1
|
Yang YX, Kang Y, Ge XY, Yuan SL, Li XY, Liu HY. A Mysterious Asian Firefly Genus, Oculogryphus Jeng, Engel & Yang (Coleoptera, Lampyridae): The First Complete Mitochondrial Genome and Its Phylogenetic Implications. INSECTS 2024; 15:464. [PMID: 39057197 PMCID: PMC11277304 DOI: 10.3390/insects15070464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024]
Abstract
The firefly genus Oculogryphus Jeng, Engel & Yang, 2007 is a rare-species group endemic to Asia. Since its establishment, its position has been controversial but never rigorously tested. To address this perplexing issue, we are the first to present the complete mitochondrial sequence of Oculogryphus, using the material of O. chenghoiyanae Yiu & Jeng, 2018 determined through a comprehensive morphological identification. Our analyses demonstrate that its mitogenome exhibits similar characteristics to that of Stenocladius, including a rearranged gene order between trnC and trnW, and a long intergenic spacer (702 bp) between the two rearranged genes, within which six remnants (29 bp) of trnW were identified. Further, we incorporated this sequence into phylogenetic analyses of Lampyridae based on different molecular markers and datasets using ML and BI analyses. The results consistently place Oculogryphus within the same clade as Stenocladius in all topologies, and the gene rearrangement is a synapomorphy for this clade. It suggests that Oculogryphus should be classified together with Stenocladius in the subfamily Ototretinae at the moment. This study provides molecular evidence confirming the close relationship between Oculogryphus and Stenocladius and discovers a new phylogenetic marker helpful in clarifying the monophyly of Ototretinae, which also sheds a new light on firefly evolution.
Collapse
Affiliation(s)
- Yu-Xia Yang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (Y.-X.Y.); (Y.K.); (X.-Y.G.); (S.-L.Y.)
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Ya Kang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (Y.-X.Y.); (Y.K.); (X.-Y.G.); (S.-L.Y.)
| | - Xue-Ying Ge
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (Y.-X.Y.); (Y.K.); (X.-Y.G.); (S.-L.Y.)
| | - Shuai-Long Yuan
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (Y.-X.Y.); (Y.K.); (X.-Y.G.); (S.-L.Y.)
| | - Xue-Yan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hao-Yu Liu
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (Y.-X.Y.); (Y.K.); (X.-Y.G.); (S.-L.Y.)
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| |
Collapse
|
2
|
Liu D, Basso A, Babbucci M, Patarnello T, Negrisolo E. Macrostructural Evolution of the Mitogenome of Butterflies (Lepidoptera, Papilionoidea). INSECTS 2022; 13:insects13040358. [PMID: 35447800 PMCID: PMC9031222 DOI: 10.3390/insects13040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Papilionoidea is a superfamily of Lepidoptera encompassing about 19,000 species. In the present work, we study the evolution of the structure of the mitogenome of these lepidopterans. The mechanisms generating the eight arrangements known for Papilionoidea were investigated analysing the movements of different mitochondrial genes. Five newly sequenced/assembled mitogenomes were included in our analysis involving more than 600 genomes. We provide new findings that help to understand the evolution of the gene orders MIQGO, IMQGO, 2S1GO, ES1GO and S1NGO in different butterflies. We demonstrate that the evolution of the 2S1GO in Lycaenidae followed a complicated pathway with multiple events of duplication and loss of trnS1 and changes in anticodon. We describe two new gene orders 2FFGO and 4QGO for Ampittia subvittatus (Hesperiidae) and Bhutanitis thaidina (Papilionidae). Abstract The mitogenome of the species belonging to the Papilionodea (Lepidoptera) is a double stranded circular molecule containing the 37 genes shared by Metazoa. Eight mitochondrial gene orders are known in the Papilionoidea. MIQGO is the plesiomorphic gene order for this superfamily, while other mitochondrial arrangements have a very limited distribution. 2S1GO gene order is an exception and is present in several Lycaenidae and one species of Hesperiidae. We studied the macrostructural changes generating the gene orders of butterflies by analysing a large data set (611 taxa) containing 5 new mitochondrial sequences/assemblies and 87 de novo annotated mitogenomes. Our analysis supports a possible origin of the intergenic spacer trnQ-nad2, characterising MIQGO, from trnM. We showed that the homoplasious gene order IMQGO, shared by butterflies, species of ants, beetles and aphids, evolved through different transformational pathways. We identify a complicated evolutionary scenario for 2S1GO in Lycaenidae, characterised by multiple events of duplication/loss and change in anticodon of trnS1. We show that the gene orders ES1GO and S1NGO originated through a tandem duplication random loss mechanism. We describe two novel gene orders. Ampittia subvittatus (Hesperiidae) exhibits the gene order 2FFGO, characterised by two copies of trnF, one located in the canonical position and a second placed in the opposite strand between trnR and trnN. Bhutanitis thaidina (Papilionidae) exhibits the gene order 4QGO, characterised by the quadruplication of trnQ.
Collapse
Affiliation(s)
- Di Liu
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (D.L.); (M.B.); (T.P.)
| | - Andrea Basso
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy;
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (D.L.); (M.B.); (T.P.)
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (D.L.); (M.B.); (T.P.)
| | - Enrico Negrisolo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (D.L.); (M.B.); (T.P.)
- Correspondence:
| |
Collapse
|
3
|
Ge XY, Liu T, Kang Y, Liu HY, Yang YX. First complete mitochondrial genomes of Ototretinae (Coleoptera, Lampyridae) with evolutionary insights into the gene rearrangement. Genomics 2022; 114:110305. [DOI: 10.1016/j.ygeno.2022.110305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 11/26/2022]
|
4
|
Mitochondrial Genomic Landscape: A Portrait of the Mitochondrial Genome 40 Years after the First Complete Sequence. Life (Basel) 2021; 11:life11070663. [PMID: 34357035 PMCID: PMC8303319 DOI: 10.3390/life11070663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022] Open
Abstract
Notwithstanding the initial claims of general conservation, mitochondrial genomes are a largely heterogeneous set of organellar chromosomes which displays a bewildering diversity in terms of structure, architecture, gene content, and functionality. The mitochondrial genome is typically described as a single chromosome, yet many examples of multipartite genomes have been found (for example, among sponges and diplonemeans); the mitochondrial genome is typically depicted as circular, yet many linear genomes are known (for example, among jellyfish, alveolates, and apicomplexans); the chromosome is normally said to be “small”, yet there is a huge variation between the smallest and the largest known genomes (found, for example, in ctenophores and vascular plants, respectively); even the gene content is highly unconserved, ranging from the 13 oxidative phosphorylation-related enzymatic subunits encoded by animal mitochondria to the wider set of mitochondrial genes found in jakobids. In the present paper, we compile and describe a large database of 27,873 mitochondrial genomes currently available in GenBank, encompassing the whole eukaryotic domain. We discuss the major features of mitochondrial molecular diversity, with special reference to nucleotide composition and compositional biases; moreover, the database is made publicly available for future analyses on the MoZoo Lab GitHub page.
Collapse
|
5
|
Sun Y, Daffe G, Zhang Y, Pons J, Qiu JW, Kupriyanova EK. Another blow to the conserved gene order in Annelida: Evidence from mitochondrial genomes of the calcareous tubeworm genus Hydroides. Mol Phylogenet Evol 2021; 160:107124. [PMID: 33610649 DOI: 10.1016/j.ympev.2021.107124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/15/2021] [Accepted: 02/11/2021] [Indexed: 01/07/2023]
Abstract
Mitochondrial genomes are frequently applied in phylogenetic and evolutionary studies across metazoans, yet they are still poorly represented in many groups of invertebrates, including annelids. Here, we report ten mitochondrial genomes from the annelid genus Hydroides (Serpulidae) and compare them with all available annelid mitogenomes. We detected all 13 protein coding genes in Hydroides spp., including the atp8 which was reported as a missing gene in the Christmas Tree worm Spirobranchus giganteus, another annelid of the family Serpulidae. All available mitochondrial genomes of Hydroides show a highly positive GC skew combined with a highly negative AT skew - a feature consistent with that found only in the mitogenome of S. giganteus. In addition, amino acid sequences of the 13 protein-coding genes showed a high genetic distance between the Hydroides clade and S. giganteus, suggesting a fast rate of mitochondrial sequence evolution in Serpulidae. The gene order of protein-coding genes within Hydroides exhibited extensive rearrangements at species level, and were different from the arrangement patterns of other annelids, including S. giganteus. Phylogenetic analyses based on protein-coding genes recovered Hydroides as a monophyletic group sister to Spirobranchus with a long branch, and sister to the fan worm Sabellidae. Yet the Serpulidae + Sabellidae clade was unexpectedly grouped with Sipuncula, suggesting that mitochondrial genomes alone are insufficient to resolve the phylogenetic position of Serpulidae within Annelida due to its high base substitution rates. Overall, our study revealed a high variability in the gene order arrangement of mitochondrial genomes within Serpulidae, provided evidence to question the conserved pattern of the mitochondrial gene order in Annelida and called for caution when applying mitochondrial genes to infer their phylogenetic relationships.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, 224 Waterloo Road, Hong Kong; Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW 2010, Australia
| | - Guillemine Daffe
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW 2010, Australia; Universite de Bordeaux, CNRS, INRAE, La Rochelle Universite, UMS 2567 POREA, 33615 Pessac, France
| | - Yanjie Zhang
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, 224 Waterloo Road, Hong Kong
| | - Joan Pons
- Diversidad Animal y Microbiana, Instituto Mediterráneo de Estudios Avanzados IMEDEA (CSIC-UIB), Esporles, Balearic Islands, Spain
| | - Jian-Wen Qiu
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, 224 Waterloo Road, Hong Kong
| | - Elena K Kupriyanova
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW 2010, Australia; Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
6
|
Papetti C, Babbucci M, Dettai A, Basso A, Lucassen M, Harms L, Bonillo C, Heindler FM, Patarnello T, Negrisolo E. Not Frozen in the Ice: Large and Dynamic Rearrangements in the Mitochondrial Genomes of the Antarctic Fish. Genome Biol Evol 2021; 13:6133229. [PMID: 33570582 PMCID: PMC7936035 DOI: 10.1093/gbe/evab017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 12/21/2022] Open
Abstract
The vertebrate mitochondrial genomes generally present a typical gene order. Exceptions are uncommon and important to study the genetic mechanisms of gene order rearrangements and their consequences on phylogenetic output and mitochondrial function. Antarctic notothenioid fish carry some peculiar rearrangements of the mitochondrial gene order. In this first systematic study of 28 species, we analyzed known and undescribed mitochondrial genome rearrangements for a total of eight different gene orders within the notothenioid fish. Our reconstructions suggest that transpositions, duplications, and inversion of multiple genes are the most likely mechanisms of rearrangement in notothenioid mitochondrial genomes. In Trematominae, we documented an extremely rare inversion of a large genomic segment of 5,300 bp that partially affected the gene compositional bias but not the phylogenetic output. The genomic region delimited by nad5 and trnF, close to the area of the Control Region, was identified as the hot spot of variation in Antarctic fish mitochondrial genomes. Analyzing the sequence of several intergenic spacers and mapping the arrangements on a newly generated phylogeny showed that the entire history of the Antarctic notothenioids is characterized by multiple, relatively rapid, events of disruption of the gene order. We hypothesized that a pre-existing genomic flexibility of the ancestor of the Antarctic notothenioids may have generated a precondition for gene order rearrangement, and the pressure of purifying selection could have worked for a rapid restoration of the mitochondrial functionality and compactness after each event of rearrangement.
Collapse
Affiliation(s)
- Chiara Papetti
- Department of Biology, University of Padova, Padova 35121,Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Roma 00196, Italy
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro 35020, Italy
| | - Agnes Dettai
- Institut de Systematique, Evolution, Biodiversité (ISYEB) Muséum national d'Histoire naturelle-CNRS-Sorbonne Université-EPHE, MNHN, Paris 75005, France
| | - Andrea Basso
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro 35020, Italy
| | - Magnus Lucassen
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, Bremerhaven 27570, Germany
| | - Lars Harms
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, Bremerhaven 27570, Germany.,Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB), Ammerlsity of Oldenburg (HIFMOldenburg 26129, Germany
| | - Celine Bonillo
- Service de Systématique Moléculaire, UMS2700 Acquisition et Analyse de Données (2AD), MNHN, Paris 75005, France
| | | | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro 35020, Italy
| | - Enrico Negrisolo
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro 35020, Italy.,CRIBI Interdepartmental Research Centre for Innovative Biotechnologies, University of Padova, viale G. Colombo 3, Padova 35121, Italy
| |
Collapse
|
7
|
Wang G, Lin J, Shi Y, Chang X, Wang Y, Guo L, Wang W, Dou M, Deng Y, Ming R, Zhang J. Mitochondrial genome in Hypsizygus marmoreus and its evolution in Dikarya. BMC Genomics 2019; 20:765. [PMID: 31640544 PMCID: PMC6805638 DOI: 10.1186/s12864-019-6133-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hypsizygus marmoreus, a high value commercialized edible mushroom is widely cultivated in East Asia, and has become one of the most popular edible mushrooms because of its rich nutritional and medicinal value. Mitochondria are vital organelles, and play various essential roles in eukaryotic cells. RESULTS In this study, we provide the Hypsizygus marmoreus mitochondrial (mt) genome assembly: the circular sequence is 102,752 bp in size and contains 15 putative protein-coding genes, 2 ribosomal RNAs subunits and 28 tRNAs. We compared the mt genomes of the 27 fungal species in the Pezizomycotina and Basidiomycotina subphyla, with the results revealing that H. marmoreus is a sister to Tricholoma matsutake and the phylogenetic distribution of this fungus based on the mt genome. Phylogenetic analysis shows that Ascomycetes mitochondria started to diverge earlier than that of Basidiomycetes and supported the robustness of the hyper metric tree. The fungal sequences are highly polymorphic and gene order varies significantly in the dikarya data set, suggesting a correlation between the gene order and divergence time in the fungi mt genome. To detect the mt genome variations in H. marmoreus, we analyzed the mtDNA sequences of 48 strains. The phylogeny and variation sited type statistics of H. marmoreus provide clear-cut evidence for the existence of four well-defined cultivations isolated lineages, suggesting female ancestor origin of H. marmoreus. Furthermore, variations on two loci were further identified to be molecular markers for distinguishing the subgroup containing 32 strains of other strains. Fifteen conserved protein-coding genes of mtDNAs were analyzed, with fourteen revealed to be under purifying selection in the examined fungal species, suggesting the rapid evolution was caused by positive selection of this gene. CONCLUSIONS Our studies have provided new reference mt genomes and comparisons between species and intraspecies with other strains, and provided future perspectives for assessing diversity and origin of H. marmoreus.
Collapse
Affiliation(s)
- Gang Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jingxian Lin
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yang Shi
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaoguang Chang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yuanyuan Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lin Guo
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Wenhui Wang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Meijie Dou
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Youjin Deng
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Ray Ming
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
8
|
Li Y, Kocot KM, Tassia MG, Cannon JT, Bernt M, Halanych KM. Mitogenomics Reveals a Novel Genetic Code in Hemichordata. Genome Biol Evol 2019; 11:29-40. [PMID: 30476024 PMCID: PMC6319601 DOI: 10.1093/gbe/evy254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2018] [Indexed: 01/26/2023] Open
Abstract
The diverse array of codon reassignments demonstrate that the genetic code is not universal in nature. Exploring mechanisms underlying codon reassignment is critical for understanding the evolution of the genetic code during translation. Hemichordata, comprising worm-like Enteropneusta and colonial filter-feeding Pterobranchia, is the sister taxon of echinoderms and is more distantly related to chordates. However, only a few hemichordate mitochondrial genomes have been sequenced, hindering our understanding of mitochondrial genome evolution within Deuterostomia. In this study, we sequenced four mitochondrial genomes and two transcriptomes, including representatives of both major hemichordate lineages and analyzed together with public available data. Contrary to the current understanding of the mitochondrial genetic code in hemichordates, our comparative analyses suggest that UAA encodes Tyr instead of a "Stop" codon in the pterobranch lineage Cephalodiscidae. We also predict that AAA encodes Lys in pterobranch and enteropneust mitochondrial genomes, contradicting the previous assumption that hemichordates share the same genetic code with echinoderms for which AAA encodes Asn. Thus, we propose a new mitochondrial genetic code for Cephalodiscus and a revised code for enteropneusts. Moreover, our phylogenetic analyses are largely consistent with previous phylogenomic studies. The only exception is the phylogenetic position of the enteropneust Stereobalanus, whose placement as sister to all other described enteropneusts. With broader taxonomic sampling, we provide evidence that evolution of mitochondrial gene order and genetic codes in Hemichordata are more dynamic than previously thought and these findings provide insights into mitochondrial genome evolution within this clade.
Collapse
Affiliation(s)
- Yuanning Li
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University
| | - Kevin M Kocot
- Department of Biological Sciences & Alabama Museum of Natural History, The University of Alabama
| | - Michael G Tassia
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University
| | - Johanna T Cannon
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara
| | - Matthias Bernt
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Kenneth M Halanych
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University
| |
Collapse
|
9
|
Li Q, Wang Q, Jin X, Chen Z, Xiong C, Li P, Zhao J, Huang W. Characterization and comparison of the mitochondrial genomes from two Lyophyllum fungal species and insights into phylogeny of Agaricomycetes. Int J Biol Macromol 2019; 121:364-372. [DOI: 10.1016/j.ijbiomac.2018.10.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/12/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022]
|
10
|
Hartmann T, Bernt M, Middendorf M. An Exact Algorithm for Sorting by Weighted Preserving Genome Rearrangements. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:52-62. [PMID: 29994030 DOI: 10.1109/tcbb.2018.2831661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The preserving Genome Sorting Problem (pGSP) asks for a shortest sequence of rearrangement operations that transforms a given gene order into another given gene order by using rearrangement operations that preserve common intervals, i.e., groups of genes that form an interval in both given gene orders. The wpGSP is the weighted version of the problem were each type of rearrangement operation has a weight and a minimum weight sequence of rearrangement operations is sought. An exact algorithm - called CREx2 - is presented, which solves the wpGSP for arbitrary gene orders and the following types of rearrangement operations: inversions, transpositions, inverse transpositions, and tandem duplication random loss operations. CREx2 has a (worst case) exponential runtime, but a linear runtime for problem instances where the common intervals are organized in a linear structure. The efficiency of CREx2 and its usefulness for phylogenetic analysis is shown empirically for gene orders of fungal mitochondrial genomes.
Collapse
|
11
|
Areesirisuk P, Muangmai N, Kunya K, Singchat W, Sillapaprayoon S, Lapbenjakul S, Thapana W, Kantachumpoo A, Baicharoen S, Rerkamnuaychoke B, Peyachoknagul S, Han K, Srikulnath K. Characterization of five complete Cyrtodactylus mitogenome structures reveals low structural diversity and conservation of repeated sequences in the lineage. PeerJ 2018; 6:e6121. [PMID: 30581685 PMCID: PMC6295329 DOI: 10.7717/peerj.6121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/15/2018] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial genomes (mitogenomes) of five Cyrtodactylus were determined. Their compositions and structures were similar to most of the available gecko lizard mitogenomes as 13 protein-coding, two rRNA and 22 tRNA genes. The non-coding control region (CR) of almost all Cyrtodactylus mitogenome structures contained a repeated sequence named the 75-bp box family, except for C. auribalteatus which contained the 225-bp box. Sequence similarities indicated that the 225-bp box resulted from the duplication event of 75-bp boxes, followed by homogenization and fixation in C. auribalteatus. The 75-bp box family was found in most gecko lizards with high conservation (55-75% similarities) and could form secondary structures, suggesting that this repeated sequence family played an important role under selective pressure and might involve mitogenome replication and the likelihood of rearrangements in CR. The 75-bp box family was acquired in the common ancestral genome of the gecko lizard, evolving gradually through each lineage by independent nucleotide mutation. Comparison of gecko lizard mitogenomes revealed low structural diversity with at least six types of mitochondrial gene rearrangements. Cyrtodactylus mitogenome structure showed the same gene rearrangement as found in most gecko lizards. Advanced mitogenome information will enable a better understanding of structure evolution mechanisms.
Collapse
Affiliation(s)
- Prapatsorn Areesirisuk
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Human Genetic Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Animal Breeding and Genetics Consortium of Kasetsart University (ABG-KU), Kasetsart University, Bangkok, Thailand
| | - Narongrit Muangmai
- Animal Breeding and Genetics Consortium of Kasetsart University (ABG-KU), Kasetsart University, Bangkok, Thailand
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Kirati Kunya
- Nakhon Ratchasima Zoo, Nakhon Ratchasima, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Animal Breeding and Genetics Consortium of Kasetsart University (ABG-KU), Kasetsart University, Bangkok, Thailand
| | - Siwapech Sillapaprayoon
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Animal Breeding and Genetics Consortium of Kasetsart University (ABG-KU), Kasetsart University, Bangkok, Thailand
| | - Sorravis Lapbenjakul
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Animal Breeding and Genetics Consortium of Kasetsart University (ABG-KU), Kasetsart University, Bangkok, Thailand
| | - Watcharaporn Thapana
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Animal Breeding and Genetics Consortium of Kasetsart University (ABG-KU), Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU, Thailand), Kasetsart University, Bangkok, Thailand
| | - Attachai Kantachumpoo
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Animal Breeding and Genetics Consortium of Kasetsart University (ABG-KU), Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU, Thailand), Kasetsart University, Bangkok, Thailand
| | - Sudarath Baicharoen
- Bureau of Conservation and Research, Zoological Park Organization under the Royal Patronage of His Majesty the King, Bangkok, Thailand
| | - Budsaba Rerkamnuaychoke
- Human Genetic Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Surin Peyachoknagul
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Kyudong Han
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Animal Breeding and Genetics Consortium of Kasetsart University (ABG-KU), Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU, Thailand), Kasetsart University, Bangkok, Thailand
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, Thailand
| |
Collapse
|
12
|
Li Q, Yang M, Chen C, Xiong C, Jin X, Pu Z, Huang W. Characterization and phylogenetic analysis of the complete mitochondrial genome of the medicinal fungus Laetiporus sulphureus. Sci Rep 2018; 8:9104. [PMID: 29904057 PMCID: PMC6002367 DOI: 10.1038/s41598-018-27489-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/24/2018] [Indexed: 12/22/2022] Open
Abstract
The medicinal fungus Laetiporus sulphureus is widely distributed worldwide. To screen for molecular markers potentially useful for phylogenetic analyses of this species and related species, the mitochondrial genome of L. sulphureus was sequenced and assembled. The complete circular mitochondrial genome was 101,111 bp long, and contained 38 protein-coding genes (PCGs), 2 rRNA genes, and 25 tRNA genes. Our BLAST search aligned about 6.1 kb between the mitochondrial and nuclear genomes of L. sulphureus, indicative of possible gene transfer events. Both the GC and AT skews in the L. sulphureus mitogenome were negative, in contrast to the other seven Polyporales species tested. Of the 15 PCGs conserved across the seven species of Polyporales, the lengths of 11 were unique in the L. sulphureus mitogenome. The Ka/Ks of these 15 PCGs were all less than 1, indicating that PCGs were subject to purifying selection. Our phylogenetic analysis showed that three single genes (cox1, cob, and rnl) were potentially useful as molecular markers. This study is the first publication of a mitochondrial genome in the family Laetiporaceae, and will facilitate the study of population genetics and evolution in L. sulphureus and other species in this family.
Collapse
Affiliation(s)
- Qiang Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, P.R. China
| | - Mei Yang
- Panzhihua City Academy of Agricultural and Forest Sciences, Panzhihua, 617061, Sichuan, P.R. China
| | - Cheng Chen
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, P.R. China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China
| | - Zhigang Pu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China. .,Sichuan Academy of Agricultural Sciences, 106 # Shizishan Rd, Chengdu, 610061, Sichuan, China.
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China. .,Sichuan Academy of Agricultural Sciences, 106 # Shizishan Rd, Chengdu, 610061, Sichuan, China.
| |
Collapse
|
13
|
A complete logical approach to resolve the evolution and dynamics of mitochondrial genome in bilaterians. PLoS One 2018; 13:e0194334. [PMID: 29547666 PMCID: PMC5856267 DOI: 10.1371/journal.pone.0194334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/01/2018] [Indexed: 01/12/2023] Open
Abstract
Investigating how recombination might modify gene order during the evolution has become a routine part of mitochondrial genome analysis. A new method of genomic maps analysis based on formal logic is described. The purpose of this method is to 1) use mitochondrial gene order of current taxa as datasets 2) calculate rearrangements between all mitochondrial gene orders and 3) reconstruct phylogenetic relationships according to these calculated rearrangements within a tree under the assumption of maximum parsimony. Unlike existing methods mainly based on the probabilistic approach, the main strength of this new approach is that it calculates all the exact tree solutions with completeness and provides logical consequences as highly robust results. Moreover, this method infers all possible hypothetical ancestors and reconstructs character states for all internal nodes of the trees. We started by testing our method using the deuterostomes as a study case. Then, with sponges as an outgroup, we investigated the evolutionary history of mitochondrial genomes of 47 bilaterian phyla and emphasised the peculiar case of chaetognaths. This pilot work showed that the use of formal logic in a hypothetico-deductive background such as phylogeny (where experimental testing of hypotheses is impossible) is very promising to explore mitochondrial gene order in deuterostomes and should be applied to many other bilaterian clades.
Collapse
|
14
|
Hartmann T, Chu AC, Middendorf M, Bernt M. Combinatorics of Tandem Duplication Random Loss Mutations on Circular Genomes. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:83-95. [PMID: 28114075 DOI: 10.1109/tcbb.2016.2613522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The tandem duplication random loss operation (TDRL) is an important genome rearrangement operation in metazoan mitochondrial genomes. A TDRL consists of a duplication of a contiguous set of genes in tandem followed by a random loss of one copy of each duplicated gene. This paper presents an analysis of the combinatorics of TDRLs on circular genomes, e.g., the mitochondrial genome. In particular, results on TDRLs for circular genomes and their linear representatives are established. Moreover, the distance between gene orders with respect to linear TDRLs and circular TDRLs is studied. An analysis of the available animal mitochondrial gene orders shows the practical relevance of the theoretical results.
Collapse
|
15
|
Basso A, Babbucci M, Pauletto M, Riginella E, Patarnello T, Negrisolo E. The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura. Sci Rep 2017; 7:4096. [PMID: 28642542 PMCID: PMC5481413 DOI: 10.1038/s41598-017-04168-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/11/2017] [Indexed: 11/09/2022] Open
Abstract
We sequenced the mitochondrial genomes of the spider crabs Maja crispata and Maja squinado (Majidae, Brachyura). Both genomes contain the whole set of 37 genes characteristic of Bilaterian genomes, encoded on both α- and β-strands. Both species exhibit the same gene order, which is unique among known animal genomes. In particular, all the genes located on the β-strand form a single block. This gene order was analysed together with the other nine gene orders known for the Brachyura. Our study confirms that the most widespread gene order (BraGO) represents the plesiomorphic condition for Brachyura and was established at the onset of this clade. All other gene orders are the result of transformational pathways originating from BraGO. The different gene orders exhibit variable levels of genes rearrangements, which involve only tRNAs or all types of genes. Local homoplastic arrangements were identified, while complete gene orders remain unique and represent signatures that can have a diagnostic value. Brachyura appear to be a hot-spot of gene order diversity within the phylum Arthropoda. Our analysis, allowed to track, for the first time, the fully evolutionary pathways producing the Brachyuran gene orders. This goal was achieved by coupling sophisticated bioinformatic tools with phylogenetic analysis.
Collapse
Affiliation(s)
- Andrea Basso
- University of Padova, Department of Comparative Biomedicine and Food Science (BCA), 35020, Agripolis, Legnaro (PD), Italy
| | - Massimiliano Babbucci
- University of Padova, Department of Comparative Biomedicine and Food Science (BCA), 35020, Agripolis, Legnaro (PD), Italy
| | - Marianna Pauletto
- University of Padova, Department of Comparative Biomedicine and Food Science (BCA), 35020, Agripolis, Legnaro (PD), Italy
| | - Emilio Riginella
- University of Padova, Department of Biology, 35131, Padova, Italy
| | - Tomaso Patarnello
- University of Padova, Department of Comparative Biomedicine and Food Science (BCA), 35020, Agripolis, Legnaro (PD), Italy
| | - Enrico Negrisolo
- University of Padova, Department of Comparative Biomedicine and Food Science (BCA), 35020, Agripolis, Legnaro (PD), Italy.
| |
Collapse
|
16
|
The genomic landscape of evolutionary convergence in mammals, birds and reptiles. Nat Ecol Evol 2017; 1:41. [PMID: 28812724 DOI: 10.1038/s41559-016-0041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/23/2016] [Indexed: 01/11/2023]
Abstract
Many lineage-defining (nodal) mutations possess high functionality. However, differentiating adaptive nodal mutations from those that are functionally compensated remains challenging. To address this challenge, we identified functional nodal mutations (fNMs) in ~3,400 nuclear DNA (nDNA) and 4 mitochondrial DNA (mtDNA) protein structures from 91 and 1,003 species, respectively, representing the entire mammalian, bird and reptile phylogeny. A screen for candidate compensatory mutations among co-occurring amino acid changes in close structural proximity revealed that such compensated fNMs encompass 37% and 27% of the mtDNA and nDNA datasets, respectively. Analysis of the remaining (non-compensated) mutations, which are enriched for adaptive mutations, showed that birds and mammals share most such recurrent fNMs (N = 51). Among the latter, we discovered mutations in thermoregulation-related genes. These represent the best candidates to explain the molecular basis of convergent body thermoregulation in birds and mammals. Our analysis reveals the landscape of possible mutational compensation and convergence in amniote phylogeny.
Collapse
|
17
|
Aguileta G, de Vienne DM, Ross ON, Hood ME, Giraud T, Petit E, Gabaldón T. High variability of mitochondrial gene order among fungi. Genome Biol Evol 2015; 6:451-65. [PMID: 24504088 PMCID: PMC3942027 DOI: 10.1093/gbe/evu028] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
From their origin as an early alpha proteobacterial endosymbiont to their current state as cellular organelles, large-scale genomic reorganization has taken place in the mitochondria of all main eukaryotic lineages. So far, most studies have focused on plant and animal mitochondrial (mt) genomes (mtDNA), but fungi provide new opportunities to study highly differentiated mtDNAs. Here, we analyzed 38 complete fungal mt genomes to investigate the evolution of mtDNA gene order among fungi. In particular, we looked for evidence of nonhomologous intrachromosomal recombination and investigated the dynamics of gene rearrangements. We investigated the effect that introns, intronic open reading frames (ORFs), and repeats may have on gene order. Additionally, we asked whether the distribution of transfer RNAs (tRNAs) evolves independently to that of mt protein-coding genes. We found that fungal mt genomes display remarkable variation between and within the major fungal phyla in terms of gene order, genome size, composition of intergenic regions, and presence of repeats, introns, and associated ORFs. Our results support previous evidence for the presence of mt recombination in all fungal phyla, a process conspicuously lacking in most Metazoa. Overall, the patterns of rearrangements may be explained by the combined influences of recombination (i.e., most likely nonhomologous and intrachromosomal), accumulated repeats, especially at intergenic regions, and to a lesser extent, mobile element dynamics.
Collapse
Affiliation(s)
- Gabriela Aguileta
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Babbucci M, Basso A, Scupola A, Patarnello T, Negrisolo E. Is it an ant or a butterfly? Convergent evolution in the mitochondrial gene order of Hymenoptera and Lepidoptera. Genome Biol Evol 2014; 6:3326-43. [PMID: 25480682 PMCID: PMC4466343 DOI: 10.1093/gbe/evu265] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 11/18/2022] Open
Abstract
Insect mitochondrial genomes (mtDNA) are usually double helical and circular molecules containing 37 genes that are encoded on both strands. The arrangement of the genes is not constant for all species, and produces distinct gene orders (GOs) that have proven to be diagnostic in defining clades at different taxonomic levels. In general, it is believed that distinct taxa have a very low chance of sharing identically arranged GOs. However, examples of identical, homoplastic local rearrangements occurring in distinct taxa do exist. In this study, we sequenced the complete mtDNAs of the ants Formica fusca and Myrmica scabrinodis (Formicidae, Hymenoptera) and compared their GOs with those of other Insecta. The GO of F. fusca was found to be identical to the GO of Dytrisia (the largest clade of Lepidoptera). This finding is the first documented case of an identical GO shared by distinct groups of Insecta, and it is the oldest known event of GO convergent evolution in animals. Both Hymenoptera and Lepidoptera acquired this GO early in their evolution. Using a phylogenetic approach combined with new bioinformatic tools, the chronological order of the evolutionary events that produced the diversity of the hymenopteran GOs was determined. Additionally, new local homoplastic rearrangements shared by distinct groups of insects were identified. Our study showed that local and global homoplasies affecting the insect GOs are more widespread than previously thought. Homoplastic GOs can still be useful for characterizing the various clades, provided that they are appropriately considered in a phylogenetic and taxonomic context.
Collapse
Affiliation(s)
- Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Agripolis, Legnaro (PD), Italy
| | - Andrea Basso
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Agripolis, Legnaro (PD), Italy Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNE), University of Padova, Agripolis, Legnaro (PD), Italy Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Agripolis, Legnaro (PD), Italy
| | - Antonio Scupola
- Natural History Museum (Museo di Storia Naturale), Verona, Italy
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Agripolis, Legnaro (PD), Italy
| | - Enrico Negrisolo
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Agripolis, Legnaro (PD), Italy
| |
Collapse
|
19
|
GC skew and mitochondrial origins of replication. Mitochondrion 2014; 17:56-66. [DOI: 10.1016/j.mito.2014.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 05/09/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022]
|
20
|
Moritz RLV, Bernt M, Middendorf M. Local similarity search to find gene indicators in mitochondrial genomes. BIOLOGY 2014; 3:220-242. [PMID: 24833343 PMCID: PMC4009762 DOI: 10.3390/biology3010220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/15/2014] [Accepted: 02/18/2014] [Indexed: 06/03/2023]
Abstract
Given a set of nucleotide sequences we consider the problem of identifying conserved substrings occurring in homologous genes in a large number of sequences. The problem is solved by identifying certain nodes in a suffix tree containing all substrings occurring in the given nucleotide sequences. Due to the large size of the targeted data set, our approach employs a truncated version of suffix trees. Two methods for this task are introduced: (1) The annotation guided marker detection method uses gene annotations which might contain a moderate number of errors; (2) The probability based marker detection method determines sequences that appear significantly more often than expected. The approach is successfully applied to the mitochondrial nucleotide sequences, and the corresponding annotations that are available in RefSeq for 2989 metazoan species. We demonstrate that the approach finds appropriate substrings.
Collapse
Affiliation(s)
- Ruby L V Moritz
- Department of Computer Science, University of Leipzig, Postfach 100920, Leipzig D-04009, Germany.
| | - Matthias Bernt
- Department of Computer Science, University of Leipzig, Postfach 100920, Leipzig D-04009, Germany.
| | - Martin Middendorf
- Department of Computer Science, University of Leipzig, Postfach 100920, Leipzig D-04009, Germany.
| |
Collapse
|
21
|
Bernt M, Braband A, Middendorf M, Misof B, Rota-Stabelli O, Stadler PF. Bioinformatics methods for the comparative analysis of metazoan mitochondrial genome sequences. Mol Phylogenet Evol 2013; 69:320-7. [DOI: 10.1016/j.ympev.2012.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/31/2012] [Accepted: 09/17/2012] [Indexed: 01/25/2023]
|
22
|
Bernt M, Braband A, Schierwater B, Stadler PF. Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol 2012; 69:328-38. [PMID: 23142697 DOI: 10.1016/j.ympev.2012.10.020] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 10/20/2012] [Accepted: 10/22/2012] [Indexed: 11/30/2022]
Abstract
Many years of extensive studies of metazoan mitochondrial genomes have established differences in gene arrangements and genetic codes as valuable phylogenetic markers. Understanding the underlying mechanisms of replication, transcription and the role of the control regions which cause e.g. different gene orders is important to assess the phylogenetic signal of such events. This review summarises and discusses, for the Metazoa, the general aspects of mitochondrial transcription and replication with respect to control regions as well as several proposed models of gene rearrangements. As whole genome sequencing projects accumulate, more and more observations about mitochondrial gene transfer to the nucleus are reported. Thus occurrence and phylogenetic aspects concerning nuclear mitochondrial-like sequences (NUMTS) is another aspect of this review.
Collapse
Affiliation(s)
- Matthias Bernt
- Parallel Computing and Complex Systems Group, Department of Computer Science, University of Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany.
| | | | | | | |
Collapse
|
23
|
Jühling F, Pütz J, Bernt M, Donath A, Middendorf M, Florentz C, Stadler PF. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res 2011; 40:2833-45. [PMID: 22139921 PMCID: PMC3326299 DOI: 10.1093/nar/gkr1131] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transfer RNAs (tRNAs) are present in all types of cells as well as in organelles. tRNAs of animal mitochondria show a low level of primary sequence conservation and exhibit 'bizarre' secondary structures, lacking complete domains of the common cloverleaf. Such sequences are hard to detect and hence frequently missed in computational analyses and mitochondrial genome annotation. Here, we introduce an automatic annotation procedure for mitochondrial tRNA genes in Metazoa based on sequence and structural information in manually curated covariance models. The method, applied to re-annotate 1876 available metazoan mitochondrial RefSeq genomes, allows to distinguish between remaining functional genes and degrading 'pseudogenes', even at early stages of divergence. The subsequent analysis of a comprehensive set of mitochondrial tRNA genes gives new insights into the evolution of structures of mitochondrial tRNA sequences as well as into the mechanisms of genome rearrangements. We find frequent losses of tRNA genes concentrated in basal Metazoa, frequent independent losses of individual parts of tRNA genes, particularly in Arthropoda, and wide-spread conserved overlaps of tRNAs in opposite reading direction. Direct evidence for several recent Tandem Duplication-Random Loss events is gained, demonstrating that this mechanism has an impact on the appearance of new mitochondrial gene orders.
Collapse
Affiliation(s)
- Frank Jühling
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|