGVI-465 × Prins and IGVI-466 × Prins, we mapped a total of 29 markers to the Pm6 locus. Among them, 14 markers were co-segregated with Pm6 in the IGVI-466/Prins population. Comparative genome analysis showed that the collinear region of the 29 linked markers covers a ~5.6-Mb region in chromosome 5L of Brachypodium and a ~6.0-Mb region in chromosome 4L of rice. The marker order is conserved between rice and Brachypodium, but re-arrangements are present in wheat. Comparative mapping in the two populations showed that two conserved markers (CINAU123 and CINAU127) flanked the Pm6 locus, and an LRR-receptor-like protein kinase cluster was identified in the collinear regions of Brachypodium and rice. This putative resistance gene cluster provides a potential target site for further fine mapping and cloning of Pm6. Moreover, the newly developed conserved markers closely linked to Pm6 can be used for the marker-assisted selection (MAS) of Pm6 in wheat breeding programs.
Collapse
Affiliation(s)
- Bi Qin
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Alo F, Furman BJ, Akhunov E, Dvorak J, Gepts P. Leveraging genomic resources of model species for the assessment of diversity and phylogeny in wild and domesticated lentil. ACTA ACUST UNITED AC 2011; 102:315-29. [PMID: 21454287 DOI: 10.1093/jhered/esr015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Advances in comparative genomics have provided significant opportunities for analysis of genetic diversity in species with limited genomic resources, such as the genus Lens. Medicago truncatula expressed sequence tags (ESTs) were aligned with the Arabidopsis thaliana genome sequence to identify conserved exon sequences and splice sites in the ESTs. Conserved primers (CPs) based on M. truncatula EST sequences flanking one or more introns were then designed. A total of 22% of the CPs produced polymerase chain reaction amplicons in lentil and were used to sequence amplicons in 175 wild and 133 domesticated lentil accessions. Analysis of the sequences confirmed that L. nigricans and L. ervoides are well-defined species at the DNA sequence level. Lens culinaris subsp. odemensis, L. culinaris subsp. tomentosus, and L. lamottei may constitute a single taxon pending verification with crossability experiments. Lens culinaris subsp. orientalis is the progenitor of domesticated lentil, L. culinaris subsp. culinaris (as proposed before), but a more specific area of origin can be suggested in southern Turkey. We were also able to detect the divergence, following domestication, of the domesticated gene pool into overlapping large-seeded (megasperma) and small-seeded (microsperma) groups. Lentil domestication led to a loss of genetic diversity of approximately 40%. The approach followed in this research has allowed us to rapidly exploit sequence information from model plant species for the study of genetic diversity of a crop such as lentil with limited genomic resources.
Collapse
Affiliation(s)
- Fida Alo
- International Center for Agriculture in the Dry Areas, Aleppo, Syria
| | | | | | | | | |
Collapse
|
22
|
Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Conley EJ, Crossman CC, Deal KR, Dubcovsky J, Gill BS, Gu YQ, Hadam J, Heo H, Huo N, Lazo GR, Luo MC, Ma YQ, Matthews DE, McGuire PE, Morrell PL, Qualset CO, Renfro J, Tabanao D, Talbert LE, Tian C, Toleno DM, Warburton ML, You FM, Zhang W, Dvorak J. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genomics 2010; 11:702. [PMID: 21156062 PMCID: PMC3022916 DOI: 10.1186/1471-2164-11-702] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 12/14/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND A genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP) markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (Triticum aestivum, genomes AABBDD) and wild tetraploid wheat (Triticum turgidum ssp. dicoccoides, genomes AABB) from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat. RESULTS Nucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, T. urartu, Aegilops speltoides, and Ae. tauschii, respectively. A public database containing genome-specific primers, SNPs, and other information was constructed. A total of 987 genes with nucleotide diversity estimated in one or more of the wheat genomes was placed on an Ae. tauschii genetic map, and the map was superimposed on wheat deletion-bin maps. The agreement between the maps was assessed. CONCLUSIONS In a young polyploid, exemplified by T. aestivum, ancestral species are the primary source of genetic diversity. Low effective recombination due to self-pollination and a genetic mechanism precluding homoeologous chromosome pairing during polyploid meiosis can lead to the loss of diversity from large chromosomal regions. The net effect of these factors in T. aestivum is large variation in diversity among genomes and chromosomes, which impacts the development of SNP markers and their practical utility. Accumulation of new mutations in older polyploid species, such as wild emmer, results in increased diversity and its more uniform distribution across the genome.
Collapse
Affiliation(s)
- Eduard D Akhunov
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Department of Plant Pathology, KSU, Manhattan, KS 66506, USA
| | - Alina R Akhunova
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Department of Plant Pathology, KSU, Manhattan, KS 66506, USA
| | - Olin D Anderson
- Genomics and Gene Discovery Unit, USDA/ARS Western Regional Research Center, Albany, CA 94710, USA
| | - James A Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Nancy Blake
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Michael T Clegg
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Devin Coleman-Derr
- Genomics and Gene Discovery Unit, USDA/ARS Western Regional Research Center, Albany, CA 94710, USA
| | - Emily J Conley
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Curt C Crossman
- Genomics and Gene Discovery Unit, USDA/ARS Western Regional Research Center, Albany, CA 94710, USA
| | - Karin R Deal
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan KS 66506, USA
| | - Yong Q Gu
- Genomics and Gene Discovery Unit, USDA/ARS Western Regional Research Center, Albany, CA 94710, USA
| | - Jakub Hadam
- Department of Plant Pathology, Kansas State University, Manhattan KS 66506, USA
| | - Hwayoung Heo
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Naxin Huo
- Genomics and Gene Discovery Unit, USDA/ARS Western Regional Research Center, Albany, CA 94710, USA
| | - Gerard R Lazo
- Genomics and Gene Discovery Unit, USDA/ARS Western Regional Research Center, Albany, CA 94710, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Yaqin Q Ma
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | | | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Calvin O Qualset
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - James Renfro
- Genomics and Gene Discovery Unit, USDA/ARS Western Regional Research Center, Albany, CA 94710, USA
| | - Dindo Tabanao
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
- Philippine Rice Research Institute, Maligaya, Nueva Ecija, Philippines
| | - Luther E Talbert
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Chao Tian
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Donna M Toleno
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Marilyn L Warburton
- The International Maize and Wheat Improvement Center (CIMMYT), 06600 Mexico, D.F., Mexico
- Corn Host Plant Research Resistance Unit, USDA/ARS MSU MS 39762, USA
| | - Frank M You
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Wenjun Zhang
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
23
|
Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Conley EJ, Crossman CC, Deal KR, Dubcovsky J, Gill BS, Gu YQ, Hadam J, Heo H, Huo N, Lazo GR, Luo MC, Ma YQ, Matthews DE, McGuire PE, Morrell PL, Qualset CO, Renfro J, Tabanao D, Talbert LE, Tian C, Toleno DM, Warburton ML, You FM, Zhang W, Dvorak J. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genomics 2010. [PMID: 21156062 DOI: 10.1186/1471‐2164‐11‐702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP) markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (Triticum aestivum, genomes AABBDD) and wild tetraploid wheat (Triticum turgidum ssp. dicoccoides, genomes AABB) from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat. RESULTS Nucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, T. urartu, Aegilops speltoides, and Ae. tauschii, respectively. A public database containing genome-specific primers, SNPs, and other information was constructed. A total of 987 genes with nucleotide diversity estimated in one or more of the wheat genomes was placed on an Ae. tauschii genetic map, and the map was superimposed on wheat deletion-bin maps. The agreement between the maps was assessed. CONCLUSIONS In a young polyploid, exemplified by T. aestivum, ancestral species are the primary source of genetic diversity. Low effective recombination due to self-pollination and a genetic mechanism precluding homoeologous chromosome pairing during polyploid meiosis can lead to the loss of diversity from large chromosomal regions. The net effect of these factors in T. aestivum is large variation in diversity among genomes and chromosomes, which impacts the development of SNP markers and their practical utility. Accumulation of new mutations in older polyploid species, such as wild emmer, results in increased diversity and its more uniform distribution across the genome.
Collapse
Affiliation(s)
- Eduard D Akhunov
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|