1
|
Mao G, Zeng R, Peng J, Zuo K, Pang Z, Liu J. Reconstructing gene regulatory networks of biological function using differential equations of multilayer perceptrons. BMC Bioinformatics 2022; 23:503. [PMID: 36434499 PMCID: PMC9700916 DOI: 10.1186/s12859-022-05055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Building biological networks with a certain function is a challenge in systems biology. For the functionality of small (less than ten nodes) biological networks, most methods are implemented by exhausting all possible network topological spaces. This exhaustive approach is difficult to scale to large-scale biological networks. And regulatory relationships are complex and often nonlinear or non-monotonic, which makes inference using linear models challenging. RESULTS In this paper, we propose a multi-layer perceptron-based differential equation method, which operates by training a fully connected neural network (NN) to simulate the transcription rate of genes in traditional differential equations. We verify whether the regulatory network constructed by the NN method can continue to achieve the expected biological function by verifying the degree of overlap between the regulatory network discovered by NN and the regulatory network constructed by the Hill function. And we validate our approach by adapting to noise signals, regulator knockout, and constructing large-scale gene regulatory networks using link-knockout techniques. We apply a real dataset (the mesoderm inducer Xenopus Brachyury expression) to construct the core topology of the gene regulatory network and find that Xbra is only strongly expressed at moderate levels of activin signaling. CONCLUSION We have demonstrated from the results that this method has the ability to identify the underlying network topology and functional mechanisms, and can also be applied to larger and more complex gene network topologies.
Collapse
Affiliation(s)
- Guo Mao
- grid.412110.70000 0000 9548 2110Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Deya Road, Changsha, 410073 China
| | - Ruigeng Zeng
- grid.412110.70000 0000 9548 2110Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Deya Road, Changsha, 410073 China
| | - Jintao Peng
- grid.412110.70000 0000 9548 2110Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Deya Road, Changsha, 410073 China
| | - Ke Zuo
- grid.412110.70000 0000 9548 2110Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Deya Road, Changsha, 410073 China
| | - Zhengbin Pang
- grid.412110.70000 0000 9548 2110Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Deya Road, Changsha, 410073 China
| | - Jie Liu
- grid.412110.70000 0000 9548 2110Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Deya Road, Changsha, 410073 China ,grid.412110.70000 0000 9548 2110Laboratory of Software Engineering for Complex System, National University of Defense Technology, Deya Road, Changsha, 410073 China
| |
Collapse
|
2
|
Gu Y, Zu J, Li Y. A novel evolutionary model for constructing gene coexpression networks with comprehensive features. BMC Bioinformatics 2019; 20:460. [PMID: 31492104 PMCID: PMC6731579 DOI: 10.1186/s12859-019-3035-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Uncovering the evolutionary principles of gene coexpression network is important for our understanding of the network topological property of new genes. However, most existing evolutionary models only considered the evolution of duplication genes and only based on the degree of genes, ignoring the other key topological properties. The evolutionary mechanism by which how are new genes integrated into the ancestral networks are not yet to be comprehensively characterized. Herein, based on the human ribonucleic acid-sequencing (RNA-seq) data, we develop a new evolutionary model of gene coexpression network which considers the evolutionary process of both duplication genes and de novo genes. RESULTS Based on the human RNA-seq data, we construct a gene coexpression network consisting of 8061 genes and 638624 links. We find that there are 1394 duplication genes and 126 de novo genes in the network. Then based on human gene age data, we reproduce the evolutionary process of this gene coexpression network and develop a new evolutionary model. We find that the generation rates of duplication genes and de novo genes are approximately 3.58/Myr (Myr=Million year) and 0.31/Myr, respectively. Based on the average degree and coreness of parent genes, we find that the gene duplication is a random process. Eventually duplication genes only inherit 12.89% connections from their parent genes and the retained connections have a smaller edge betweenness. Moreover, we find that both duplication genes and de novo genes prefer to develop new interactions with genes which have a large degree and a large coreness. Our proposed model can generate an evolutionary network when the number of newly added genes or the length of evolutionary time is known. CONCLUSIONS Gene duplication and de novo genes are two dominant evolutionary forces in shaping the coexpression network. Both duplication genes and de novo genes develop new interactions through a "rich-gets-richer" mechanism in terms of degree and coreness. This mechanism leads to the scale-free property and hierarchical architecture of biomolecular network. The proposed model is able to construct a gene coexpression network with comprehensive biological characteristics.
Collapse
Affiliation(s)
- Yuexi Gu
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jian Zu
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Yu Li
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| |
Collapse
|
3
|
|
4
|
Jereesh AS, Govindan VK. Immuno-hybrid algorithm: a novel hybrid approach for GRN reconstruction. 3 Biotech 2016; 6:222. [PMID: 28330294 PMCID: PMC5065543 DOI: 10.1007/s13205-016-0536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/03/2016] [Indexed: 11/28/2022] Open
Abstract
Bio-inspired algorithms are widely used to optimize the model parameters of GRN. In this paper, focus is given to develop improvised versions of bio-inspired algorithm for the specific problem of reconstruction of gene regulatory network. The approach is applied to the data set that was developed by the DNA microarray technology through biological experiments in the lab. This paper introduced a novel hybrid method, which combines the clonal selection algorithm and BFGS Quasi-Newton algorithm. The proposed approach implemented for real world E. coli data set and identified most of the relations. The results are also compared with the existing methods and proven to be efficient.
Collapse
Affiliation(s)
- A. S. Jereesh
- Department of Computer Science, Cochin University of Science and Technology, Cochin, Kerala India
| | - V. K. Govindan
- Department of Computer Science and Engineering, Indian Institute of Information Technology Pala, Kottayam, Kerala India
| |
Collapse
|
5
|
Hsiao YT, Lee WP, Yang W, Müller S, Flamm C, Hofacker I, Kügler P. Practical Guidelines for Incorporating Knowledge-Based and Data-Driven Strategies into the Inference of Gene Regulatory Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2016; 13:64-75. [PMID: 26441429 DOI: 10.1109/tcbb.2015.2465954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Modeling gene regulatory networks (GRNs) is essential for conceptualizing how genes are expressed and how they influence each other. Typically, a reverse engineering approach is employed; this strategy is effective in reproducing possible fitting models of GRNs. To use this strategy, however, two daunting tasks must be undertaken: one task is to optimize the accuracy of inferred network behaviors; and the other task is to designate valid biological topologies for target networks. Although existing studies have addressed these two tasks for years, few of the studies can satisfy both of the requirements simultaneously. To address these difficulties, we propose an integrative modeling framework that combines knowledge-based and data-driven input sources to construct biological topologies with their corresponding network behaviors. To validate the proposed approach, a real dataset collected from the cell cycle of the yeast S. cerevisiae is used. The results show that the proposed framework can successfully infer solutions that meet the requirements of both the network behaviors and biological structures. Therefore, the outcomes are exploitable for future in vivo experimental design.
Collapse
|
6
|
Liu LZ, Wu FX, Zhang WJ. Properties of sparse penalties on inferring gene regulatory networks from time-course gene expression data. IET Syst Biol 2015; 9:16-24. [PMID: 25569860 DOI: 10.1049/iet-syb.2013.0060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genes regulate each other and form a gene regulatory network (GRN) to realise biological functions. Elucidating GRN from experimental data remains a challenging problem in systems biology. Numerous techniques have been developed and sparse linear regression methods become a promising approach to infer accurate GRNs. However, most linear methods are either based on steady-state gene expression data or their statistical properties are not analysed. Here, two sparse penalties, adaptive least absolute shrinkage and selection operator and smoothly clipped absolute deviation, are proposed to infer GRNs from time-course gene expression data based on an auto-regressive model and their Oracle properties are proved under mild conditions. The effectiveness of those methods is demonstrated by applications to in silico and real biological data.
Collapse
Affiliation(s)
- Li-Zhi Liu
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Fang-Xiang Wu
- Department of Mechanical Engineering, Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Wen-Jun Zhang
- Department of Mechanical Engineering, Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
7
|
Lee WP, Lin CH. Combining Expression Data and Knowledge Ontology for Gene Clustering and Network Reconstruction. Cognit Comput 2015. [DOI: 10.1007/s12559-015-9349-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Liu LZ, Wu FX, Zhang WJ. Properties of sparse penalties on inferring gene regulatory networks from time-course gene expression data. IET Syst Biol 2015. [PMID: 25569860 DOI: 10.1049/iet‐syb.2013.0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Genes regulate each other and form a gene regulatory network (GRN) to realise biological functions. Elucidating GRN from experimental data remains a challenging problem in systems biology. Numerous techniques have been developed and sparse linear regression methods become a promising approach to infer accurate GRNs. However, most linear methods are either based on steady-state gene expression data or their statistical properties are not analysed. Here, two sparse penalties, adaptive least absolute shrinkage and selection operator and smoothly clipped absolute deviation, are proposed to infer GRNs from time-course gene expression data based on an auto-regressive model and their Oracle properties are proved under mild conditions. The effectiveness of those methods is demonstrated by applications to in silico and real biological data.
Collapse
Affiliation(s)
- Li-Zhi Liu
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Fang-Xiang Wu
- Department of Mechanical Engineering, Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Wen-Jun Zhang
- Department of Mechanical Engineering, Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
9
|
Hsiao YT, Lee WP. Reverse engineering gene regulatory networks: coupling an optimization algorithm with a parameter identification technique. BMC Bioinformatics 2014; 15 Suppl 15:S8. [PMID: 25474560 PMCID: PMC4271569 DOI: 10.1186/1471-2105-15-s15-s8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background To infer gene regulatory networks from time series gene profiles, two important tasks that are related to biological systems must be undertaken. One task is to determine a valid network structure that has topological properties that can influence the network dynamics profoundly. The other task is to optimize the network parameters to minimize the accumulated discrepancy between the gene expression data and the values produced by the inferred network model. Though the above two tasks must be conducted simultaneously, most existing work addresses only one of the tasks. Results We propose an iterative approach that couples parameter identification and parameter optimization techniques, to address the two tasks simultaneously during network inference. This approach first identifies the most influential parameters against internal perturbations; this identification is based on sensitivity measurements. Then, a hybrid GA-PSO optimization method infers parameters in accordance with their criticalities. The proposed approach has been applied to several datasets, including subsets of the SOS DNA repair system in E. coli, the Rat central nervous system (CNS), and the protein glycosylation system of yeast S. cerevisiae. The result and analysis show that our approach can infer solutions to satisfy both the requirements of network structure and network behavior. Conclusions Network structure is an important though challenging issue to address in inferring sophisticated networks with biological details. In need of prior structural knowledge, we turn to measure parameter sensitivity instead to account for the network structure in an indirect way. By developing an integrated approach for considering both the network structure and behavior in the inference process, we can successfully infer critical gene interactions as well as valid time expression profiles.
Collapse
|
10
|
Liu LZ, Wu FX, Zhang WJ. A group LASSO-based method for robustly inferring gene regulatory networks from multiple time-course datasets. BMC SYSTEMS BIOLOGY 2014; 8 Suppl 3:S1. [PMID: 25350697 PMCID: PMC4243122 DOI: 10.1186/1752-0509-8-s3-s1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND As an abstract mapping of the gene regulations in the cell, gene regulatory network is important to both biological research study and practical applications. The reverse engineering of gene regulatory networks from microarray gene expression data is a challenging research problem in systems biology. With the development of biological technologies, multiple time-course gene expression datasets might be collected for a specific gene network under different circumstances. The inference of a gene regulatory network can be improved by integrating these multiple datasets. It is also known that gene expression data may be contaminated with large errors or outliers, which may affect the inference results. RESULTS A novel method, Huber group LASSO, is proposed to infer the same underlying network topology from multiple time-course gene expression datasets as well as to take the robustness to large error or outliers into account. To solve the optimization problem involved in the proposed method, an efficient algorithm which combines the ideas of auxiliary function minimization and block descent is developed. A stability selection method is adapted to our method to find a network topology consisting of edges with scores. The proposed method is applied to both simulation datasets and real experimental datasets. It shows that Huber group LASSO outperforms the group LASSO in terms of both areas under receiver operating characteristic curves and areas under the precision-recall curves. CONCLUSIONS The convergence analysis of the algorithm theoretically shows that the sequence generated from the algorithm converges to the optimal solution of the problem. The simulation and real data examples demonstrate the effectiveness of the Huber group LASSO in integrating multiple time-course gene expression datasets and improving the resistance to large errors or outliers.
Collapse
|
11
|
Introduction: Advanced intelligent computing theories and their applications in bioinformatics. BMC Bioinformatics 2012; 13 Suppl 7:I1. [PMID: 22594994 PMCID: PMC3348015 DOI: 10.1186/1471-2105-13-s7-i1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|