1
|
Floricel C, Wentzel A, Mohamed A, Fuller CD, Canahuate G, Marai GE. Roses Have Thorns: Understanding the Downside of Oncological Care Delivery Through Visual Analytics and Sequential Rule Mining. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:1227-1237. [PMID: 38015695 PMCID: PMC10842255 DOI: 10.1109/tvcg.2023.3326939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Personalized head and neck cancer therapeutics have greatly improved survival rates for patients, but are often leading to understudied long-lasting symptoms which affect quality of life. Sequential rule mining (SRM) is a promising unsupervised machine learning method for predicting longitudinal patterns in temporal data which, however, can output many repetitive patterns that are difficult to interpret without the assistance of visual analytics. We present a data-driven, human-machine analysis visual system developed in collaboration with SRM model builders in cancer symptom research, which facilitates mechanistic knowledge discovery in large scale, multivariate cohort symptom data. Our system supports multivariate predictive modeling of post-treatment symptoms based on during-treatment symptoms. It supports this goal through an SRM, clustering, and aggregation back end, and a custom front end to help develop and tune the predictive models. The system also explains the resulting predictions in the context of therapeutic decisions typical in personalized care delivery. We evaluate the resulting models and system with an interdisciplinary group of modelers and head and neck oncology researchers. The results demonstrate that our system effectively supports clinical and symptom research.
Collapse
|
2
|
Wentzel A, Canahuate G, van Dijk LV, Mohamed ASR, Fuller CD, Marai GE. Explainable Spatial Clustering: Leveraging Spatial Data in Radiation Oncology. IEEE VISUALIZATION CONFERENCE : VIS. IEEE CONFERENCE ON VISUALIZATION 2020; 2020:281-285. [PMID: 39262817 PMCID: PMC11388150 DOI: 10.1109/vis47514.2020.00063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Advances in data collection in radiation therapy have led to an abundance of opportunities for applying data mining and machine learning techniques to promote new data-driven insights. In light of these advances, supporting collaboration between machine learning experts and clinicians is important for facilitating better development and adoption of these models. Although many medical use-cases rely on spatial data, where understanding and visualizing the underlying structure of the data is important, little is known about the interpretability of spatial clustering results by clinical audiences. In this work, we reflect on the design of visualizations for explaining novel approaches to clustering complex anatomical data from head and neck cancer patients. These visualizations were developed, through participatory design, for clinical audiences during a multi-year collaboration with radiation oncologists and statisticians. We distill this collaboration into a set of lessons learned for creating visual and explainable spatial clustering for clinical users.
Collapse
|
3
|
Hastings JF, O'Donnell YEI, Fey D, Croucher DR. Applications of personalised signalling network models in precision oncology. Pharmacol Ther 2020; 212:107555. [PMID: 32320730 DOI: 10.1016/j.pharmthera.2020.107555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
As our ability to provide in-depth, patient-specific characterisation of the molecular alterations within tumours rapidly improves, it is becoming apparent that new approaches will be required to leverage the power of this data and derive the full benefit for each individual patient. Systems biology approaches are beginning to emerge within this field as a potential method of incorporating large volumes of network level data and distilling a coherent, clinically-relevant prediction of drug response. However, the initial promise of this developing field is yet to be realised. Here we argue that in order to develop these precise models of individual drug response and tailor treatment accordingly, we will need to develop mathematical models capable of capturing both the dynamic nature of drug-response signalling networks and key patient-specific information such as mutation status or expression profiles. We also review the modelling approaches commonly utilised within this field, and outline recent examples of their use in furthering the application of systems biology for a precision medicine approach to cancer treatment.
Collapse
Affiliation(s)
- Jordan F Hastings
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
| | | | - Dirk Fey
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - David R Croucher
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland; St Vincent's Hospital Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Wentzel A, Hanula P, Luciani T, Elgohari B, Elhalawani H, Canahuate G, Vock D, Fuller CD, Marai GE. Cohort-based T-SSIM Visual Computing for Radiation Therapy Prediction and Exploration. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:949-959. [PMID: 31442988 PMCID: PMC7253296 DOI: 10.1109/tvcg.2019.2934546] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We describe a visual computing approach to radiation therapy (RT) planning, based on spatial similarity within a patient cohort. In radiotherapy for head and neck cancer treatment, dosage to organs at risk surrounding a tumor is a large cause of treatment toxicity. Along with the availability of patient repositories, this situation has lead to clinician interest in understanding and predicting RT outcomes based on previously treated similar patients. To enable this type of analysis, we introduce a novel topology-based spatial similarity measure, T-SSIM, and a predictive algorithm based on this similarity measure. We couple the algorithm with a visual steering interface that intertwines visual encodings for the spatial data and statistical results, including a novel parallel-marker encoding that is spatially aware. We report quantitative results on a cohort of 165 patients, as well as a qualitative evaluation with domain experts in radiation oncology, data management, biostatistics, and medical imaging, who are collaborating remotely.
Collapse
|
5
|
Harris LA, Beik S, Ozawa PMM, Jimenez L, Weaver AM. Modeling heterogeneous tumor growth dynamics and cell-cell interactions at single-cell and cell-population resolution. CURRENT OPINION IN SYSTEMS BIOLOGY 2019; 17:24-34. [PMID: 32642602 PMCID: PMC7343346 DOI: 10.1016/j.coisb.2019.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer is a complex, dynamic disease that despite recent advances remains mostly incurable. Inter- and intratumoral heterogeneity are generally considered major drivers of therapy resistance, metastasis, and treatment failure. Recent advances in high-throughput experimentation have produced a wealth of data on tumor heterogeneity and researchers are increasingly turning to mathematical modeling to aid in the interpretation of these complex datasets. In this mini-review, we discuss three important classes of approaches for modeling cellular dynamics within heterogeneous tumors: agent-based models, population dynamics, and multiscale models. An important new focus, for which we provide an example, is the role of intratumoral cell-cell interactions.
Collapse
Affiliation(s)
- Leonard A. Harris
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Samantha Beik
- Cancer Biology Graduate Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Patricia M. M. Ozawa
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lizandra Jimenez
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alissa M. Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
6
|
Marai GE, Pinaud B, Bühler K, Lex A, Morris JH. Ten simple rules to create biological network figures for communication. PLoS Comput Biol 2019; 15:e1007244. [PMID: 31557157 PMCID: PMC6762067 DOI: 10.1371/journal.pcbi.1007244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Biological network figures are ubiquitous in the biology and medical literature. On the one hand, a good network figure can quickly provide information about the nature and degree of interactions between items and enable inferences about the reason for those interactions. On the other hand, good network figures are difficult to create. In this paper, we outline 10 simple rules for creating biological network figures for communication, from choosing layouts, to applying color or other channels to show attributes, to the use of layering and separation. These rules are accompanied by illustrative examples. We also provide a concise set of references and additional resources for each rule.
Collapse
Affiliation(s)
- G. Elisabeta Marai
- Electronic Visualization Laboratory, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Bruno Pinaud
- Laboratoire Bordelais de Recherche en Informatique, University of Bordeaux, Bordeaux, France
| | - Katja Bühler
- Biomedical Image Informatics Department, VRVis Research Center, Vienna, Austria
| | - Alexander Lex
- Department of Computer Science, University of Utah, Salt Lake City, Utah, United States of America
| | - John H. Morris
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
7
|
Andrei O, Fernández M, Kirchner H, Pinaud B. Strategy-Driven Exploration for Rule-Based Models of Biochemical Systems with PORGY. Methods Mol Biol 2019; 1945:43-70. [PMID: 30945242 DOI: 10.1007/978-1-4939-9102-0_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This chapter presents PORGY-an interactive visual environment for rule-based modelling of biochemical systems. We model molecules and molecule interactions as port graphs and port graph rewrite rules, respectively. We use rewriting strategies to control which rules to apply, and where and when to apply them. Our main contributions to rule-based modelling of biochemical systems lie in the strategy language and the associated visual and interactive features offered by PORGY. These features facilitate an exploratory approach to test different ways of applying the rules while recording the model evolution, and tracking and plotting parameters. We illustrate PORGY's features with a study of the role of a scaffold protein in RAF/MEK/ERK signalling.
Collapse
Affiliation(s)
- Oana Andrei
- School of Computing Science, University of Glasgow, Glasgow, UK
| | | | | | - Bruno Pinaud
- University of Bordeaux, CNRS UMR5800 LaBRI, Talence, France.
| |
Collapse
|
8
|
Marai GE. Activity-Centered Domain Characterization for Problem-Driven Scientific Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:913-922. [PMID: 28866550 PMCID: PMC5796424 DOI: 10.1109/tvcg.2017.2744459] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although visualization design models exist in the literature in the form of higher-level methodological frameworks, these models do not present a clear methodological prescription for the domain characterization step. This work presents a framework and end-to-end model for requirements engineering in problem-driven visualization application design. The framework and model are based on the activity-centered design paradigm, which is an enhancement of human-centered design. The proposed activity-centered approach focuses on user tasks and activities, and allows an explicit link between the requirements engineering process with the abstraction stage-and its evaluation-of existing, higher-level visualization design models. In a departure from existing visualization design models, the resulting model: assigns value to a visualization based on user activities; ranks user tasks before the user data; partitions requirements in activity-related capabilities and nonfunctional characteristics and constraints; and explicitly incorporates the user workflows into the requirements process. A further merit of this model is its explicit integration of functional specifications, a concept this work adapts from the software engineering literature, into the visualization design nested model. A quantitative evaluation using two sets of interdisciplinary projects supports the merits of the activity-centered model. The result is a practical roadmap to the domain characterization step of visualization design for problem-driven data visualization. Following this domain characterization model can help remove a number of pitfalls that have been identified multiple times in the visualization design literature.
Collapse
|
9
|
Harris LA, Hogg JS, Tapia JJ, Sekar JAP, Gupta S, Korsunsky I, Arora A, Barua D, Sheehan RP, Faeder JR. BioNetGen 2.2: advances in rule-based modeling. Bioinformatics 2016; 32:3366-3368. [PMID: 27402907 DOI: 10.1093/bioinformatics/btw469] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 06/27/2016] [Indexed: 12/18/2022] Open
Abstract
: BioNetGen is an open-source software package for rule-based modeling of complex biochemical systems. Version 2.2 of the software introduces numerous new features for both model specification and simulation. Here, we report on these additions, discussing how they facilitate the construction, simulation and analysis of larger and more complex models than previously possible. AVAILABILITY AND IMPLEMENTATION Stable BioNetGen releases (Linux, Mac OS/X and Windows), with documentation, are available at http://bionetgen.org Source code is available at http://github.com/RuleWorld/bionetgen CONTACT: bionetgen.help@gmail.comSupplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Leonard A Harris
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Justin S Hogg
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - José-Juan Tapia
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John A P Sekar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sanjana Gupta
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ilya Korsunsky
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Arshi Arora
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dipak Barua
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert P Sheehan
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James R Faeder
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Chylek LA, Harris LA, Faeder JR, Hlavacek WS. Modeling for (physical) biologists: an introduction to the rule-based approach. Phys Biol 2015; 12:045007. [PMID: 26178138 PMCID: PMC4526164 DOI: 10.1088/1478-3975/12/4/045007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Models that capture the chemical kinetics of cellular regulatory networks can be specified in terms of rules for biomolecular interactions. A rule defines a generalized reaction, meaning a reaction that permits multiple reactants, each capable of participating in a characteristic transformation and each possessing certain, specified properties, which may be local, such as the state of a particular site or domain of a protein. In other words, a rule defines a transformation and the properties that reactants must possess to participate in the transformation. A rule also provides a rate law. A rule-based approach to modeling enables consideration of mechanistic details at the level of functional sites of biomolecules and provides a facile and visual means for constructing computational models, which can be analyzed to study how system-level behaviors emerge from component interactions.
Collapse
Affiliation(s)
- Lily A Chylek
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Theoretical Biology and Biophysics Group, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Leonard A Harris
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - James R Faeder
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| |
Collapse
|