1
|
Nikam R, Yugandhar K, Gromiha MM. Deep learning-based method for predicting and classifying the binding affinity of protein-protein complexes. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140948. [PMID: 37567456 DOI: 10.1016/j.bbapap.2023.140948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Protein-protein interactions (PPIs) play a critical role in various biological processes. Accurately estimating the binding affinity of PPIs is essential for understanding the underlying molecular recognition mechanisms. In this study, we employed a deep learning approach to predict the binding affinity (ΔG) of protein-protein complexes. To this end, we compiled a dataset of 903 protein-protein complexes, each with its corresponding experimental binding affinity, which belong to six functional classes. We extracted 8 to 20 non-redundant features from the sequence information as well as the predicted three-dimensional structures using feature selection methods for each protein functional class. Our method showed an overall mean absolute error of 1.05 kcal/mol and a correlation of 0.79 between experimental and predicted ΔG values. Additionally, we evaluated our model for discriminating high and low affinity protein-protein complexes and it achieved an accuracy of 87% with an F1 score of 0.86 using 10-fold cross-validation on the selected features. Our approach presents an efficient tool for studying PPIs and provides crucial insights into the underlying mechanisms of the molecular recognition process. The web server can be freely accessed at https://web.iitm.ac.in/bioinfo2/DeepPPAPred/index.html.
Collapse
Affiliation(s)
- Rahul Nikam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Kumar Yugandhar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; Department of Computational Biology, Cornell University, New York, USA
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan; Department of Computer Science, National University of Singapore, Singapore.
| |
Collapse
|
2
|
Delaunay M, Ha-Duong T. Computational Tools and Strategies to Develop Peptide-Based Inhibitors of Protein-Protein Interactions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2405:205-230. [PMID: 35298816 DOI: 10.1007/978-1-0716-1855-4_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein-protein interactions play crucial and subtle roles in many biological processes and modifications of their fine mechanisms generally result in severe diseases. Peptide derivatives are very promising therapeutic agents for modulating protein-protein associations with sizes and specificities between those of small compounds and antibodies. For the same reasons, rational design of peptide-based inhibitors naturally borrows and combines computational methods from both protein-ligand and protein-protein research fields. In this chapter, we aim to provide an overview of computational tools and approaches used for identifying and optimizing peptides that target protein-protein interfaces with high affinity and specificity. We hope that this review will help to implement appropriate in silico strategies for peptide-based drug design that builds on available information for the systems of interest.
Collapse
Affiliation(s)
| | - Tâp Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France.
| |
Collapse
|
3
|
Yang YX, Wang P, Zhu BT. Relative importance of interface and surface areas in protein-protein binding affinity prediction: A machine learning analysis based on linear regression and artificial neural network. Biophys Chem 2022; 283:106762. [DOI: 10.1016/j.bpc.2022.106762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/02/2022]
|
4
|
Yerukala Sathipati S, Shukla SK, Ho SY. Tracking the amino acid changes of spike proteins across diverse host species of severe acute respiratory syndrome coronavirus 2. iScience 2022; 25:103560. [PMID: 34877480 PMCID: PMC8638202 DOI: 10.1016/j.isci.2021.103560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/02/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Knowledge of the host-specific properties of the spike protein is of crucial importance to understand the adaptability of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to infect multiple species and alter transmissibility, particularly in humans. Here, we propose a spike protein predictor SPIKES incorporating with an inheritable bi-objective combinatorial genetic algorithm to identify the biochemical properties of spike proteins and determine their specificity to human hosts. SPIKES identified 20 informative physicochemical properties of the spike protein, including information measures for alpha helix and relative mutability, and amino acid and dipeptide compositions, which have shown compositional difference at the amino acid sequence level between human and diverse animal coronaviruses. We suggest that alterations of these amino acids between human and animal coronaviruses may provide insights into the development and transmission of SARS-CoV-2 in human and other species and support the discovery of targeted antiviral therapies. Differences exist in the amino acids within the S protein of diverse host species CoVs We developed SPIKES to identify informative properties of S protein SARS-CoV-2 variants have amino acid changes that alter infection and transmission The SPIKES identified changes in S protein properties from animal to human host CoVs
Collapse
Affiliation(s)
- Srinivasulu Yerukala Sathipati
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
- Corresponding author
| | - Sanjay K. Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for intelligent Drug Systems and Smart Bio-Devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Lin Y, Yerukala Sathipati S, Ho SY. Predicting the Risk Genes of Autism Spectrum Disorders. Front Genet 2021; 12:665469. [PMID: 34194469 PMCID: PMC8236850 DOI: 10.3389/fgene.2021.665469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a wide spectrum of neurodevelopmental disorders that emerge during infancy and continue throughout a lifespan. Although substantial efforts have been made to develop therapeutic approaches, core symptoms persist lifelong in ASD patients. Identifying the brain temporospatial regions where the risk genes are expressed in ASD patients may help to improve the therapeutic strategies. Accordingly, this work aims to predict the risk genes of ASD and identify the temporospatial regions of the brain structures at different developmental time points for exploring the specificity of ASD gene expression in the brain that would help in possible ASD detection in the future. A dataset consisting of 13 developmental stages ranging from 8 weeks post-conception to 8 years from 26 brain structures was retrieved from the BrainSpan atlas. This work proposes a support vector machine–based risk gene prediction method ASD-Risk to distinguish the risk genes of ASD and non-ASD genes. ASD-Risk used an optimal feature selection algorithm called inheritable bi-objective combinatorial genetic algorithm to identify the brain temporospatial regions for prediction of the risk genes of ASD. ASD-Risk achieved a 10-fold cross-validation accuracy, sensitivity, specificity, area under a receiver operating characteristic curve, and a test accuracy of 81.83%, 0.84, 0.79, 0.84, and 72.27%, respectively. We prioritized the temporospatial features according to their contribution to the prediction accuracy. The top identified temporospatial regions of the brain for risk gene prediction included the posteroventral parietal cortex at 13 post-conception weeks feature. The identified temporospatial features would help to explore the risk genes that are specifically expressed in different brain regions of ASD patients.
Collapse
Affiliation(s)
- Yenching Lin
- Interdisciplinary Neuroscience Ph.D. Program, National Chiao Tung University, Hsinchu, Taiwan
| | - Srinivasulu Yerukala Sathipati
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Shinn-Ying Ho
- Interdisciplinary Neuroscience Ph.D. Program, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Center For Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
6
|
Yerukala Sathipati S, Ho SY. Identification and Characterization of Species-Specific Severe Acute Respiratory Syndrome Coronavirus 2 Physicochemical Properties. J Proteome Res 2021; 20:2942-2952. [PMID: 33856796 PMCID: PMC8056951 DOI: 10.1021/acs.jproteome.1c00156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 12/28/2022]
Abstract
There is an urgent need to elucidate the underlying mechanisms of coronavirus disease (COVID-19) so that vaccines and treatments can be devised. Severe acute respiratory syndrome coronavirus 2 has genetic similarity with bats and pangolin viruses, but a comprehensive understanding of the functions of its proteins at the amino acid sequence level is lacking. A total of 4320 sequences of human and nonhuman coronaviruses was retrieved from the Global Initiative on Sharing All Influenza Data and the National Center for Biotechnology Information. This work proposes an optimization method COVID-Pred with an efficient feature selection algorithm to classify the species-specific coronaviruses based on physicochemical properties (PCPs) of their sequences. COVID-Pred identified a set of 11 PCPs using a support vector machine and achieved 10-fold cross-validation and test accuracies of 99.53% and 97.80%, respectively. These findings could provide key insights into understanding the driving forces during the course of infection and assist in developing effective therapies.
Collapse
Affiliation(s)
- Srinivasulu Yerukala Sathipati
- Center for Precision Medicine Research,
Marshfield Clinic Research Institute, Marshfield, Wisconsin
54449, United States
- Institute of Bioinformatics and Systems Biology,
National Chiao Tung University, Hsinchu 300,
Taiwan
- Institute of Population Health Sciences,
National Health Research Institutes, Miaoli 350,
Taiwan
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology,
National Chiao Tung University, Hsinchu 300,
Taiwan
- Institute of Bioinformatics and Systems Biology,
National Yang Ming Chiao Tung University, Hsinchu 300,
Taiwan
- Department of Biological Science and Technology,
National Yang Ming Chiao Tung University, Hsinchu 300,
Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices
(IDSB), National Yang Ming Chiao Tung University,
Hsinchu 300, Taiwan
| |
Collapse
|
7
|
Abbasi WA, Yaseen A, Hassan FU, Andleeb S, Minhas FUAA. ISLAND: in-silico proteins binding affinity prediction using sequence information. BioData Min 2020; 13:20. [PMID: 33292419 PMCID: PMC7688004 DOI: 10.1186/s13040-020-00231-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/15/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Determining binding affinity in protein-protein interactions is important in the discovery and design of novel therapeutics and mutagenesis studies. Determination of binding affinity of proteins in the formation of protein complexes requires sophisticated, expensive and time-consuming experimentation which can be replaced with computational methods. Most computational prediction techniques require protein structures that limit their applicability to protein complexes with known structures. In this work, we explore sequence-based protein binding affinity prediction using machine learning. METHOD We have used protein sequence information instead of protein structures along with machine learning techniques to accurately predict the protein binding affinity. RESULTS We present our findings that the true generalization performance of even the state-of-the-art sequence-only predictor is far from satisfactory and that the development of machine learning methods for binding affinity prediction with improved generalization performance is still an open problem. We have also proposed a sequence-based novel protein binding affinity predictor called ISLAND which gives better accuracy than existing methods over the same validation set as well as on external independent test dataset. A cloud-based webserver implementation of ISLAND and its python code are available at https://sites.google.com/view/wajidarshad/software . CONCLUSION This paper highlights the fact that the true generalization performance of even the state-of-the-art sequence-only predictor of binding affinity is far from satisfactory and that the development of effective and practical methods in this domain is still an open problem.
Collapse
Affiliation(s)
- Wajid Arshad Abbasi
- Computational Biology and Data Analysis Laboratory, Department of Computer Science and Information Technology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan. .,Biomedical Informatics Research Laboratory, Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan.
| | - Adiba Yaseen
- Biomedical Informatics Research Laboratory, Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Fahad Ul Hassan
- Biomedical Informatics Research Laboratory, Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Saiqa Andleeb
- Biotechnology Laboratory, Department of Zoology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | | |
Collapse
|
8
|
iQSP: A Sequence-Based Tool for the Prediction and Analysis of Quorum Sensing Peptides via Chou's 5-Steps Rule and Informative Physicochemical Properties. Int J Mol Sci 2019; 21:ijms21010075. [PMID: 31861928 PMCID: PMC6981611 DOI: 10.3390/ijms21010075] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 01/18/2023] Open
Abstract
Understanding of quorum-sensing peptides (QSPs) in their functional mechanism plays an essential role in finding new opportunities to combat bacterial infections by designing drugs. With the avalanche of the newly available peptide sequences in the post-genomic age, it is highly desirable to develop a computational model for efficient, rapid and high-throughput QSP identification purely based on the peptide sequence information alone. Although, few methods have been developed for predicting QSPs, their prediction accuracy and interpretability still requires further improvements. Thus, in this work, we proposed an accurate sequence-based predictor (called iQSP) and a set of interpretable rules (called IR-QSP) for predicting and analyzing QSPs. In iQSP, we utilized a powerful support vector machine (SVM) cooperating with 18 informative features from physicochemical properties (PCPs). Rigorous independent validation test showed that iQSP achieved maximum accuracy and MCC of 93.00% and 0.86, respectively. Furthermore, a set of interpretable rules IR-QSP was extracted by using random forest model and the 18 informative PCPs. Finally, for the convenience of experimental scientists, the iQSP web server was established and made freely available online. It is anticipated that iQSP will become a useful tool or at least as a complementary existing method for predicting and analyzing QSPs.
Collapse
|
9
|
Sarkar D, Saha S. Machine-learning techniques for the prediction of protein-protein interactions. J Biosci 2019; 44:104. [PMID: 31502581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein-protein interactions (PPIs) are important for the study of protein functions and pathways involved in different biological processes, as well as for understanding the cause and progression of diseases. Several high-throughput experimental techniques have been employed for the identification of PPIs in a few model organisms, but still, there is a huge gap in identifying all possible binary PPIs in an organism. Therefore, PPI prediction using machine-learning algorithms has been used in conjunction with experimental methods for discovery of novel protein interactions. The two most popular supervised machine-learning techniques used in the prediction of PPIs are support vector machines and random forest classifiers. Bayesian-probabilistic inference has also been used but mainly for the scoring of high-throughput PPI dataset confidence measures. Recently, deep-learning algorithms have been used for sequence-based prediction of PPIs. Several clustering methods such as hierarchical and k-means are useful as unsupervised machine-learning algorithms for the prediction of interacting protein pairs without explicit data labelling. In summary, machine-learning techniques have been widely used for the prediction of PPIs thus allowing experimental researchers to study cellular PPI networks.
Collapse
|
10
|
Sarkar D, Saha S. Machine-learning techniques for the prediction of protein–protein interactions. J Biosci 2019. [DOI: 10.1007/s12038-019-9909-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Chen M, Ju CJT, Zhou G, Chen X, Zhang T, Chang KW, Zaniolo C, Wang W. Multifaceted protein-protein interaction prediction based on Siamese residual RCNN. Bioinformatics 2019; 35:i305-i314. [PMID: 31510705 PMCID: PMC6681469 DOI: 10.1093/bioinformatics/btz328] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MOTIVATION Sequence-based protein-protein interaction (PPI) prediction represents a fundamental computational biology problem. To address this problem, extensive research efforts have been made to extract predefined features from the sequences. Based on these features, statistical algorithms are learned to classify the PPIs. However, such explicit features are usually costly to extract, and typically have limited coverage on the PPI information. RESULTS We present an end-to-end framework, PIPR (Protein-Protein Interaction Prediction Based on Siamese Residual RCNN), for PPI predictions using only the protein sequences. PIPR incorporates a deep residual recurrent convolutional neural network in the Siamese architecture, which leverages both robust local features and contextualized information, which are significant for capturing the mutual influence of proteins sequences. PIPR relieves the data pre-processing efforts that are required by other systems, and generalizes well to different application scenarios. Experimental evaluations show that PIPR outperforms various state-of-the-art systems on the binary PPI prediction problem. Moreover, it shows a promising performance on more challenging problems of interaction type prediction and binding affinity estimation, where existing approaches fall short. AVAILABILITY AND IMPLEMENTATION The implementation is available at https://github.com/muhaochen/seq_ppi.git. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Muhao Chen
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chelsea J -T Ju
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Guangyu Zhou
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xuelu Chen
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tianran Zhang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kai-Wei Chang
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Carlo Zaniolo
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wei Wang
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
12
|
Abbasi WA, Asif A, Ben-Hur A, Minhas FUAA. Learning protein binding affinity using privileged information. BMC Bioinformatics 2018; 19:425. [PMID: 30442086 PMCID: PMC6238365 DOI: 10.1186/s12859-018-2448-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/25/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Determining protein-protein interactions and their binding affinity are important in understanding cellular biological processes, discovery and design of novel therapeutics, protein engineering, and mutagenesis studies. Due to the time and effort required in wet lab experiments, computational prediction of binding affinity from sequence or structure is an important area of research. Structure-based methods, though more accurate than sequence-based techniques, are limited in their applicability due to limited availability of protein structure data. RESULTS In this study, we propose a novel machine learning method for predicting binding affinity that uses protein 3D structure as privileged information at training time while expecting only protein sequence information during testing. Using the method, which is based on the framework of learning using privileged information (LUPI), we have achieved improved performance over corresponding sequence-based binding affinity prediction methods that do not have access to privileged information during training. Our experiments show that with the proposed framework which uses structure only during training, it is possible to achieve classification performance comparable to that which is obtained using structure-based features. Evaluation on an independent test set shows improved performance over the PPA-Pred2 method as well. CONCLUSIONS The proposed method outperforms several baseline learners and a state-of-the-art binding affinity predictor not only in cross-validation, but also on an additional validation dataset, demonstrating the utility of the LUPI framework for problems that would benefit from classification using structure-based features. The implementation of LUPI developed for this work is expected to be useful in other areas of bioinformatics as well.
Collapse
Affiliation(s)
- Wajid Arshad Abbasi
- Biomedical Informatics Research Laboratory (BIRL), Department of Computer and Information Sciences (DCIS), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, ISL, 45650, Pakistan
- Information Technology Center (ITC), University of Azad Jammu & Kashmir, Muzaffarabad, Azad Kashmir, 13100, Pakistan
- Department of Computer Science, Colorado State University (CSU), Fort Collins, CO, 80523, USA
| | - Amina Asif
- Biomedical Informatics Research Laboratory (BIRL), Department of Computer and Information Sciences (DCIS), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, ISL, 45650, Pakistan
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University (CSU), Fort Collins, CO, 80523, USA.
| | - Fayyaz Ul Amir Afsar Minhas
- Biomedical Informatics Research Laboratory (BIRL), Department of Computer and Information Sciences (DCIS), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, ISL, 45650, Pakistan.
| |
Collapse
|
13
|
Gromiha MM, Yugandhar K, Jemimah S. Protein-protein interactions: scoring schemes and binding affinity. Curr Opin Struct Biol 2016; 44:31-38. [PMID: 27866112 DOI: 10.1016/j.sbi.2016.10.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/30/2016] [Accepted: 10/25/2016] [Indexed: 01/16/2023]
Abstract
Protein-protein interactions mediate several cellular functions, which can be understood from the information obtained using the three-dimensional structures of protein-protein complexes and binding affinity data. This review focuses on computational aspects of predicting the best native-like complex structure and binding affinities. The first part covers the prediction of protein-protein complex structures and the advantages of conformational searching and scoring functions in protein-protein docking. The second part is devoted to various aspects of protein-protein interaction thermodynamics, such as databases for binding affinities and other thermodynamic parameters, computational methods to predict the binding affinity using either the three-dimensional structures of complexes or amino acid sequences, and change in binding affinities of the complexes upon mutations. We provide the latest developments on protein-protein docking and binding affinity studies along with a list of available computational resources for understanding protein-protein interactions.
Collapse
Affiliation(s)
- M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - K Yugandhar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Sherlyn Jemimah
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
14
|
Schönbach C, Horton P, Yiu SM, Tan TW, Ranganathan S. GIW and InCoB are advancing bioinformatics in the Asia-Pacific. BMC Bioinformatics 2015; 16:I1. [PMID: 28102114 PMCID: PMC6389036 DOI: 10.1186/1471-2105-16-s18-i1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
GIW/InCoB2015 the joint 26th International Conference on Genome Informatics (GIW) and 14th International Conference on Bioinformatics (InCoB) held in Tokyo, September 9-11, 2015 was attended by over 200 delegates. Fifty-one out of 89 oral presentations were based on research articles accepted for publication in four BMC journal supplements and three other journals. Sixteen articles in this supplement and six articles in the BMC Systems Biology GIW/InCoB2015 Supplement are covered by this introduction. The topics range from genome informatics, protein structure informatics, image analysis to biological networks and biomarker discovery.
Collapse
Affiliation(s)
- Christian Schönbach
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, 010000 Republic of Kazakhstan
- Center for AIDS Research and International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Paul Horton
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, 135-0064 Japan
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Japan
| | - Siu-Ming Yiu
- Department of Computer Science, Faculty of Engineering, The University of Hong Kong, Hong Kong, HKSAR
| | - Tin Wee Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599
| | - Shoba Ranganathan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109 Australia
| |
Collapse
|