1
|
Trukhan S, Tafintseva V, Tøndel K, Großerueschkamp F, Mosig A, Kovalev V, Gerwert K, Kohler A. Grayscale representation of infrared microscopy images by extended multiplicative signal correction for registration with histological images. JOURNAL OF BIOPHOTONICS 2020; 13:e201960223. [PMID: 32352634 DOI: 10.1002/jbio.201960223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Fourier-transform infrared (FTIR) microspectroscopy is rounding the corner to become a label-free routine method for cancer diagnosis. In order to build infrared-spectral based classifiers, infrared images need to be registered with Hematoxylin and Eosin (H&E) stained histological images. While FTIR images have a deep spectral domain with thousands of channels carrying chemical and scatter information, the H&E images have only three color channels for each pixel and carry mainly morphological information. Therefore, image representations of infrared images are needed that match the morphological information in H&E images. In this paper, we propose a novel approach for representation of FTIR images based on extended multiplicative signal correction highlighting morphological features that showed to correlate well with morphological information in H&E images. Based on the obtained representations, we developed a strategy for global-to-local image registration for FTIR images and H&E stained histological images of parallel tissue sections.
Collapse
Affiliation(s)
- Stanislau Trukhan
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- Department of Biomedical Image Analysis, United Institute of Informatics Problems, Minsk, Belarus
| | - Valeria Tafintseva
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Kristin Tøndel
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Frederik Großerueschkamp
- Departament of Biophysics, Ruhr University Bochum, Bochum, Germany
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, Bochum, Germany
| | - Axel Mosig
- Departament of Biophysics, Ruhr University Bochum, Bochum, Germany
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, Bochum, Germany
| | - Vassili Kovalev
- Department of Biomedical Image Analysis, United Institute of Informatics Problems, Minsk, Belarus
| | - Klaus Gerwert
- Departament of Biophysics, Ruhr University Bochum, Bochum, Germany
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, Bochum, Germany
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
2
|
A fully automated, faster noise rejection approach to increasing the analytical capability of chemical imaging for digital histopathology. PLoS One 2019; 14:e0205219. [PMID: 31017894 PMCID: PMC6481772 DOI: 10.1371/journal.pone.0205219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 04/06/2019] [Indexed: 11/19/2022] Open
Abstract
Chemical hyperspectral imaging (HSI) data is naturally high dimensional and large. There are thus inherent manual trade-offs in acquisition time, and the quality of data. Minimum Noise Fraction (MNF) developed by Green et al. [1] has been extensively studied as a method for noise removal in HSI data. It too, however entails a manual speed-accuracy trade-off, namely the process of manually selecting the relevant bands in the MNF space. This process currently takes roughly around a month’s time for acquiring and pre-processing an entire TMA with acceptable signal to noise ratio. We present three approaches termed ‘Fast MNF’, ‘Approx MNF’ and ‘Rand MNF’ where the computational time of the algorithm is reduced, as well as the entire process of band selection is fully automated. This automated approach is shown to perform at the same level of accuracy as MNF with now large speedup factors, resulting in the same task to be accomplished in hours. The different approximations produced by the three algorithms, show the reconstruction accuracy vs storage (50×) and runtime speed (60×) trade-off. We apply the approach for automating the denoising of different tissue histology samples, in which the accuracy of classification (differentiating between the different histologic and pathologic classes) strongly depends on the SNR (signal to noise ratio) of recovered data. Therefore, we also compare the effect of the proposed denoising algorithms on classification accuracy. Since denoising HSI data is done unsupervised, we also use a metric that assesses the quality of denoising in the image domain between the noisy and denoised image in the absence of ground truth.
Collapse
|
3
|
Pahlow S, Weber K, Popp J, Wood BR, Kochan K, Rüther A, Perez-Guaita D, Heraud P, Stone N, Dudgeon A, Gardner B, Reddy R, Mayerich D, Bhargava R. Application of Vibrational Spectroscopy and Imaging to Point-of-Care Medicine: A Review. APPLIED SPECTROSCOPY 2018; 72:52-84. [PMID: 30265133 PMCID: PMC6524782 DOI: 10.1177/0003702818791939] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Susanne Pahlow
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Jena, Germany
| | - Karina Weber
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Jena, Germany
- Leibniz Institute of Photonic Technology-Leibniz Health Technologies, Jena, Germany
| | - Jürgen Popp
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Jena, Germany
- Leibniz Institute of Photonic Technology-Leibniz Health Technologies, Jena, Germany
| | - Bayden R. Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Kamila Kochan
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Anja Rüther
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - David Perez-Guaita
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Philip Heraud
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Nick Stone
- University of Exeter, School of Physics and Astronomy, Exeter, UK
| | - Alex Dudgeon
- University of Exeter, School of Physics and Astronomy, Exeter, UK
| | - Ben Gardner
- University of Exeter, School of Physics and Astronomy, Exeter, UK
| | - Rohith Reddy
- Department of Electrical Engineering, University of Houston, Houston, USA
| | - David Mayerich
- Department of Electrical Engineering, University of Houston, Houston, USA
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Departments of Mechanical Engineering, Bioengineering, Chemical and Biomolecular Engineering, Electrical and Computer Engineering, and Chemistry, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|
4
|
Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology. Proc Natl Acad Sci U S A 2018; 115:E5651-E5660. [PMID: 29866827 PMCID: PMC6016804 DOI: 10.1073/pnas.1719551115] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cancer alters both the morphological and the biochemical properties of multiple cell types in a tissue. Generally, the morphology of epithelial cells is practical for routine disease diagnoses. Here, infrared spectroscopic imaging biochemically characterizes breast cancer, both epithelial cells and the tumor-associated microenvironment. Unfortunately, conventional spectral analyses are slow. Hence, we designed and built a laser confocal microscope that demonstrates a high signal-to-noise ratio for confident diagnoses. The instrument cuts down imaging time from days to minutes, making the technology feasible for research and clinical translation. Finally, automated human breast cancer biopsy imaging is reported in ∼1 hour, paving the way for routine research into the total tumor (epithelial plus microenvironment) properties and rapid, label-free diagnoses. Histopathology based on spatial patterns of epithelial cells is the gold standard for clinical diagnoses and research in carcinomas; although known to be important, the tissue microenvironment is not readily used due to complex and subjective interpretation with existing tools. Here, we demonstrate accurate subtyping from molecular properties of epithelial cells using emerging high-definition Fourier transform infrared (HD FT-IR) spectroscopic imaging combined with machine learning algorithms. In addition to detecting four epithelial subtypes, we simultaneously delineate three stromal subtypes that characterize breast tumors. While FT-IR imaging data enable fully digital pathology with rich information content, the long spectral scanning times required for signal averaging and processing make the technology impractical for routine research or clinical use. Hence, we developed a confocal design in which refractive IR optics are designed to provide high-definition, rapid spatial scanning and discrete spectral tuning using a quantum cascade laser (QCL) source. This instrument provides simultaneously high resolving power (2-μm pixel size) and high signal-to-noise ratio (SNR) (>1,300), providing a speed increase of ∼50-fold for obtaining classified results compared with present imaging spectrometers. We demonstrate spectral fidelity and interinstrument operability of our developed instrument by accurate analysis of a 100-case breast tissue set that was analyzed in a day, considerably speeding research. Clinical breast biopsies typical of a patients’ caseload are analyzed in ∼1 hour. This study paves the way for comprehensive tumor-microenvironment analyses in feasible time periods, presenting a critical step in practical label-free molecular histopathology.
Collapse
|
5
|
Wrobel TP, Bhargava R. Infrared Spectroscopic Imaging Advances as an Analytical Technology for Biomedical Sciences. Anal Chem 2018; 90:1444-1463. [PMID: 29281255 PMCID: PMC6421863 DOI: 10.1021/acs.analchem.7b05330] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tomasz P. Wrobel
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
- Departments of Bioengineering, Electrical and Computer Engineering, Mechanical Science and Engineering, Chemical and Biomolecular Engineering, and Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Bhargava R, Madabhushi A. Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology. Annu Rev Biomed Eng 2017; 18:387-412. [PMID: 27420575 DOI: 10.1146/annurev-bioeng-112415-114722] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pathology is essential for research in disease and development, as well as for clinical decision making. For more than 100 years, pathology practice has involved analyzing images of stained, thin tissue sections by a trained human using an optical microscope. Technological advances are now driving major changes in this paradigm toward digital pathology (DP). The digital transformation of pathology goes beyond recording, archiving, and retrieving images, providing new computational tools to inform better decision making for precision medicine. First, we discuss some emerging innovations in both computational image analytics and imaging instrumentation in DP. Second, we discuss molecular contrast in pathology. Molecular DP has traditionally been an extension of pathology with molecularly specific dyes. Label-free, spectroscopic images are rapidly emerging as another important information source, and we describe the benefits and potential of this evolution. Third, we describe multimodal DP, which is enabled by computational algorithms and combines the best characteristics of structural and molecular pathology. Finally, we provide examples of application areas in telepathology, education, and precision medicine. We conclude by discussing challenges and emerging opportunities in this area.
Collapse
Affiliation(s)
- Rohit Bhargava
- Departments of Bioengineering, Chemical and Biomolecular Engineering, Electrical and Computer Engineering, Mechanical Science and Engineering, and Chemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801;
| | - Anant Madabhushi
- Center for Computational Imaging and Personalized Diagnostics; Departments of Biomedical Engineering, Urology, Pathology, Radiology, Radiation Oncology, General Medical Sciences, Electrical Engineering, and Computer Science; and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106;
| |
Collapse
|
7
|
Leslie LS, Wrobel TP, Mayerich D, Bindra S, Emmadi R, Bhargava R. High definition infrared spectroscopic imaging for lymph node histopathology. PLoS One 2015; 10:e0127238. [PMID: 26039216 PMCID: PMC4454651 DOI: 10.1371/journal.pone.0127238] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/14/2015] [Indexed: 11/19/2022] Open
Abstract
Chemical imaging is a rapidly emerging field in which molecular information within samples can be used to predict biological function and recognize disease without the use of stains or manual identification. In Fourier transform infrared (FT-IR) spectroscopic imaging, molecular absorption contrast provides a large signal relative to noise. Due to the long mid-IR wavelengths and sub-optimal instrument design, however, pixel sizes have historically been much larger than cells. This limits both the accuracy of the technique in identifying small regions, as well as the ability to visualize single cells. Here we obtain data with micron-sized sampling using a tabletop FT-IR instrument, and demonstrate that the high-definition (HD) data lead to accurate identification of multiple cells in lymph nodes that was not previously possible. Highly accurate recognition of eight distinct classes - naïve and memory B cells, T cells, erythrocytes, connective tissue, fibrovascular network, smooth muscle, and light and dark zone activated B cells was achieved in healthy, reactive, and malignant lymph node biopsies using a random forest classifier. The results demonstrate that cells currently identifiable only through immunohistochemical stains and cumbersome manual recognition of optical microscopy images can now be distinguished to a similar level through a single IR spectroscopic image from a lymph node biopsy.
Collapse
Affiliation(s)
- L. Suzanne Leslie
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Tomasz P. Wrobel
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - David Mayerich
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, United States America
| | - Snehal Bindra
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Rajyasree Emmadi
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Illinois, United States of America
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Illinois, United States of America
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Illinois, United States of America
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois, United States of America
- * E-mail:
| |
Collapse
|