Development of high-performance two-dimensional gel electrophoresis for human hair shaft proteome.
PLoS One 2019;
14:e0213947. [PMID:
30889197 PMCID:
PMC6424392 DOI:
10.1371/journal.pone.0213947]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/04/2019] [Indexed: 11/19/2022] Open
Abstract
The primary components of human hair shaft—keratin and keratin-associated proteins (KAPs), together with their cross-linked networks—are the underlying reason for its rigid structure. It is therefore requisite to overcome the obstacle of hair insolubility and establish a reliable protocol for the proteome analysis of this accessible specimen. The present study employed an alkaline-based method for the efficient isolation of hair proteins and subsequently examined them using gel-based proteomics. The introduction of two proteomic protocols, namely the conventional and modified protocol, have resulted in the detection of more than 400 protein spots on the two-dimensional gel electrophoresis (2DE). When compared, the modified protocol is deemed to improve overall reproducibility, whilst offering a quick overview of the total protein distribution of hair. The development of this high-performance protocol is hoped to provide a new approach for hair analysis, which could possibly lead to the discovery of biomarkers for hair in health and diseases in the future.
Collapse