Sahlin K, Medvedev P. De Novo Clustering of Long-Read Transcriptome Data Using a Greedy, Quality Value-Based Algorithm.
J Comput Biol 2020;
27:472-484. [PMID:
32181688 DOI:
10.1089/cmb.2019.0299]
[Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Long-read sequencing of transcripts with Pacific Biosciences (PacBio) Iso-Seq and Oxford Nanopore Technologies has proven to be central to the study of complex isoform landscapes in many organisms. However, current de novo transcript reconstruction algorithms from long-read data are limited, leaving the potential of these technologies unfulfilled. A common bottleneck is the dearth of scalable and accurate algorithms for clustering long reads according to their gene family of origin. To address this challenge, we develop isONclust, a clustering algorithm that is greedy (to scale) and makes use of quality values (to handle variable error rates). We test isONclust on three simulated and five biological data sets, across a breadth of organisms, technologies, and read depths. Our results demonstrate that isONclust is a substantial improvement over previous approaches, both in terms of overall accuracy and/or scalability to large data sets.
Collapse